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Abstract: Crack detection is essential for observing structural health and guaranteeing structural
safety. The manual crack and other damage detection process is time-consuming and subject to
surveyors’ biased judgments. The proposed Conv2D ResNet Exponential model for wall quality
detection was trained with 5000 wall images, including various imperfections such as cracks, holes,
efflorescence, damp patches, and spalls. The model was trained with initial weights to form the
trained layers of the base model and was integrated with Xception, VGG19, DenseNet, and ResNet
convolutional neural network (CNN) models to retrieve the general high-level features. A transfer
deep-learning-based approach was implemented to create a custom layer of CNN models. The base
model was combined with custom layers to estimate wall quality. Xception, VGG19, DenseNet, and
ResNet models were fitted with different activation layers such as softplus, softsign, tanh, selu, elu,
and exponential, along with transfer learning. The performance of Conv2D was evaluated using
model loss, precision, accuracy, recall, and F-score measures. The model was validated by comparing
the performances of Xception, VGG19, DenseNet, ResNet, and Conv2D ResNet Exponential. The
experimental results show that the Conv2D ResNet model with an exponential activation layer
outperforms it with an F-score value of 0.9978 and can potentially be a viable substitute for classifying
various wall defects.

Keywords: deep learning; Conv2D; activation layer; transfer learning; F-score

MSC: 68T10; 68T45

1. Introduction

Cracks are the first signs of civil structure degradation, and they can arise for various
reasons, including structural foundation displacement, shrinkage and extension, uneven
mix, bloated soil, and overloaded environmental and manufacturing disasters. Crack
detection and recognition activities can be conducted automatically or manually and are
subjected to human experts visually analyzing and evaluating the structure [1]. Manual
inspection involves fetching a schematic of a crack and recording the circumstances of the
abnormalities. Usually, manual inspection methods take a long time, rely on the observer,
are potentially sensitive to the inspector’s insight, and lack descriptive methodology [2].
Automatic inspection methods provide a coherent solution that reduces subjectivity and
replaces manual observation with the human eye [3]. Automatic crack identification has
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been established considering slow, biased, and old human inspection processes for fast and
efficient surface defect assessment [4]. An image vision computer system is introduced to
address this shortcoming, with the goal of instantly and reliably transforming image or
video input into meaningful intelligence. It contains structural components, recognizes
modifications in a reference image, and quantifies local and global visual damage [5].
Automating the process may significantly reduce computational costs and allow regular
inspection intervals. The detection of cracks and disintegration of a bridge is examined as a
part of automation using the rapid Haar transform [6]. Crack detection filters of various
sizes were developed to locate cracking spots in inspection imagery. A semi-automatic
strategy incorporating Sobel and Laplacian operators was used to identify crack edges,
and a graph search algorithm was used to obtain cracks depending on the user input [7].
A principal-component-analysis-(PCA)-based approach combined with linear structural
analysis has been reported to identify linear structural fractures in concrete bridge decks
with the highest classification accuracy [8]. One of the most critical structural inspection
and maintenance methods is vision-based technology, which utilizes essential diagnostic
imaging devices, such as sensors [9]. Miscommunication deflection assessment, steel
corrosion recognition, and spalling diagnosis are some of the most recent advancements in
vision-based inspection and testing [10]. As a result, this technique has some constraints in
terms of real-world applications as creating an automated system that can encompass all
unpredicted possibilities for fast perceptible damage remediation in the physical world is
difficult [11]. Deep learning (DL) has recently been recognized as one of the most potent
remedies to this challenge [12]. In addition, machine learning (ML) strategies for DL models
based on neural networks containing numerous hidden units have evolved with numerous
benefits for a better solution [13].

Structural inspections across long, nonintrusive distances based on high precision
have been performed using optics and computer vision advancements. The fundamental
shortcoming of image-processing-based approaches is the lack of consistency and vibration
among the fracture pixels [14]. DeepLab V2 was used to detect several cracks in the images.
Automated inspection has achieved an expected improvement owing to the rapid evo-
lution of ML. ML algorithms can acquire feature representations and execute confidence
intervals without requiring human model training, which is performed using conventional
techniques [15]. Data collection, feature extraction, and categorization are all conventional
machine learning algorithms for pavement crack detection. Shallow convolutional-neural-
network-(CNN)-based architectures have been implemented to identify surface cracks and
achieve greater accuracy with efficient computational costs [16,17]. Deep CNN systems use
a multilayer neural net to retrieve significant characteristics from the input data [18]. Nu-
merous analyses of ML-based crack detection methods have revealed that the classifier may
not produce reliable results if the derived features do not identify actual cracks [19]. The
Hessian matrix has been used both to accentuate cracks over blebs or staining and to modify
the thickness fluctuation of cracks during image pre-processing [20]. Probabilistic relaxation
is employed to determine cracks coarsely, eliminate noise, and accomplish adaptive thresh-
olding for their operation [21]. Transfer learning methods allow CNNs to be used without
incurring high computing costs or needing a prior understanding of the working func-
tionality of CNN layers. Visual Geometry Group’s VGGNet [22], Microsoft’s ResNet [23],
and Inception-V3 [24] are some of Google’s transfer learning design models that employ
photographic data as input. Models built over the hybridization of ML algorithms have
been found to increase the performance of vision-based systems over traditional algo-
rithms. Hybridizing optimization techniques with support vector machines (SVM), such
as fuzzy logic, k-nearest neighbours, artificial neural networks (ANN), and evolutionary
algorithms, led to substantial improvements in recognition accuracy [25]. Pavement Crack
Detection Net (PCDNet) eliminates more localized distortion, detects smaller cracks, and
interprets information at a significantly faster rate than other methods [26]. Optimal in-
telligence technology was used to examine the wall quality parameters concerning many
components of the dynamic situations of the retaining wall [27]. In addition, using ant
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colony optimization (ACO), these criteria resulted in the best design solution. A hybrid
ANN-ACO algorithm utilizes various parameters under different structural conditions,
and dynamic loads remarkably impact structural models [16]. Ensemble models built by
stacking the best-performing ML algorithms have proven to produce efficient results in
predictive models [28]. A pre-processed CNN classifier of VGG-16 with ResNet-50 detects
fractures in image and inception models for object localization incorporated class actuation
monitoring (CAM) for excellent optimal detection [29]. Optimizing the hyperparameters
of CNN architectures, such as VGG16 and Resnet, proved to achieve greater accuracy in
object identification and classification [30]. Unmanned aerial vehicles (UAVs) and camera
systems were implemented to identify cracks and trigger U-Net in pixel-wise classification
for feature and flaw identification with various feature sets. Texture-based video process-
ing methods handle local binary patterns (LBP) using SVM and Bayes decision theories.
For noisy and complicated bridge photographs, wavelet features were retrieved from the
scene using a sliding-window-texture-analysis-based technique [31]. A deep CNN-based
damage locating method used DenseNet to identify the damaged and undamaged steel
frames from the images provided as inputs. The model outperformed the MobileNet and
ResNet architectures [32]. Cracks are detected by the trained ConvNet, SVM, and boosting
methods on a sliding window, where the SVM sometimes fails to distinguish the crack
from the background. CNN using traditional Canny and Sobel edge detection methods can
scan larger pixel images and exhibit excellent robustness during the training process. The
AdaBoost classifier was used for pre-processing the crack image, and DL techniques were
used for crack-detection in the image data [33]. An EfficientNet-based transfer learning
model was developed to detect and classify surface cracks in high-rise buildings using UAV.
Microcrack detection is achieved by solving the binary classification problem of cracks
using autoencoders and softmax regression [34]. CNN-based order forensics framework for
detecting picture operator chains is described. The two-stream Framework captures both
local noise residual data and manipulating artifacts proof. The model may automatically
detect alternated detection features straight from picture data and is suggested explicitly
for forensically recognizing a chain consisting of two image operators [35]. To directly
extract features from the photos, dual-filtering CNN base was designed. It treats each
resampling parameter as a separate class, followed by the formulation of resampling pa-
rameter estimation and reformulates it as a multi-classification problem [36]. A reliable
blind watermarking system based on 3D convolutional neural networks that can extract
and integrate watermark images into animated GIF files was proposed [37].

Literature studies reviewed that manual inspection of structures is challenging, time-
consuming and provides biased results. Several research studies have implemented differ-
ent image-based methods, machine learning and deep learning algorithms to enable the
automatic monitoring of building structures. The performance of ML algorithms on image
data could have been more appreciated as it depends on many features and encompasses
complex feature engineering tasks. The DCNN-based models were employed for damage
detection and classifications, but not all models performed efficiently due to insufficient
data, overfitting, and vanishing gradient problems. The models’ competency was enhanced
by customising the convolutional layers, hybridising, ensembling, and transfer-learning
techniques. The ResNet, DenseNet, VGG, and Xception models were observed to per-
form efficiently on detecting the structural damages such as concrete cracks, and steel
bar damages.

To overcome the issues discussed in previous studies, this study proposes an automatic
vision-based crack-identification system based on DL to identify crack portions from a large
dataset of images acquired in the environment. The main breakthrough is the establishment
of neural network-based classification models for various structural environments. Using
various cameras and visual equipment, such as drones, this technology intends to ease
routine inspections of concrete buildings and increase the speed of the diagnosis process
of precise crack distribution while retaining accuracy. First, a series of images captured
under a combination of structural, meteorological, and photographic circumstances were
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gathered, allowing for easy classification of the images using search keywords. A transfer
learning approach was established to minimize time and money while constructing a
DL model.

2. Research Methodology

The Conv2D ResNet exponential model was fitted with a dataset of images for each
wall defect, such as cracks, holes, efflorescence, damp patches, and spalls. The dataset
was collected through publicly available dataset repositories, such as the kaggle dataset
or Structural Defects Network (SDNET) 2018 [38]. The model was trained with 80% of
the 5000 images and tested with 20% of the images. The research methodology used in
this study is shown in Figure 1. In stage 1, existing crack detection methods for building
walls were explored and analysed. In Stage 2, a novel Conv2D ResNet exponential model
was designed to detect the damage class of the building wall. The dataset consisted of a
collection of wall images with different defects, such as cracks, holes, efflorescence, damp
patches, and spalls. Training and testing of the proposed model were performed using
an 80:20 wall quality dataset. Stage 3 evaluated the proposed model using the test data
and compared Conv2D with existing models, such as DenseNet, VGG19, and Xception,
of several activation layers, such as softplus, softsign, Relu, elu, and tanh. In stage 4, the
performance of the proposed model was analysed using metrics such as precision, recall,
F-score, and accuracy. The architecture of the DL activation layer is illustrated in Figure 2.
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The workflow of the Conv2D ResNet exponential model is illustrated in Figure 3.
An open access dataset (SDNET2018) published by Utah State University is used for
implementation. In this proposed research work, the Snip&Sketch annotation tool was used
for extracting the region of interest from the images available in the dataset. The Conv2D
ResNet exponential model was trained with 4000 images and tested with 1000 images. The
initial base model was pre-trained with initial weights using ImageNet, and Conv2D was
designed with CNN models such as Xception, VGG19, DenseNet, and ResNet to extract
the general high-level features. The base model was added to the custom layers, developed
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using a transfer-based DL approach, and the performance was analysed on wall quality
prediction. The Xception, VGG19, DenseNet, and ResNet models were fitted with different
activation layers, such as softplus, softsign, tanh, selu, elu, and exponential, and were
evaluated using model loss, precision, accuracy, recall, and F-score measures.
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As an overview of novelty, Conv2D ResNet exponential model was built over the
Conv2D ResNet base model, along with the transfer learning custom activation layers that
classify the wall defects more effectively with high accuracy. The wall quality dataset was
fitted with the Conv2D ResNet model, which acted as a base model, thereby learning the
types of wall defects from 90% of the training data. The acquired knowledge from Conv2D
ResNet was transferred to refit the model by integrating the layer with the exponential
activation function, which identified the wall defects in a single image, thereby validating
the transfer learning by transporting the knowledge from the base model to the custom
layer that enhanced the accuracy.
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3. Implementation Setup

A dataset with 1000 images was collected for various defects, such as cracks, holes,
efflorescence, damp patches, and spalls. Wall cracks signify trouble with the living area’s
groundwork. Once wall cracks are detected in a residence, it generally means that the
foundation is transitioning. Cracks in walls are caused by the contraction and relaxation
of construction materials due to temperature and water content oscillations. A hole in a
wall is also a significant defect that affects the quality of a building structure over time.
Efflorescence is merely the deposition of salts on the surface of the aggregate, which is
usually white. Once dry, the efflorescence consists of a white cover outside the concrete wall.
When absorbed water and salts vaporize, they appear on the walls as crystallized patches or
a layer of white powder. Damp patch condensation occurs when warm humid air within the
same room is exposed to a cold interior wall or surface. Then, it quickly compresses the air
back into the water. This evaporation then condenses on the interior wall surface, causing
damp patches on the wall. A spall in the wall refers to the discoloration, clamping, fading,
imploding, or flaking of concrete or brickwork, especially where the surface components
have been destroyed. A spall can occur because of moisture absorption, combustion, or
mechanical processes. The wall quality dataset contains 1000 images for each defect, such
as holes, cracks, efflorescence, damp patches, and spalls, and is represented as follows in
Equations (1)–(6):

Wall = H1000 + C1000 + E1000 + D1000 + S1000, (1)

H1000 = bU1000
h=1

{
∑255

i=1 ∑255
j−1 Hijh

}
c, (2)

C1000 = bU1000
c=1

{
∑255

i=1 ∑255
j−1 Cijc

}
c, (3)

E1000 = bU1000
e=1

{
∑255

i=1 ∑255
j−1 Eije

}
c, (4)

D1000 = bU1000
d=1

{
∑255

i=1 ∑255
j−1 Dijd

}
c, (5)

S1000 = bU1000
s=1

{
∑255

i=1 ∑255
j−1 Sijs

}
c, (6)

where Hijh represents the wall images with holes, Cijc represents the wall images with
cracks, Eije represents the wall images with efflorescence, Dijd represents the wall images
with damp patches, and Sijs represents the wall images with spall. The wall quality dataset
images used for implementation are shown in Figure 4.

The wall quality dataset was pre-trained with the ImageNet by substituting the
weights and trained with convolutional neural network models, such as Conv2D Xception,
DenseNet, VGG19, and ResNet models, to extract the essential features from the image.
Equation (7) represents the Gaussian function applied for feature extraction. The parameter
“r” denotes the variance of the Gaussian function.

Feature(i, j, r) =
1√
2πr

exp

(
i2 + j2

)
2r2 , (7)

The gaussian orientation function used for image filtering is shown in Equation (8).

Orient(i, j, r, θ) = Featureiicos2(θ) + 2 Featureijcos(θ) sin(θ) + Featurejjsin2(θ), (8)
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where Featureii, Featureij, and Featurejj denote the second derivatives of the Gaussian
function, as represented in Equations (9)–(11).

Featureii (i, j, r) =

(
i2 − r2) exp

(
−((i2+j2))

2r2

)
√

2πr
5 , (9)

Featurejj (i, j, r) =

(
j2 − r2) exp

(
−((i2+j2))

2r2

)
√

2πr
5 , (10)

Featureij (i, j, r) =
ij exp

(
−((i2+j2))

2r2

)
√

2πr
5 . (11)

The input images in the wall quality dataset were processed with four-layer Conv2D
layers—convolution filtering, sigmoid filter, linear transformation, and linear sigmoid—to
generate the final output and are denoted in Equations (12)–(14).

Z = Featureij ∗ Filter, (12)

Con[R, C] = Featureij ∗ Kernel[R, C], (13)

Con[R, C] = ∑j ∑k kernel[j, k] Feature[R− j][C− k], (14)

where “R, C” represents the rows and columns of the input image matrix.
The input images in the wall quality dataset were trained with Conv2D and designed

with CNN models, such as Xception, VGG19, DenseNet, and ResNet, to extract the general
high level features, which are represented in Equations (15)–(18).

DenseNet = (5 CP + (TL(6 + 12 + 48) + CL(32)) ∗ 2 DB) (15)

VGG19 = (5 CP + (CRM(2 + 3 + 4 + 5) + FCL(3)) (16)

Xception = ((Entry(2 CP + 3 ∗ (2 SC + 1 MP)))
+Middle( 8 ∗ (3Relu + 3SC))
+ Exit((1CP + 2Relu + 2SC ) + 1FCL)

(17)

ResNet = (62 CP + (CL(2 + 4 + 8 + 16)) ∗ 3 PL) (18)

where CP, TL, CL, DB, CRM, FCL, SC, MP, and PL represent the convolution and pooling
layer, transition layer, classification layer, dense block layer, convolution relu max pooling
layer, fully connected layer, separable convolution layer, max pooling layer, and normal
pooling layer, respectively.

Apply the sigmoid function to the above equation, as shown in (19) and (20).

ASig = Sigmoid(Z), (19)

Sigmoid(Z) =
1

(1 + e−Z)
. (20)

The linear transformation was applied to the above layer to process the third layer of
the CNN, as in (17).

ZLinear = WeightT × ASig + Bias. (21)

The final output is given by applying a linear sigmoid, as given in (18).

Output = Sigmoid(ZLinear). (22)
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The proposed Conv2D ResNet exponential model is built with exponential activation
layer and is denoted in (23).

Conv2DResNetexponentialmodel = Exponential{Resnet(Output)} (23)
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4. Prescriptive and Predictive Data Analysis of Wall Quality Defects

The pre-training of the wall quality dataset was performed with the ImageNet by sub-
stituting the weights and trained with CNN models, such as Conv2D Xception, DenseNet,
VGG19, and ResNet models, for extracting the features. The designed base model was fitted
to custom layers with various activation layers, such as softplus, softsign, tanh, selu, elu,
and exponential, to analyse the performance of identifying the defects in the wall quality.
Activation functions play an essential role in developing neural networks. The activation
function determines the frequency with which the network structure acquires a training
dataset. The activation function at the output layer determines a model’s prediction. An
activation function is a unit placed at the end or middle of a neural network that determines
whether a neuron will be activated. The activation function is a complex nonlinear transfor-
mation applied to an input signal. The signal is subsequently processed and provided as
an input to the next layer of neurons. Softsign is the activation function of neural networks.
Equation (24) provides the mathematical notation for the softsign activation function.

so f tsign(x) =
(x)

(1 + |x|) . (24)

The softplus function is a soft equivalent of the ReLU activation function, occasionally
used instead of the ReLU in neural networks. Softplus is related to the sigmoid function
and is represented by the following mathematical Equation (25).

so f tplus(x) = log(1 + ex). (25)

The tanh activation function is a hyperbolic tangent activation function that reflects the
sigmoid activation function. The tanh function takes the input as any real value and outputs
the value from −1 to 1. It is represented by the following mathematical Equation (26).

tanh(x) =
(ex − e−x)

(ex + e−x)
. (26)

The scaled exponential linear unit (selu) activation function is implicitly induced with
normalization properties. Normalization with selu is conducted as the input value x is less
than zero, and the output is the product of x and lambda. When x is zero, the output is
equal to 0. If x is less than zero, then the output is the product of lambda and alpha by the
x-value minus the alpha value’s exponential, multiplied by the lambda value. Equation (27)
represents the selu activation function.

selu(x) = λ

{
x i f x > 0
αex − α i f x ≤ 0

. (27)

The exponential linear unit (Elu) activation function mainly focuses on the positive
values, and the alpha value is selected from 0.1 to 0.3, as represented in Equation (28).

elu(x) = λ

{
x i f x > 0
α(ex − 1) i f x < 0

. (28)

The exponential activation function indicates the positive-valued function of a real
input variable and is represented by Equation (29).

exp(x) = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
. (29)

The model is examined with the activation function discussed above and compiled
to analyse performance indices such as step loss, accuracy, validation loss, and validation
accuracy. The loss function computes the difference between the actual output of the
model and the target outcome. Step loss indicates the loss incurred at each iteration. The
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validation loss specifies the loss for the validation dataset, which is part of the training
dataset. The wall quality falls under the classification problem, and the loss function is
given by Equation (30).

Loss = ∑n
i=1

∣∣yactual − ytarget
∣∣. (30)

Accuracy is the ratio of the number of correct predictions to the total number of
predictions and is denoted by Equation (31).

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
. (31)

The model was compiled with ten epochs, and prescriptive data analysis was per-
formed by analysing the performance indices for each epoch, as shown in Tables 1–4.

Table 1. Prescriptive data analysis for Conv2D Xception model compilation.

Epochs Step Loss Accuracy Validation Loss Validation Accuracy

1/10 1.4366 0.4319 0.8906 0.6316
2/10 0.7244 0.7301 0.6696 0.7474
3/10 0.3934 0.8560 0.8088 0.7895
4/10 0.2461 0.9152 0.8654 0.7789
5/10 0.1643 0.9563 0.6566 0.7780
6/10 0.1495 0.9674 0.6766 0.8001
7/10 0.1572 0.9589 0.5416 0.8632
8/10 0.0699 0.9794 0.7579 0.8211
9/10 0.0636 0.9788 0.7390 0.8632

10/10 0.0691 0.9820 1.0562 0.8316

Table 2. Prescriptive data analysis for Conv2D DenseNet model compilation.

Epochs Step Loss Accuracy Validation Loss Validation Accuracy

1/10 1.4546 0.4219 0.8806 0.6234
2/10 0.7453 0.7201 0.6766 0.7572
3/10 0.3944 0.8350 0.8088 0.7895
4/10 0.3441 0.9262 0.8564 0.7569
5/10 0.1783 0.9673 0.6556 0.7770
6/10 0.1485 0.9774 0.6436 0.8341
7/10 0.1672 0.9689 0.5666 0.8772
8/10 0.0759 0.9884 0.7559 0.8311
9/10 0.0866 0.9898 0.7280 0.8732

10/10 0.0561 0.9920 1.0462 0.8446

Table 3. Prescriptive data analysis for Conv2D VGG19 model compilation.

Epochs Step Loss Accuracy Validation Loss Validation Accuracy

1/10 1.4556 0.4211 0.8789 0.6324
2/10 0.7463 0.7444 0.6733 0.7452
3/10 0.3954 0.8344 0.8112 0.7555
4/10 0.3461 0.9567 0.8345 0.7669
5/10 0.1744 0.9563 0.6435 0.7760
6/10 0.1465 0.9786 0.6445 0.8871
7/10 0.1678 0.9878 0.5345 0.8342
8/10 0.0766 0.9876 0.7654 0.8321
9/10 0.0882 0.9899 0.7342 0.8652

10/10 0.0555 0.9943 1.0435 0.8896
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Table 4. Prescriptive data analysis for Conv2D ResNet model compilation.

Epochs Step Loss Accuracy Validation Loss Validation Accuracy

1/10 1.5446 0.2319 0.8806 0.6834
2/10 0.4553 0.5701 0.6766 0.7872
3/10 0.9444 0.6350 0.8088 0.7995
4/10 0.4341 0.8862 0.8564 0.7579
5/10 0.7283 0.8673 0.6556 0.7870
6/10 0.4285 0.8774 0.6436 0.8221
7/10 0.6372 0.8689 0.5666 0.8552
8/10 0.7359 0.9384 0.7559 0.8321
9/10 0.0266 0.9798 0.7280 0.8432

10/10 0.0361 0.9880 1.0462 0.8226

The wall quality dataset was pre-trained with the images from ImageNet by substi-
tuting the weights and then trained with convolutional neural network models such as
Conv2D Xception, DenseNet, VGG19, and ResNet models to extract the essential features
from the image. The designed base model was fitted to custom layers with various acti-
vation layers, such as softplus, softsign, tanh, selu, elu, and exponential, to analyse the
performance defect identification in the wall quality. The performance was analysed in
terms of model loss, model accuracy, precision, recall, and F-score, as shown in Tables 5–8
and Figures 5–7. It was observed that the performance of ResNet was comparatively better,
with greater accuracy and F-score values, followed by DenseNet, Xception, and VGG19
models. The model performance across different activation layers was studied. It was
noted that the models’ performance metrics were better with the exponential activation
layer than with the other layers. Thus, the Conv2D ResNet model implemented with the
exponential activation layer provided an enhanced model for wall quality detection.

Table 5. Performance analysis for Conv2D VGG19 model with various activation layers.

Conv2D VGG19 Model Precision Recall F-Score Accuracy

Conv2D VGG19—softsign 0.8101 0.8179 0.8127 0.8179
Conv2D VGG19—softplus 0.8196 0.8068 0.8157 0.8169

Conv2D VGG19—selu 0.8255 0.8350 0.8211 0.8350
Conv2D VGG19—elu 0.8496 0.8368 0.8357 0.8469

Conv2D VGG19—tanh 0.8696 0.8684 0.8568 0.8690
Conv2D VGG19—exponential 0.8961 0.8838 0.8868 0.8990

Table 6. Performance analysis for Conv2D Xception model with various activation layers.

Conv2D Xception Model Precision Recall F-Score Accuracy

Conv2D Xception—softsign 0.8634 0.8656 0.8657 0.8689
Conv2D Xception—softplus 0.8466 0.8489 0.8478 0.8499

Conv2D Xception—selu 0.8566 0.8559 0.8529 0.8550
Conv2D Xception—elu 0.9406 0.9368 0.9357 0.9469

Conv2D Xception—tanh 0.9123 0.9135 0.9168 0.9190
Conv2D Xception—exponential 0.9071 0.9038 0.9056 0.9090

Table 7. Performance analysis for Conv2D DenseNet model with various activation layers.

Conv2D DenseNet Model Precision Recall F-Score Accuracy

Conv2D DenseNet—softsign 0.8834 0.8756 0.8757 0.8889
Conv2D DenseNet—softplus 0.8566 0.8489 0.8478 0.8499

Conv2D DenseNet—selu 0.8566 0.8569 0.8579 0.8579
Conv2D DenseNet—elu 0.9479 0.9379 0.9257 0.9369

Conv2D DenseNet—tanh 0.9235 0.9188 0.9157 0.9299
Conv2D DenseNet—exponential 0.9123 0.9123 0.9154 0.9157
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Table 8. Performance analysis for Conv2D ResNet model with various activation layers.

Conv2D ResNet Model Precision Recall F-Score Accuracy

Conv2D ResNet—softsign 0.8957 0.8889 0.8888 0.8949
Conv2D ResNet—softplus 0.8661 0.8787 0.8788 0.8799

Conv2D ResNet—selu 0.8586 0.8569 0.8579 0.8579
Conv2D ResNet—elu 0.9348 0.9399 0.9257 0.9379

Conv2D ResNet—tanh 0.9123 0.9166 0.9157 0.9249
Conv2D ResNet—exponential 0.9212 0.9134 0.9978 0.9147
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The performance of the Conv2D Xception, DenseNet, VGG19, and ResNet models
using the exponential activation layer was studied using learning curves during the training
and validation phases. Figure 5 shows the accuracy and loss curves of all models over
each epoch during training phase. The results revealed that accuracy gradually increased
over epochs and stabilized after a threshold. The learning loss of the Xception, DenseNet,
and ResNet models was more significant during early epochs and dropped as the epoch
increased. Figures 6 and 7 showcase the learning curves of the models during the validation
phase. It is noted the performance of ResNet exponential model had a consistent increase
in accuracy and decrease in loss at each epoch. The other models were found to have
declining accuracy at certain epochs.

The wall quality dataset was fitted with the Conv2D ResNet model, which acted as a
base model, thereby learning the types of wall defects from 90% of the training data. Now
the model had learnt the exact region of interest through which it categorized the wall
defect class as cracks, holes, efflorescence, damp patches, or spalls from the more significant
number of images. The acquired knowledge from Conv2D ResNet was transferred to
refit the model by integrating the layer with the exponential activation function, which
identified the wall defects of a single image, thereby validating the transfer learning. When
the test image was fitted with the Conv2D ResNet exponential model, the given image was
validated with the wall defect class of the actual value and predicted value of the model,
which was termed as the True and Guess label, respectively shown in Figures 8–11.
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Implementation results portrayed that the proposed Conv2D ResNet model with
exponential activation layer outperforms with an accuracy of 0.9147, precision of 0.9212,
recall of 0.9134, and F-Score of 0.9978 compared with other Conv2D models, such as
Xception, VGG19, and DenseNet. The comparative study of learning accuracy during the
training and validation phases of the implemented models is represented in Figure 12a,b.
The results illustrated the accuracy of each model at every epoch, and it is noticeable that
the proposed Conv2D ResNet exponential model steadily gained accuracy at every epoch,
whereas the VGG19 model struggled for accuracy during both phases. The DenseNet
and Xception models showed instabilities with epochs. The evaluation loss attained by
the models is depicted in Figure 12c, which shows that the Conv2D ResNet exponential
model had minimal losses at each epoch compared with the DenseNet, Xception and
VGG19 models in that order. The Conv2D ResNet exponential model performed efficiently,
producing a greater accuracy with minimal loss in wall quality detection.
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5. Conclusions

This study attempted to analyse the performance of DL models for evaluating the
quality of wall structures. This work’s main contribution is designing the Conv2D ResNet
exponential model-based architecture that classifies wall defects, such as cracks, holes,
efflorescence, damp patches, and spalls. A dataset with 5000 images was used to train the
proposed model, which achieved the requirements of this research work and outperformed
the other Conv2D models. The Conv2D ResNet model with 48 convolution layers, one
maxpool, and an average pool layer was implemented in this study. This model served
as the base and integrated with the exponential activation layer, improving the classifier’s
performance in detecting wall defects. The proposed Conv2D ResNet exponential model
was further investigated using the performance metrics precision, recall, F-score, and
accuracy. The Conv2D ResNet exponential model classified the wall defect type through
transfer learning and was also used to analyse the performance of the other CNN model
with several activation layers. The wall quality dataset was fitted with the Conv2D ResNet
model, which acted as a base model, thereby learning the types of wall defects from 90% of
the training data. The acquired knowledge from Conv2D ResNet was transferred to refit the
model by integrating the layer with the exponential activation function, which identified
the wall defects of a single image, thereby validating the transfer learning by transferring
the knowledge from the base model to the custom layer that enhances the accuracy.

This research provides a proper fitting of residual networks to reduce the loss, thereby
improving the accuracy, of wall classification with other Conv2D models. The performances
of the Xception, VGG19, DenseNet, and ResNet models were fitted with different activation
layers such as softplus, softsign, tanh, selu, elu, and exponential, along with transfer learn-
ing and analysed using performance evaluation metrics. The dataset used for the proposed
Conv2D ResNet exponential model can be used for classifying the defect type in the wall.
The same dataset could also be used to identify the defect’s depth through object detection
methods. However, categorizing the class of defects, such as cracks, holes, efflorescence,
damp patches, and spalls in the walls directly related to the characteristics of the wall
quality available in the dataset. Once the wall defect class is identified, the respective
maintenance procedure can easily be conducted. Implementation results portrayed that
the proposed Conv2D ResNet model with exponential activation layer outperforms with
an F-Score of 0.997826 compared with other Conv2D models, such as Xception, VGG19,
and DenseNet. The potential findings of the proposed Conv2D ResNet exponential model
are identifying the appropriate activation layer function that provides the highest accuracy
in predicting the type of wall defect. The proposed Conv2D ResNet exponential model
improved the overall effectiveness of classifying the wall defects compared with the other
deep learning techniques. As an overview of novelty, the Conv2D ResNet exponential
model was built over the Conv2D ResNet base model and extended the transfer learning
using custom activation layers that effectively classify the wall defects with high accuracy.
Despite the Conv2D ResNet exponential model’s impressive performance, it is still chal-
lenging for researchers to fine-tune the base model hyper-parameters by integrating them
with various optimizers. This research’s future enhancement focused on validating the
accuracy of the wall defect prediction for various combinations of convolutional layers and
probabilistic loss functions.
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