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Abstract: Elastodynamic problems are investigated in this work by employing the enriched finite
element method (EFEM) with various enrichment functions. By performing the dispersion analysis,
it is confirmed that for elastodynamic analysis, the amount of numerical dispersion, which is closely
related to the numerical error from the space domain discretization, can be suppressed to a very
low level when quadric polynomial bases are employed to construct the local enrichment functions,
while the amount of numerical dispersion from the EFEM with other types of enrichment functions
(linear polynomial bases or first order of trigonometric functions) is relatively large. Consequently,
the present EFEM with a quadric polynomial enrichment function shows more powerful capacities
in elastodynamic analysis than the other considered numerical techniques. More importantly, the
attractive monotonic convergence property can be broadly realized by the present approach with the
typical two-step Bathe temporal discretization technique. Three representative numerical experiments
are conducted in this work to verify the abilities of the present approach in elastodynamic analysis.

Keywords: high-order enrichment functions; numerical methods; numerical dispersion; transient
analysis; wave propagation

MSC: 35A08; 35A09; 35A24; 65L60; 74S05

1. Introduction

The transient responses of engineering structures under time-varying excitation force
are very common problems in engineering practice [1,2]. Meanwhile, the solutions of
these elastodynamics are also of great importance in practical applications. Due to the
limitations of analytical methods, sufficiently reliable and accurate solutions to complex
elastodynamic problems are always very difficult to obtain. In these cases, we usually
resort to numerical techniques.

Over the past few decades, many numerical techniques have been developed for
determining solutions to elastodynamic problems, such as the finite element method
(FEM) [1,2] and smoothed FEM [3–11], the finite difference method (FDM) [12–17], the
spectral method [18,19], the boundary element or boundary-based methods [20–33] and
various meshless numerical techniques [34–51]. Nevertheless, these numerical approaches
usually exhibit some shortcomings in one way or another when practical and complex elas-
todynamic problems are considered. For example, the FDM is always numerically effective
in elastodynamic analysis, but there always exist difficulties when complex and irregular
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problem domains are involved [52]. In addition, the imposition of a Neumann boundary
condition is usually quite complicated. Compared to the FDM, better generality can be
achieved using the classical FEM, and very complex elastodynamic problems can be directly
and effectively handled by the FEM. Unfortunately, the corresponding numerical solutions
from the FEM usually suffers from considerable numerical errors [53–55]. Meanwhile, the
numerical anisotropy issue is also a main block we have to confront when the FEM is
utilized for elastodynamic analysis [53]. The spectral method, indeed, behaves very well in
improving the solution accuracy in elastodynamic analysis; however, it also shows obvious
restrictions in tackling very complex problems. Meshless numerical techniques are usually
able to yield relatively high-quality numerical solutions, but the related formulations in a
mesh-free framework are always very complicated, and the required computational efforts
are also very numerically expensive.

The enriched FEM (EFEM), which was proposed and developed by Babuška and
co-workers, can be regarded as an advanced and generalized version of the conventional
FEM [56], and it has been employed in a wide range of practical engineering computa-
tion fields. Since extra enrichment functions are introduced to the constructed numerical
approximation, high-order approximation can be achieved by the EFEM without adding
additional nodes, even if simple linear elements are employed. This numerical feature
clearly distinguishes the EFEM from the conventional FEM [57]. Moreover, it is also very
flexible to construct the employed enrichment functions. We can construct specific enrich-
ment functions according to the practical problems solved. In consequence, enrichment
functions can be designed to contain the solution knowledge of the considered problems,
then the solution accuracy can be markedly increased.

In general, polynomial bases are always utilized as enrichment functions in formulat-
ing the EFEM. However, the intractable linear dependence (LD) issue is always encountered
when this type of enrichment function is employed [58–60]. As a result, the resultant system
matrices are always singular; hence, it is always quite difficult to obtain sufficiently stable
and reliable numerical solutions. To address this issue, Duarte et al. developed a specific
solver to tackle singular system matrices [61]. Though very accurate and stable numerical
solutions can be yielded by a specifically designed solver, extra numerical treatments are
also required; this, of course, will increase the required computational cost. Recently, Chai
and Gui investigated the LD issue of the EFEM in depth, and the root of the LD was
analyzed using mathematical analysis [57,62]. More importantly, they also developed
a simple and direct method to completely eliminate the LD issue in the EFEM, and the
corresponding proofs were also provided in their work.

In addition to discretization in the space domain, discretization in the time domain
also plays a very important role in elastodynamic analysis. Direct time integration schemes
are commonly employed approaches for temporal discretization in practice. The frequently
employed direct time integration techniques include the central difference method, the
Houbolt method [63], the Wilson-θ method [64], the Newmark method [65] and the Bathe
method [66–68]. Among them, the Bathe method usually shows more excellent numerical
features and is increasingly employed in practical engineering computation, because the
proper numerical damping effects can be introduced to the numerical model, and the
inaccurate high-order modes from the spatial discretization can be effectively suppressed.
As a result, quite accurate and reliable numerical solutions can then be yielded. At present,
the Bathe temporal discretization scheme has been widely employed in tackling linear
and nonlinear structural dynamic problems; in addition, the Bathe method is a typical
two-stage composite time integration scheme and is always unconditionally stable; the
satisfaction of the critical time step criterion is not required in the Bathe method. Owing to
the abovementioned good numerical features, the Bathe method was employed to perform
discretization in the time domain for the elastodynamic analysis in this work.

This work was organized with the aim of investigating the numerical performance
of the EFEM with a Bathe time integration scheme when different orders of polynomial
bases were utilized to construct the enrichment functions. The possible LD issue and the
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treatment of the boundary conditions are handled by using the procedure proposed by
Chai and Gui [57,62]. The obtained numerical results demonstrate that the present EFEM
is able to yield sufficiently small spatial discretization errors when the second order of
polynomial bases are exploited as the enrichment function. According to the conclusions
obtained in Ref. [57], it can be concluded that in these cases the EFEM with the Bathe time
integration scheme will basically possesses the valuable monotonic convergence property
in elastodynamic analysis. Then the solution accuracy can be increased continuously by
directly utilizing the decreasing temporal discretization steps, this numerical feature can
effectively overcome the shortcomings of the FEM in elastodynamic analysis. A number of
representative numerical experiments are considered to demonstrate the performance of
the present approach in elastodynamic analysis. It should be noted that the nonreflecting
boundary conditions are not employed in all numerical examples due to the fact that all
the involved waves do not reach the boundary of the problem domain for the considered
simulation time. Additionally, in all numerical examples the fixed temporal discretiza-
tion step sizes are employed to perform the required time integration. Note that several
researcher have shown that the variable step sizes (VSS) can produce better numerical
solutions [69–71], the performance of the present numerical approaches with the variable
time integration step sizes will be investigated in future work.

2. Formulation of the EFEM

Note that the formulation of the present EFEM is closely related to the classical FEM;
hence, the numerical approximation in the EFEM is provided here in great detail by
comparing the corresponding numerical approximation in the standard FEM. For a general
problem domain Ω in two-dimensional space, assuming that the standard three-node
triangular elements are utilized to perform the required spatial discretization, then the
involved problem domain Ω is represented by nE elements with nI nodes. Let u(x) be a
scalar field function defined in the two-dimensional problem domain; in the standard FEM,
the employed field function approximation is usually constructed by [56]:

uh(x) = ∑
i∈nI

Ni(x)ui = N(x)u, (1)

in which Ni(x) stands for the usual interpolation function for node i, and ui denotes the
corresponding nodal unknown coefficient. In this work, we only considered the linear
interpolation function for the triangular mesh, namely:

N1(x) = 1
2A [(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y]

N2(x) = 1
2A [(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y]

N3(x) = 1
2A [(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y]

, (2)

in which xi and yi (i = 1, 2, 3) represent the coordinate values of three vertexes for one
triangular element; A denotes the area of this element.

In the EFEM framework, the structure of the employed field function approximation
can be expressed by [56]:

uh(x) = ∑
i∈nI

Ni(x)ui + ∑
i∈nI

N∗i (x)ψi(x)ai, (3)

in which N∗i (x) denotes the enrichment term for node i; ψi(x) and ai are the corresponding
enrichment function and the extra nodal unknown coefficient.

It should be noted that the nodal enrichment term should satisfy the partition of the
unity property, namely:

∑
i∈nI

N∗i (x) = 1, (4)
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The nodal enrichment term N∗i (x) can be designed differently from the standard
nodal interpolation function Ni(x) in the FEM; however, in this work, we directly choose
the standard nodal interpolation function Ni(x) as the nodal enrichment term for brevity,
namely, N∗i (x) = Ni(x).

In Equation (3), the first term corresponds to the standard numerical approximation in
the FEM, and the second term is the additional enriched numerical approximation. The
computational accuracy of the EFEM is closely related to the enrichment function ψi(x). To
enhance the numerical performance of the EFEM, different enrichment functions can be
designed for solving different problems [56].

From Equation (3), one important observation we can obtain is that the employed
numerical approximation in the EFEM actually contains two parts; the first part is the
standard FE numerical approximation, which is linear, and the second part is the additional
high-order numerical approximation. Owing to the additional high-order numerical ap-
proximation, the original linear approximation space in the FEM can be effectively enriched,
then the computation accuracy can be markedly increased. In addition, it should be noted
that the above-mentioned enriched numerical approximation space is constructed without
requiring the additional nodes, this numerical feature clearly distinguishes the EFEM from
the standard high-order finite elements in which the additional mid-edge-points are always
required to construct the numerical approximation.

In general, the constructed numerical approximation in Equation (3) does not satisfy
the Kronecker-delta function property, namely, uh(xi) 6= u(xi). In consequence, the treat-
ment of the essential boundary condition in the present EFEM is usually quite difficult.
In addition, the condition number of the system matrices from Equation (3) is always
very large; then, the obtained numerical solutions are not sufficiently stable. To make the
numerical approximation in Equation (3) have the Kronecker-delta function property and
improve its numerical stability, the original numerical approximation in Equation (3) is
usually modified by the following form [56]:

uh(x) = ∑
i∈nI

Ni(x)ui + ∑
i∈nI

N∗i (x)[ψi(x)− ψi(xi)]ai, (5)

From Equation (5), we can see that the additional enriched numerical approximation
(namely, the second term) will vanish at all nodes, and the important Kronecker-delta
function property can be successfully recovered. Additionally, it is demonstrated that the
condition number of the resultant system matrices can be significantly reduced by the
modified numerical approximation shown in Equation (5) [56].

In practice, the enrichment function in Equations (3) and (5) can be designed according
to the specific problems solved. In this work, the frequently used polynomial bases are
exploited to construct the enrichment functions; hence, the used numerical approximation
in EFEM for a two-dimensional problem can be given by:

uh(x) = ∑
i∈nI

Ni(x)ui + ∑
i∈nI

N∗i (x)Hi(
¯
x)ai, (6)

in which Hi(
¯
x) is the enrichment function matrix constructed by the polynomial bases and

has the following form in two-dimensional space:

Hi(
¯
x) =

[
x y x2 xy y2 · · · xn xn−1y · · · xyn−1 yn], (7)

in which x = (x− xi)/h and y = (y− yi)/h (h is the characteristic length of the used trian-
gular mesh) represent the nondimensional coordinate values, which are designed to make
the constructed numerical approximations have the Kronecker-delta function property.

For the wave propagation elastodynamic problems considered in this work, the en-
richment functions can also be designed by [72]:
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Hi
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¯
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(
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(
2πyi
λy

)
, sin

(
2πyi
λy

)
,

cos
(
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+
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+
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· · ·
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(
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, sin

(
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λx

)
, cos

(
2πqyi
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)
, sin

(
2πqyi

λy

)
,

cos
(

2πqxi
λx

+
2πqyi
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)
, sin

(
2πqxi

λx
+

2πqyi
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)
, cos

(
2πqxi

λx
− 2πqyi

λy

)
, sin

(
2πqxi

λx
− 2πqyi

λy

)


, (8)

in which λx and λy are the fundamental wave lengths; q is the order of the used trigono-
metric functions.

From Equations (5)–(8), it is obvious that more additional nodal unknowns will be
introduced into the numerical approximation when the high-order polynomial or trigono-
metric functions are employed to create the local enrichment functions, leading to more
computational efforts. Note that there exist three or six nodal unknowns when the linear
or quadric polynomial bases are employed as the enrichment functions; hence, we used
EFEM-N3 and EFEM-N6 to represent these two different numerical approaches. Similarly,
EFEM-N9 was employed to denote the EFEM with the first order of the trigonometric en-
richment functions. Additionally, it should be noted that the implementation of the present
enriched FEM is quite similar as for the standard finite element analysis (FEA). The only
difference is that there are more unknowns for each node. The process of performing the re-
quired numerical integration, the assembling of the system stiffness and the mass matrices
are identical to the related operations in the standard finite element implementation.

3. Governing Equation of the Transient Wave Propagations

Assuming that the considered wave propagation medium is isotropic with wave speed
c, the governing partial differential equation (PDE) can be directly obtained by:

∇2u− 1
c2

∂2u
∂t2 = 0, (9)

in which u denotes the used field function variable (such as the pressure, displacement or
velocity potential) to describe the considered transient wave propagation dynamic problems.

According to the principle of virtual work, from Equation (9), the following equation
in integration form can be arrived at:

∫
Ω

u
(
∇2u− 1

c2
∂2u
∂t2

)
dΩ = 0, (10)

in which Ω stands for the involved problem domain; u represents the virtual field func-
tion variable.

Using the divergence theorem and performing the integration in Equation (10) in part,
we have: ∫

Ωi

∇u · ∇udΩ +
1
c2

∫
Ω

u
∂2u
∂t2 dΩ−

∫
Γ

u(∇u · n)dΓ = 0, (11)

in which Γ denotes the problem domain boundary; n is the outward unit normal vector.
Following the formulations in the standard Galerkin-weighted residual method and

using the constructed numerical approximation in Equation (5), the governing equation
in the following matrix form can be arrived at for the transient wave propagation dy-
namic problems:

M
..
u + c2Ku = F, (12)

in which the overdots stand for the time derivatives; M =
∫

Ω NTNdΩ is the system
mass matrix; K =

∫
Ω (∇N)T∇NdΩ is the system stiffness matrix; F =

∫
ΓN

NTvndΓ is the
external excitation force vector; ΓN is the involved Neumann boundary condition; and vn
is the corresponding prescribed data on the boundary.
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4. Dispersion Analysis

The process of solving elastodynamic problems usually contains two parts, namely, the
discretization in the space and time domains. Both of these two parts are able to give rise
to considerable numerical errors and affect the solution accuracy of the obtained numerical
solutions. In this work, the EFEM was employed for the discretization in the space domain,
and the standard implicit Bathe time integration technique was used for the discretization
in the time domain. The numerical performance of the different methods in addressing
the numerical dispersion error is investigated in this section, and the dispersion errors
corresponding to the spatial discretization are firstly studied here.

Assuming that the considered transient wave propagation dynamic problem in this
work is time-harmonic, namely, the time-dependent field function variable u can be ex-
pressed by:

u = U(x)ejωt, (13)

in which j =
√
−1, U(x) is the amplitude distribution of the field function variable u; ω

stands for the angular frequency.
Using the above expression, the governing equation in Equation (9) for transient wave

propagations can be rewritten as:

∇2u + k2u = 0, (14)

in which k = ω/c is the wave number.
Equation (14) is the well-known Helmholtz equation, which is the steady-state form

of the governing equation for wave analysis.
Using the constructed field function approximation shown in Equation (5) to discretize

Equation (14), we can arrive at the following matrix equation when the additional boundary
conditions are not applied: (

K− k2M
)

U = 0, (15)

In two-dimensional space, the general plane wave solution to Equation (15) is
u = Aejkh(x cos θ+y sin θ), and the corresponding numerical solution can be expressed by:

u = Aejkhh(x cos θ+y sin θ), (16)

in which θ stands for the angle of wave travel; kh and k denote the numerical and exact
wave number, respectively.

In Equation (16), A is a vector listing the unknown solution coefficients, which are
related to the field function amplitudes for each node. For the present EFEM, the structure
of vector A is of the following form [72]:

A =
[

A1 A2 · · · Anp , A1 A2 · · · Anp , · · ·
]
, (17)

in which np is the number of DOFs at one node.
Here, we employed the regular triangular mesh (see Figure 1) to perform the dispersion

analysis. By substituting the above expression of the numerical solution into Equation (15),
we can obtain: [

Dstiff − k2Dmass

]
Ai = 0, (18)

in which Ai =
[
A1 A2 · · · Anp

]T lists the unknown solution coefficients for node i;
Dstiff and Dmass are the resultant matrices which can be calculated by:

Dstiff = Kn,n + Kn,n−1e−jkhh cos θ + Kn,n+1ejkhh cos θ+

Kn,n−2ejkhh(cos θ−sin θ) + Kn,n+2ejkhh(− cos θ+sin θ)+
Kn,n−3e−jkhh sin θ + Kn,n+3ejkhh sin θ+

Kn,n−4ejkhh(− cos θ−sin θ) + Kn,n+4ejkhh(cos θ+sin θ)

, (19)
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Dmass = Mn,n + Mn,n−1e−jkhh cos θ + Mn,n+1ejkhh cos θ+

Mn,n−2ejkhh(cos θ−sin θ) + Mn,n+2ejkhh(− cos θ+sin θ)+

Mn,n−3e−jkhh sin θ + Mn,n+3ejkhh sin θ+

Mn,n−4ejkhh(− cos θ−sin θ) + Mn,n+4ejkhh(cos θ+sin θ)

, (20)
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If nontrivial solutions to Equation (18) exist, the following relationship is required:

det
[
Dstiff − k2Dmass

]
= 0, (21)

From Equations (19) and (20), it is obvious that the numerical wave number kh is
the unique unknown variable in Dstiff and Dmass; hence, Equation (21) actually offers the
relationship between kh and k. Using Equation (21) for any kh, the corresponding k can be
computed by:

k = eig

√
Dmass

Dstiff
, (22)

In general, the computed k does not match kh very well owing to the discretization
error in the space domain; in this work, we employed the following indicator to assess the
calculated numerical dispersion error from the spatial discretization:

ε =
k
kh

, (23)

For several varying wave travel angles, the numerical dispersion error solutions
versus the nondimensional wave number kh from the various numerical techniques are
displayed in Figure 2. It should be noted that all of these numerical dispersion errors were
computed using a totally identical mesh pattern. It is easy to observe that the computed
numerical dispersion errors from the standard FEM were quite large. More importantly,
the numerical dispersion errors will become even larger with the increase in the considered
nondimensional wave numbers. A similar trend can also be observed in the EFEM-N3
results; however, the numerical dispersion errors from the EFEM-N3 were clearly smaller
than those from the FEM. Although the EFEM-N9 is able to offer much smaller numerical
dispersion errors than the FEM, its numerical performance in suppressing the numerical
dispersion error is still not sufficiently fine, because considerable dispersion errors can still
be found with the nondimensional wave number kh < π. Among all of the considered
numerical techniques, the performance of the EFEM-N6 in suppressing the numerical dis-
persion from the spatial discretization is the best, because almost no dispersion errors from
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the discretization in the space domain can be seen for the considered nondimensional wave
number. More importantly, the numerical dispersion errors from the EFEM-N6 were very
close to zero in all considered wave travel angles, namely, the numerical anisotropy issue
also can be largely alleviated by the present EFEM-N6, while this intractable phenomenon
can clearly be seen in the results from the other mentioned numerical techniques (i.e., FEM,
EFEM-N3 and EFEM-N9). These findings indicate that the present EFEM with the quadric
polynomial enrichment functions is basically sufficient to generate adequately small nu-
merical dispersion errors for the wave analysis. Though more accurate solutions, indeed,
can be yielded when the higher order of the polynomial bases are employed to create
the enrichment functions, more computational expenses are also required. To reduce the
computational efforts as much as possible, in this work we only considered the enrichment
functions that are created by linear and quadric polynomial bases.
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in which c  stands for the wave speed; the subscript h  means that the corresponding 
variables are from the numerical solutions; Δt  denotes the interval of temporal dis-
cretization; CFL represents the Courant–Friedrichs–Lewy number, which is defined by 
CFL = Δc t h ; ( )f  is a defined function with respect to the parameter CFLhk h . 

Using the Taylor series expansion, Equation (25) can be rewritten by: 
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Figure 2. The numerical dispersion error solutions versus the nondimensional wave number kh from
the various numerical techniques.

Apart from the discretization in the space domain, the discretization in the time
domain is also a major source that produces numerical errors in solving elastodynamic
problems. Here, the numerical error affected by the time integration scheme was also taken
into consideration in the dispersion analysis.

Owing to the fact that the recently developed Bathe implicit temporal discretization
technique always shows very excellent numerical features in handling linear and nonlinear
structural dynamic problems, in this work the standard Bathe was employed for the
discretization in the time domain. In the standard Bathe method, the following assumptions
are employed: 

t+∆t/2 .
u = t .

u + ∆t
4

(
t ..
u + t+∆t/2 ..

u
)

t+∆t/2u = tu + ∆t
4

(
t .
u + t+∆t/2 .

u
)

t+∆t .
u = 1

∆t
tu − 4

∆t
t+∆t/2u + 3

∆t
t+∆tu

t+∆t ..
u = 1

∆t
t .
u − 4

∆t
t+∆t/2 .

u + 3
∆t

t+∆t .
u

, (24)

Using the assumptions in the above equation to the discretize matrix equation shown
in Equation (12) and following the similar steps in References [72–75], the total dispersion
error in the elastodynamic analysis can be expressed by:

ch
c

=
ωh/kh

c
=

ωh∆t
khc∆t

=
ωh∆t

khhCFL
=

f (ω∆t)
khhCFL

=
f (khCFL)
khhCFL

, (25)

in which c stands for the wave speed; the subscript h means that the corresponding variables
are from the numerical solutions; ∆t denotes the interval of temporal discretization; CFL
represents the Courant–Friedrichs–Lewy number, which is defined by CFL = c∆t/h; f () is
a defined function with respect to the parameter khhCFL.

Using the Taylor series expansion, Equation (25) can be rewritten by:

ch
c = ωh/kh

c = ωh∆t
khc∆t =

ωh∆t
khhCFL = f (khCFL)

khhCFL

= 1
khhCFL

[
f (0) + f ′(0)(khCFL) + f ′′ (0)

2! (khCFL)2 + · · ·
]
,

= k
kh

(
1− 1

24 (khCFL)2 + 61
17280 (khCFL)4 + · · ·

) (26)

From Equation (25), we also can obtain

ch
c

=
ωh/kh

c
=

ωh/kh
ω/k

=
k
kh

ωh
ω

=
k
kh

T
Th

, (27)
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in which T stands for the period of one considered wave mode.
By comparing Equations (26) and (27), the total numerical error in the elastodynamic

analysis can be expressed in the following form:

ch
c

=
k
kh

T
Th

=
k
kh

(
1− 1

24
(khCFL)2 +

61
17280

(khCFL)4 + · · ·
)

︸ ︷︷ ︸
Temporal dispersion error T/Th

, (28)

From Equations (25)–(28), it is very interesting to observe that both the discretizations
in the space and time domains are able to result in numerical errors in the final numerical
solutions for the elastodynamic analysis. The first term in Equation (27) is the defined
indicator to assess the spatial discretization error. From the above formulation and analysis,
it is seen that the error k/kh, indeed, mainly comes from the discretization in the space
domain, and it is determined by the used field function approximation in the space domain.
The second term T/Th in Equation (27) represents the additional effects from the temporal
discretization, and it is closely associated with the employed the time integration scheme.
In this work, the standard Bathe method was exploited for the temporal discretization,
and it has been proved that T/Th is actually a monotonic function with respect to the
nondimensional temporal discretization interval CFL. Therefore, the total numerical error
can be continuously decreased by reducing the used CFL numbers as long as the spatial
discretization error k/kh is adequately small; then, the so-called monotonic convergence
property can be reached. From the previous analysis, it is seen that the EFEM-N6 can
basically meet this requirement, while the other mentioned numerical techniques (i.e., FEM,
EFEM-N3 and EFEM-N9) cannot generate adequately small spatial discretization errors. In
the next section, several supporting numerical experiments are conducted to verify that
the present EFEM-N6 with the Bathe method, indeed, possesses the important monotonic
convergence property with respect to the nondimensional temporal discretization step CFL,
while the other numerical approaches do not have this very valuable numerical feature.

5. The Implementation of the EFEM for the Transient Wave Analysis

From the above formulation, we can find that the implementation of the present EFEM
is quite similar to the standard FEM in solving transient wave propagations, and the general
procedure mainly consists of the following steps:

(1) Perform the required spatial discretization using the standard mesh as in the
FEM. In general, the triangular elements and tetrahedron elements are employed for
two-dimensional and three-dimensional problems, respectively.

(2) Create the required field function approximation for the considered problem. In
creating the numerical approximation, compared to the standard FEM, more unknown
coefficients for each node are involved in the local interpolation, and various basis functions
can be employed for the local numerical approximation.

(3) Assemble the system mass and stiffness matrices. In this step, the required numeri-
cal integration is still performed using the Gauss integration rule. However, the scale of the
obtained system matrices will be clearly larger than those from the standard FEM, because
more unknowns are involved for each node.

(4) Remove the possible linear dependence of the obtained matrix equation. Note that
linear dependent nodal shape functions are possibly employed to construct the required
field function approximation; then, the linear dependent matrix equation will be generated.
For stable and reliable numerical solutions, extra numerical treatments are required to
remove the possible linear dependence of the obtained matrix equation.

(5) Impose the involved boundary conditions and perform the required temporal
discretization. Usually, direct time integration techniques are employed to perform the
required time integration. This step is almost the same as in the standard FEM.

(6) Solve the finally obtained matrix equation and assess the obtained numerical
results; this process is also quite similar as in the standard FEM.
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6. Numerical Example
6.1. The Scalar Wave Propagation in a Clamped-Free Elastic Bar

We firstly consider the transient scalar wave propagation in an elastic bar with a length
L = 1 m and width b = 0.1 m. The left end of this elastic bar is free, and the other end is
clamped (see Figure 3a). The considered wave travel speed in this bar is c = 1 m/s. To solve
this problem, the required discretization in the space domain is accomplished by using the
uniform triangular mesh with the node interval h = 0.0125 m (see Figure 3b). This transient
wave propagation problem is excited by using the following initial conditions:

u(x, t = 0) = 0 m,
.
u(x, t = 0) = 0 m/s,

.
u(x, t > 0) = 1 m/s, , (29)

in which u denotes the considered displacement variable, and the overdot stands for the
time derivative.
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Figure 3. The description of the scalar wave propagation in a clamped-free elastic bar: (a) geometric
shape of the elastic bar; (b) employed uniform triangular mesh.

The computed velocity distributions of this elastic bar were employed to investigate
this simple transient wave propagation problem. For the nondimensional temporal dis-
cretization step CFL = 0.1 and the considered time point t = 0.6 s, the calculated velocity
distributions of this elastic bar from various numerical approaches together with the exact
solutions are displayed in Figure 4. It is seen from the figure that the numerical solution
from the standard FEM was not sufficiently accurate, and many unwanted peaks can be
found in the solutions. In contrast to the standard FEM, the EFEM-N3 and EFEM-N9 are
able to generate more accurate solutions despite several relatively small spurious peaks that
can still be seen in the solutions. Among all of the considered numerical approaches, the
numerical performance of the proposed EFEM-N6 is the best, since the resultant numerical
solutions of the velocity distributions agreed very well with the exact solutions, and almost
no spurious peaks can be seen in the solutions.

Furthermore, this numerical experiment was studied by exploiting the varying nondi-
mensional time integration steps (CFL = 1, CFL = 0.5, CFL = 0.25 and CFL = 0.1), and the
relevant computed velocity distributions are plotted in Figure 5. Here, the abovementioned
four different numerical approaches were again employed, and the considered time point
was still t = 0.6 s. By carefully comparing the computed velocity distributions shown in
Figure 5, we can observe that the present EFEM-N6 has the ability to continuously increase
the solution accuracy by employing the decreasing nondimensional time integration steps,
because the EFEM-N6 solutions will converge to the exact solutions when the employed
CFL numbers become smaller. On the contrary, the EFEM-N3, EFEM-N6 and the standard
FEM do not have this ability, because the corresponding velocity distributions can become
unexpectedly worse when decreasing CFL numbers are utilized for time integration. These
observations can be broadly explained by two factors; one factor is that the EFEM-N6
can produce close-to-zero spatial discretization errors, while the corresponding spatial
discretization errors from the other three numerical approaches are relatively large (See
Figure 2); the other factor is that the additional numerical error from the time integration
is actually a monotonic decreasing function of the nondimensional time integration steps.
These two factors can ensure that the EFEM-N6 has the monotonic convergence property in
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the transient wave analysis. From the above analysis, it is demonstrated that the numerical
performance of the EFEM-N6 clearly outperforms the other three numerical approaches in
solving transient wave propagations.
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Figure 5. The velocity distributions of this elastic bar from various numerical approaches using the
varying nondimensional time integration steps: (a)FEM; (b) EFEM-N3; (c) EFEM-N9; (d) EFEM-N6.

6.2. The Scalar Wave Propagation in a Square Pre-Stressed Membrane

The numerical experiment on scalar wave propagation in a two-dimensional square
pre-stressed membrane is investigated in this section. The geometric configuration of the
problem domain is sketched in Figure 6, and the wave speed for this numerical experiment
was c = 1 m/s. We employed a regular mesh pattern with a nodal interval h = 0.025 m to
discretize the membrane. The point load was at the middle of the square domain, and the
excitation load was of the following Ricker wavelet form [72,73]:

Fc = 0.5
[
1− 2π2 f 2

s (t− ts)
2
]

exp
[
−π2 f 2

s (t− ts)
2
]
, (30)

in which ts = 0.25 s and fs = 5 Hz stand for the time and frequency parameters.
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more effective than the linear polynomial and first order of the trigonometric function to 
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Figure 6. The geometric configuration and spatial discretization pattern of the square pre-
stressed membrane.

Considering the symmetry feature of this numerical experiment, in practical computa-
tion processes, only the partial problem domain is needed to model (see Figure 6). Here, the
transient displacement responses from the different numerical techniques were examined.
When the nondimensional time step CFL = 0.1 and the time point t = 0.9 s were chosen, the
displacement responses along two disparate angles (θ = 0◦ and θ = 45◦) are depicted in
Figure 7. Note that the exact solution to this problem is available; hence, it is also plotted in
the figures. It can be observed that the amount of numerical error in the FEM solutions is
quite large. Though the EFEM-N3 and EFEM-N9, indeed, can suppress the numerical error
to some degree, the EFEM-N6 solutions are the most accurate. These findings indicate that
the use of quadric polynomials as an enrichment function is more effective than the linear
polynomial and first order of the trigonometric function to control the amount of numerical
error for the wave analysis.



Mathematics 2022, 10, 4595 14 of 27

Mathematics 2022, 10, 4595 18 of 32 
 

 

 

 
(a) Wave travel angle θ = °0 . 

 
(b) Wave travel angle θ = °45 . 

Figure 7. The displacement responses of the square membrane along two disparate angles of wave 
travel. 

Furthermore, the numerical analysis of the problem was performed by considering 
the varying angles, and the related displacement responses at the time point t = 0.9 s 
from various methods are displayed in Figure 8. It is clear that the varying angles can 
visibly affect the accuracy of the solutions from FEM, EFEM-N3 and EFEM-N9, namely, 
the so-called numerical anisotropy issue can be obviously seen, while the EFEM-N6 so-
lutions are almost insensitive to the angles, and very reliable solutions can still be yield-
ed for all considered angles. 

0 0.2 0.4 0.6 0.8 1
Distance from the origin r (m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

D
isp

la
ce

m
en

t (
m

)

Non-dimensional time step CFL=0.1

FEM ( = 0°)
EFEM-N3 ( = 0°)
EFEM-N9 ( = 0°)
EFEM-N6 ( = 0°)
Exact

0 0.2 0.4 0.6 0.8 1
Distance from the origin r (m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

D
isp

la
ce

m
en

t (
m

)

Non-dimensional time step CFL=0.1

FEM ( = 45°)
EFEM-N3 ( = 45°)
EFEM-N9 ( = 45°)
EFEM-N6 ( = 45°)
Exact

Figure 7. The displacement responses of the square membrane along two disparate angles of
wave travel.

Furthermore, the numerical analysis of the problem was performed by considering
the varying angles, and the related displacement responses at the time point t = 0.9 s
from various methods are displayed in Figure 8. It is clear that the varying angles can
visibly affect the accuracy of the solutions from FEM, EFEM-N3 and EFEM-N9, namely, the
so-called numerical anisotropy issue can be obviously seen, while the EFEM-N6 solutions
are almost insensitive to the angles, and very reliable solutions can still be yielded for all
considered angles.
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Figure 8. The displacement responses of the square membrane from various numerical techniques by
varying the considered angles of wave travel.
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In more detail, several varying nondimensional time step CFL numbers were con-
sidered here to perform an overall analysis of this numerical experiment. Similar to the
previous discussion, for two disparate angles (θ = 0◦ and θ = 45◦), the displacement re-
sponses at the time point t = 0.9 s from the various methods are given in Figures 9–12. These
figures show that the FEM, EFEM-N3 and EFEM-N9 always failed to continuously increase
the solution quality by decreasing the employed CFL numbers, namely, the monotonic
convergence property for the transient wave analysis cannot be achieved. On the contrary,
it is very interesting to find that the EFEM-N6 basically has the monotonic convergence
property, and the corresponding numerical solutions will become more accurate when the
employed CFL number becomes smaller. A possible cause for these observations is that the
EFEM-N6 can produce adequately small spatial dispersion errors, while the errors from
other methods are relatively large, which have been seen in the dispersion analysis. With
this good numerical feature, the present EFEM-N6 obviously has stronger abilities than the
other numerical techniques in handling very complicated wave propagations in practice.
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Figure 9. The displacement responses of the square membrane from the FEM by varying the employed
nondimensional temporal discretization interval.



Mathematics 2022, 10, 4595 17 of 27

Mathematics 2022, 10, 4595 20 of 30 
 

 

 
(a) Wave travel angle θ = °0 . 

  

0 0.2 0.4 0.6 0.8 1
Distance from the origin r (m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

D
isp

la
ce

m
en

t (
m

)

Wave travel angle = 0°

EFEM-N3 (CFL=1)
EFEM-N3 (CFL=0.5)
EFEM-N3 (CFL=0.25)
EFEM-N3 (CFL=0.1)
Exact

Mathematics 2022, 10, 4595 21 of 30 
 

 

 
(b) Wave travel angle θ = °45 . 

Figure 10. The displacement responses of the square membrane from the EFEM-N3 by varying the 
employed nondimensional temporal discretization interval. 

 
(a) Wave travel angle θ = °0 . 

 
(b) Wave travel angle θ = °45 . 

0 0.2 0.4 0.6 0.8 1
Distance from the origin r (m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

D
isp

la
ce

m
en

t (
m

)

Wave travel angle = 45°

EFEM-N3 (CFL=1)
EFEM-N3 (CFL=0.5)
EFEM-N3 (CFL=0.25)
EFEM-N3 (CFL=0.1)
Exact

0 0.2 0.4 0.6 0.8 1
Distance from the origin r (m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

D
isp

la
ce

m
en

t (
m

)

Wave travel angle = 0°

EFEM-N9 (CFL=1)
EFEM-N9 (CFL=0.5)
EFEM-N9 (CFL=0.25)
EFEM-N9 (CFL=0.1)
Exact

0 0.2 0.4 0.6 0.8 1
Distance from the origin r (m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

D
isp

la
ce

m
en

t (
m

)

Wave travel angle = 45°

EFEM-N9 (CFL=1)
EFEM-N9 (CFL=0.5)
EFEM-N9 (CFL=0.25)
EFEM-N9 (CFL=0.1)
Exact

Figure 10. The displacement responses of the square membrane from the EFEM-N3 by varying the
employed nondimensional temporal discretization interval.
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Figure 11. The displacement responses of the square membrane from the EFEM-N9 by varying the
employed nondimensional temporal discretization interval.
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Figure 12. The displacement responses of the square membrane from the EFEM-N6 by varying the
employed nondimensional temporal discretization interval.

6.3. The Scalar Wave Propagation in a Membrane with Holes

In the last numerical experiment, we still consider the scalar wave propagation with
a wave speed c = 1 m/s in a square pre-stressed membrane, while in this case the mem-
brane had several evenly placed holes (see Figure 13). Similar to the previous numerical
experiment, only the partial problem domain was needed to model this problem, owing to
the symmetry feature. The triangular mesh pattern with an average nodal interval h = 0.02
m was employed here. The point load at the middle of this membrane was still a Ricker
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wavelet with an amplitude A = 0.4 N, time parameter ts = 0.1 s and frequency parameter
fs = 10 Hz.
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Figure 13. The square membrane with a number of evenly placed holes.

With a wave travel angle θ = 30◦, nondimensional temporal discretization interval
CFL = 0.1 and time point t = 1 s, Figure 14 displays the displacement distribution responses
using various numerical techniques. With the aim to examine the accuracy of the obtained
solutions, the reference solution from the commercial software package ABAQUS with very
refined mesh is also presented here to investigate this numerical experiment. Figure 14
shows very good agreements of the EFEM-N6 solutions with the reference ones, while the
other three methods clearly failed to yield very accurate solutions.
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Figure 14. The displacement distribution responses of the membrane with holes from various
numerical techniques when the considered time point t = 1 s.

Additionally, we also perform the numerical analysis of this wave problem by em-
ploying the varying nondimensional temporal discretization intervals and the related
displacement distribution responses are shown in Figure 15. Here the wave travel angle
θ = 30◦. It is again confirmed from these figures that the proposed EFEM-N6 can yield
monotonic convergence solutions when the CFL number trends to zero, while the other
three methods obviously did not exhibit this good numerical feature. As discussed and
analyzed in the previous sections, this good numerical feature can be obtained because
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the EFEM-N6 can yield sufficiently small numerical dispersion errors in the space domain
discretization, while the related errors from the other methods were relatively large.
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Figure 15. The displacement responses of the square membrane with holes from various methods by
varying the employed nondimensional temporal discretization interval.

6.4. Study on the Computational Cost

From the previous three numerical experiments, we can clearly obtain that the pro-
posed EFEM-N6 showed much more excellent numerical performance than the other three
mentioned numerical approaches (i.e., FEM, EFEM-N3 and EFEM-N9) for the analysis of
transient wave propagationsm and the close-to-exact numerical solutions can be generated
by utilizing the decreasing time integration steps. However, the detailed computational
cost of the different numerical approaches in solving the transient wave propagations has
still not been taken into consideration so far. In this section, the computational cost and
the computational efficiency of all of the considered numerical approaches is investigated
in great detail. To comprehensively and fairly compare the obtained results, the identical
meshes and the following relative error norm was used to measure the accuracy of the
obtained numerical solutions.

er =

√√√√∫V (ue − uh)
2dV∫

V ue2dV
, (31)

in which V denotes the involved total problem domain; ue and uh represent the exact and
numerical solutions, respectively.

For a series of varying nondimensional time integration steps (CFL = 1, CFL = 0.5,
CFL = 0.25 and CFL = 0.1), the detailed computational cost, which is represented by the CPU
time (s) and the relative error results from the different numerical approaches in solving
the previous two numerical experiments with exact solutions are given in Tables 1 and 2.
In this work, all the numerical computations were performed using a laptop with a single
core Intel 2.2 GHz CPU and 2 GB RAM. From the tables, the following valuable points can
be observed:

(1) When the identical mesh patterns were employed, the number of required degree
of freedoms (DOFs) and nonzero entities in the system matrices from the standard FEM
were much larger than that of the proposed EFEM. This was because more nodal unknowns
for each node were employed to construct the required field function approximation in
the EFEM.

(2) Compared to the standard FEM, in the transient wave analysis the required com-
putational cost for the EFEM was much more expensive. As a result, the computational
efficiency of the EFEM was clearly lower than the standard FEM.

(3) For the three considered EFEMs (i.e., EFEM-N3, EFEM-N6 and EFEM-N9), more
additional nodal unknowns were involved for each node, and the obtained EFEM will be
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more numerically expensive, leading to the lower computation efficiency in the transient
wave analysis.

(4) In solving transient wave propagations using numerical approaches, the total
required computational cost mainly consisted of two different parts, namely, the CPU time
for the spatial and temporal discretizations, respectively. Additionally, it was also clear that
the required computational cost for the temporal discretization was much more expensive
than that for the spatial discretization.

(5) When the standard FEM was employed for the transient wave analysis, the relative
numerical error did not become lower for the smaller used nondimensional time integration
steps. As discussed in the previous text, this was because the standard FEM cannot provide
sufficiently low spatial discretization errors. Likewise, very similar observations can also
be found when the EFEM-N3 and EFEM-N9 were employed.

(6) Among all of the considered four different numerical approaches, the numerical
performance of the EFEM-N6 was quite ideal, because the obtained numerical solution
accuracy can be broadly improved by using decreasing nondimensional time integration
steps. This also makes the EFEM-N6 specifically suitable for the analysis of complex
transient wave propagation problems.

Table 1. Comparisons of the computational cost and computational efficiency of the different numeri-
cal approaches in solving the scalar wave propagation in a clamped-free elastic bar.

Methods Number of
DOFs

Nonzero
Entities in the

System Matrices

CPU Time
for Spatial

Discretization (s)

Nondimensional
Time Steps

CPU Time
for Temporal

Discretization (s)

Total CPU
Time (s)

Total
Numerical
Error (%)

FEM-T3 729 3465 0.66

CFL = 1 2.63 3.29 7.16
CFL = 0.5 5.36 6.02 11.51
CFL = 0.25 9.52 10.18 12.69
CFL = 0.1 13.32 13.98 13.14

EFEM-N3 2187 41411 2.64

CFL = 1 9.75 12.39 11.14
CFL = 0.5 16.57 19.21 8.28
CFL = 0.25 29.03 31.67 5.09
CFL = 0.1 54.35 56.99 7.12

EFEM-N9 6561 382975 7.65

CFL = 1 19.21 26.86 11.01
CFL = 0.5 34.21 41.86 6.53
CFL = 0.25 54.38 62.03 6.68
CFL = 0.1 95.48 103.13 7.32

EFEM-N6 4374 169496 4.16

CFL = 1 13.26 17.42 11.16
CFL = 0.5 22.01 26.17 8.45
CFL = 0.25 36.13 40.29 5.43
CFL = 0.1 65.93 70.09 2.01

Table 2. Comparisons of the computational cost and computational efficiency of different numerical
approaches in solving the scalar wave propagation in a square pre-stressed membrane.

Methods Number of
DOFs

Nonzero
Entities in the

System Matrices

CPU Time
for Spatial

Discretization (s)

Nondimensional
Time Steps

CPU Time
for Temporal

Discretization (s)

Total CPU
Time (s)

Total
Numerical
Error (%)

FEM-T3 1681 8241 1.49

CFL = 1 7.03 8.52 52.33
CFL = 0.5 10.55 12.04 87.73
CFL = 0.25 20.19 21.68 95.38
CFL = 0.1 37.84 39.33 97.31

EFEM-N3 5043 99751 11.68

CFL = 1 13.77 25.45 59.39
CFL = 0.5 24.23 35.91 39.89
CFL = 0.25 43.62 55.3 11.95
CFL = 0.1 82.19 93.87 19.69

EFEM-N9 15129 923,343 37.89

CFL = 1 41.28 79.17 51.29
CFL = 0.5 81.62 119.51 13.82
CFL = 0.25 147.82 185.71 19.54
CFL = 0.1 347.38 385.27 22.76
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Table 2. Cont.

Methods Number of
DOFs

Nonzero
Entities in the

System Matrices

CPU Time
for Spatial

Discretization (s)

Nondimensional
Time Steps

CPU Time
for Temporal

Discretization (s)

Total CPU
Time (s)

Total
Numerical
Error (%)

EFEM-N6 10086 408614 29.62

CFL = 1 27.16 56.78 60.85
CFL = 0.5 47.71 77.33 22.57
CFL = 0.25 89.93 119.55 9.41
CFL = 0.1 208.58 238.2 3.26

7. Conclusions

The enriched FEM (EFEM) with disparate types of enrichment functions was presented
to investigate elastodynamic problems. Since the original linear approximation space in the
traditional FEM can be effectively enriched by local enrichment functions, more accurate
and reliable numerical solutions can be yielded. From the analysis of the numerical
dispersion and several representative numerical experiments, we can see that the EFEM
enriched by quadric polynomial enrichment functions (EFEM-N6) can ensure that the
amount of numerical dispersion errors from the discretization in the space domain can
be suppressed to a sufficiently small level, while the corresponding errors are relatively
large when other types of enrichment functions are employed. Moreover, the proposed
EFEM-N6 can effectively overcome the numerical anisotropy issue in the wave analysis,
because the solutions generated by the EFEM-N6 were almost totally identical, even though
varying angles of wave travel were considered.

From the viewpoint of a practical engineering application, the numerical experiments
in this work also show that the monotonic convergence property with respect to the
nondimensional time integration step CFL can be basically realized by the proposed EFEM-
N6; hence, the obtained numerical solution accuracy can be continuously increased by
decreasing the employed nondimensional time integration steps, while the other mentioned
numerical techniques do not have this good numerical feature. It is exactly this important
numerical property that makes the proposed EFEM-N6 specifically suitable to handle a
wide range of complicated elastodynamic problems.
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