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Abstract: The blood–brain barrier is a unique physiological structure acting as a filter for every
molecule reaching the brain through the blood. For this reason, an effective pharmacologic treatment
supplied to a patient by systemic circulation should first be capable of crossing the barrier. Standard
cell cultures (or those based on microfluidic devices) and animal models have been used to study
the human blood–brain barrier. Unfortunately, these tools have not yet reached a state of maturity
because of the complexity of this physiological process aggravated by a high heterogeneity that is
not easily recapitulated experimentally. In fact, the extensive research that has been performed and
the preclinical trials carried out provided sometimes contradictory results, and the functionality of
the barrier function is still not fully understood. In this study, we have combined tissue clarification,
advanced microscopy and image analysis to develop a one-dimensional computational model of the
microvasculature hemodynamics inside the mouse brain. This model can provide information about
the flow regime, the pressure field and the wall shear stress among other fluid dynamics variables
inside the barrier. Although it is a simplified model of the cerebral microvasculature, it allows a first
insight on into the blood–brain barrier hemodynamics and offers several additional possibilities to
systematically study the barrier microcirculatory processes.

Keywords: blood–brain barrier microvasculature; cortical capillary network; tissue clarification;
imaging technique; numerical model; microvascular hemodynamics

MSC: 76-10; 92C55; 68U10; 92C10

1. Introduction

The increase of performances of the medical imaging technique in the last decades
has allowed non-invasive information of geometries and associated morphologies of large
cerebral arteries. In biomedical engineering, this information can be further used for gener-
ating 1D to 3D computational models to shed light on cerebrovascular hemodynamics [1,2].
Unfortunately, this process becomes more and more complicated once the vascular scale is
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becoming smaller, reaching the blood–brain barrier capillaries (BBB), whose number is huge
(more than 10 billion) [3].

In recent years, extensive research has been oriented toward the microcirculatory flow
proposing complex mathematical models based on cerebrovascular images [3–8]. However,
image segmentation has inherently several challenges. First of all, patient-specific human
images are difficult to be obtained. The acquisition of the images with the necessary
resolution in vivo is not feasible at the micro-scale. Furthermore, the use of cadavers
for obtaining useful images also affects as the capillaries tend to collapse once the blood
flow and pressure reduce after death [9]. For this reason, murine and rodent images have
been utilized as baseline geometry for studying BBB microcirculation [10–16]. Other works
have presented imaging-driven modeling for hemodynamics in zebrafish microvasculature
and mammalian hearts [17–20]. Models oriented to the vascular topology and transport
efficiency have been presented by Katifori and coworkers [21,22].

Nowadays, a wide range of imaging techniques are available. In the literature, cor-
rosion casting [23], confocal microscopy [4], computerized tomography angiography and
quantitative magnetic resonance angiography [2], two-photon imaging [8,24,25] and syn-
chrotron radiation-based X-ray tomographic microscopy [26–28] have been mostly adopted
depending on the specific necessities of the researchers. A combination of some of these
methods can thus be of advantage for limiting the weakness of each method and it is
applied in the reconstruction protocols of the microvasculature. In this sense, a recent study
by Waelchli et al. [29] provides a detailed visualization and quantification of the 3D brain
vasculature using resin-based vascular corrosion casting, scanning electron microscopy,
synchrotron radiation and desktop microcomputed tomography imaging. These imaging
modalities can provide a large field of view of the vascular network but at the same time
low resolution. On the contrary, high resolutions are associated with a smaller field [9,30].
Micro-computerized tomography (micro-CT) is a powerful tool for visualizing large vessels
but, as aforementioned, it is not capable of imaging properly the microvasculature due
to the lack of resolution [31]. For this reason, its use for the microvasculature needs to be
modified using additional techniques. With the aim of improving micro-CT performances,
Hlushchuk et al. [32] for instance presented an innovative high-resolution micro-CT imag-
ing of animal brain vasculature. Ghanavati et al. [33] proposed a surgical protocol for
improving the surgical perfusion of cerebral blood vessels throughout the murine brain
and thus obtaining more consistent cerebrovascular images by X-ray micro-CT.

An additional issue is that the cerebral tissue is opaque so that conventional light
microscopy is inefficient due to the light scattering provoked by lipids [34,35]. To solve this
problem and allow microscopic light to penetrate the brain tissue, several optical techniques
have recently been developed. All of them are based on clearing the tissue using chemical
procedures. Dodt and coworkers [36] used a mixture of benzyl alcohol and benzyl benzoate
to match the refractive index of fixed tissue. However, this protocol only permitted a partial
tissue clarification as the clearing solutions led to the rapid loss of fluorescent signals. In a
later study, using a so-called 3D Imaging of Solvent Cleared Organs approach (3DISCO),
they found that a fast optical clearing can be obtained [37]. Further studies [38,39], using
different chemical approaches also achieved rapid tissue clearing encountering similar
instability issues.

Tissue-clearing techniques emerged in the last decade to allow high-resolution 3D
imaging of biological tissues. Numerous tissue clearing methods are currently avail-
able such as DISCO (iDISCO, uDISCO and 3DISCO) [37,40,41], CLARITY [34,42–47],
and seeDB [39], among others. Most of these protocols reduce the light scattering pro-
voked by the presence of the lipid and homogenize the RI, obtaining more transparent
tissues [48]. Susaki and coworkers [35] developed a whole-brain clearing and imaging
method called CUBIC (Clear, Unobstructed Brain Imaging Cocktails and Computational
analysis). CUBIC is a comprehensive experimental method involving the immersion of
brain samples in chemical cocktails containing aminoalcohols, which enables rapid whole-
brain imaging with single-photon excitation microscopy. In parallel, they also improved
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their methodology developing the so-called Advanced CUBIC clearing method. This im-
provement was based on hydration and extended the clearing process to several organs
of a mouse, allowing high-resolution 3D imaging [49,50]. Advanced CUBIC was time
consuming, had a limited efficiency for clearing organs with high pigment content and
adopted the same time for different samples. For these reasons, Res et al. [48] introduced a
new ultrasound processing to reduce the clearing time and proposed a new decolorization
cocktail to remove pigments. With this optimization method, also called CUBIC-Plus, they
enable a considerable shortening of the time acquisition of high-resolution 3D images of
the lung. Pinheiro et al. [51] developed an improved clearing protocol, called CUBIC-f,
for optimizing fragile samples. Hasegawa et al. [52] introduced CUBIC-kidney for kidney
research applications. Based on the CUBIC methodology, Murakami et al. [53] proposed
a fluorescent-protein-compatible clearing and homogeneous expansion protocol based
on an aqueous chemical solution (CUBIC-X). The expansion of the brain sample allowed
the construction of a point-based mouse brain atlas that allows the analysis of numerous
samples providing a platform for different organs in the biomedical research, the so-called
CUBIC-Atlas [54].

Notwithstanding that imaging techniques are continuously progressing, there are no
specific techniques that alone are capable of providing the entire cerebral blood vessels
for further reconstruction of comprehensive 3D models [9]. In general, the data obtained
after the medical imaging techniques require considerable additional work before these
can be treated by computer-aided design programs and computational software. An im-
portant pre-processing is for instance necessary for closing all the gaps of the acquired
data, simplifying and smoothing the segments of the network that represent the ves-
sels, avoiding noise and generating surfaces that form the limits of the computational
domain [3,5,8,9,11,12]. For this reason, in the literature, idealized synthetic computational
models based on mathematical algorithms are considered a valuable way to study the
cerebral microvasculature. They avoid some of the limitations affecting images-based
methods due to the considered microscale [9]. It is about the binary branching trees or
networks that mimic the vascular bed morphology. However, the cerebral microvasculature
presents for instance loops and anastomoses that cannot be taken into account using simple
fractal networks [9]. Hence, simplified binary fractal trees [55–57] have been progressively
more and more replaced by complex networks. These models are useful tools for different
purposes. In the literature, computer methods have been often based on brain animal
images due to the impossibility of invasive experimentation in humans [4,6]. Some studies
have been used for interpreting optical measurements acquired in rodents [58,59]. Others
were oriented to the analysis of intracellular transport phenomena on length scales not
accessible to imaging methods [60,61]. Sherwin et al. [62] introduced a 1D model of a
vascular network in space-time variables. Boas et al. [63] presented a symmetric binary
vascular network composed by 190 segments to investigate the steady-state or transient re-
sponse to specific diameter variations of the arteriolar region. Reichold et al. [28] proposed
a computational methodology based on anatomical data obtained by synchrotron radiation
X-Ray Tomography for simulating rat cerebral blood flow. They presented qualitative re-
sults of a fully three-dimensional intra-cortical vasculature structure modeled as a vascular
graph. Lorthois and coworkers [3–6,64,65] have provided a large quantitative data focused
on the microcirculation of the human cerebral cortex. Recently, they have introduced
an analytical model capable of describing the coupling between arteriolar and venular
trees, which were modeled using a vascular network approach and the capillary tree,
modeled as a continuum porous medium. The research group of Linninger, Hartung and
coworkers [2,9,13,14,16,24,66–68] has extensively worked in the microvascular architecture
hemodynamics obtaining detailed information on the cerebral microcirculation inside the
cerebral cortex by means of vascular networks and numerical algorithms. They analyzed
the tissue metabolism coupled to micro-hemodynamics [66], and latterly, they introduced
an alternative method to the binary tree for obtaining a more realistic microcirculatory
network. This model was generated using Voronoi tessellation first and was later improved
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by introducing novel closed networks. It finally includes an arterial and a venous tree
with capillary connection synthesized with a single algorithm that allows reducing the
computational costs [9].

To the best of our knowledge, there are no studies in the literature that combine
tissue clearing, advanced microscopy with images treatment, geometrical reconstruction
and numerical simulations. In this study, we aimed to introduce a novel protocol that
combines all these techniques for obtaining detailed information about cerebrovascular
cortical microcirculation. Concretely, we propose the combination of tissue clearing and
advanced microscopy techniques with image treatment, geometrical reconstruction and
numerical simulations. With the proposed protocol, we provided a 1D image-based compu-
tational model of the cerebral murine microvasculature that allows solving instantaneously
the associated hemodynamics. Blood flow features and a quantitative evaluation of the
microvascular morphology at the brain cortical territory can be predicted. In particular,
different regions and depths of the BBB were considered and investigated with the aim of
helping understand its microvascular functionalities and characteristics.

2. Materials and Methods

As described in the previous section, the cerebral tissue is opaque due to the presence
of lipids, so conventional light microscopy is inefficient [34,35]. Hence, the lipids need
firstly to be removed from this tissue for allowing the light passage without scattering or
absorption, matching the refraction index (RI) between the tissue and medium. The tissue
clarification is a chemical process of delipidation, decoloring and RI matching.
In this work, the mouse brain samples were treated as follows:

1. Fixation: Samples were fixed using paraformaldehyde (PFA) after transcardiacally
mice perfusion and dissection before post-fixation with PFA.

2. Sectioning: Here, 500 µm thick brain slices were sectioned using a vibratome.
3. Clearing: Sections were cleared using the CUBIC protocol.
4. Staining: Delipidated sections were stained with FITC-Lectin and an arteriole-specific

dye Alexa Fluor 633 hydrazide.
5. Imaging: Here, 500 µm slices were analyzed using an advanced two-photon mi-

croscopy.

Figure 1 shows the step-by-step the process followed. In the next subsections, each
step is described.

Transcardiac 
perfusion 4% PFA 

Postfixation 
4% PFA 

Sectioning 
 

Clarification 
(delipidation) 

Staining 
 

Clarification 
(RI matching) 

Endothelium:Lectin 
Arterioles: AF 633 

Figure 1. From mouse transcardiac perfusion to staining and cleared tissue.
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2.1. Fixation, Sectioning and Tissue Optical Clearing

Specifically, all animal procedures of this study followed European and Spanish
legal regulations and were performed under an ethical protocol approved by the Univer-
sity of Navarra Committee for Ethical Use of Laboratory Animal (076-19). Concretely,
C57B6 mice were euthanized and transcardiacally perfused with PBS (pH = 7.4) and
10 mL of 4% paraformaldehyde in PBS. Mice’s brains were dissected, post-fixed overnight
in 4% PFA and washed with PBS. Then, 500 µm thick brain slices were sectioned us-
ing a vibratome (VT1000S, Leica, Leica Biosystems Technologies, Danaher Corporation,
Washington, DC, USA) and kept in PBS solution at 4 ◦C. Sections were cleared following
the CUBIC protocol [50]. The method consists of two phases: delipidation with ScaleCUBIC
Reagent-1 (urea 25 wt %, Quadrol 25 wt %, Triton X-100 15 wt % and dH2O) and refractive
index matching with ScaleCUBIC Reagent 2 (urea 25 wt %, sucrose 50 wt %, triethanolamine
10 wt % and dH2O). The brain slices were first incubated with ScaleCUBIC Reagent-1 for
4 days at 37 ◦C while gentle shaking, which was followed by PBS washing for 16 h at room
temperature. After that, the tissue staining was performed, and the slices were immersed
in ScaleCUBIC Reagent 2 until their visualization in the microscope.

2.2. Tissue Staining

Staining of the endothelium in the brain tissue sections was performed between the
first and second phases of the clearing process. To this end, delipidated sections immersed
in PBS were blocked with BSA 4% and incubated with a 50 µg/mL solution of FITC-
Lectin (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany, USA) during 24 h at room
temperature. Finally, the sections were incubated with arteriole-specific dye Alexa Fluor 633
hydrazide solution (Thermofisher Scientific, Waltham, MA, USA) (2 µm) for 1 h. Following
the arterioles down to the capillaries in the acquired 3D volumes, we determined the areas
of connection between the arterial and venous system. This allowed establishing the inlets
and outlets of the computational model and hence obtaining later the correct flow direction
in the simulations.

2.3. Two-Photon Excitation Microscopy

Image stacks (1 mm × 1 mm × 0.5 mm in size) were collected using a Zeiss LSM
880 (Carl Zeiss, Jena, Germany) equipped with a two-photon femtosecond pulsed laser
(MaiTai DeepSee, Spectra-Physics, Milpitas, CA, USA), tuned to a central wavelength of
800 nm, using a 25×/1.8 objective (LD LCI Plan-Apochromat 25×/0.8, Carl Zeiss). Tiles of
z-stack scan from 500 µm sections were acquired in the non-descanned mode after spectral
separation and emission re-filtering using 500–550 nm and 645–685 nm BP filters for Lectin
and Alexa 633 signals, respectively. In Figure 2, a lectin-stained vessels region is shown
with a close-up view to a cubic sample.

(a) (b) (c) 

500 µm 

Figure 2. Tissue staining: The tissue was divided in cubic samples of 500 µm: (a) endothelial labeling
with lectin; (b) cubic samples; (c) close-up view of the single cubic sample box in red in (b).

From the cubic samples represented in Figure 2b (a single region is highlighted in red),
five cortical regions were selected and further used for images acquisition, geometrical
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reconstruction and computational simulation, as it will be shown in the next sections. The
reason why these specific regions were chosen is related to the aim of the study. The cortical
regions are areas of the brain located in the cerebral cortex where the BBB is localized and
thus are the target of our study because the associated microvasculature is the main filter
to pharmacologic drugs. Hence, these cortical regions are of particular interest versus other
brain internal areas where there is hardly any capillary network (for example, white matter
situated in subcortical regions).

2.4. Image Analysis

The following procedure was applied to each vessel region obtained from the previ-
ous steps. All the image treatment was performed in MaTLaB (The MathWorks, Natick,
MA, USA), using an appropriate in-house code.

Each volume was first filtered with a 3D Gaussian filter (size: 3× 3× 3 voxels, standard
deviation: σ = 0.5). Even this could lead to a possible loss of information, and the images
of the present study are mainly dominated by Poisson noise; thus, we cannot neglect the
presence of Gaussian noise that needs to be filtered. Then, a non-local means filter was
applied to each slice [69] in the volume to reduce the Poisson noise [70] resulting from the
acquisition procedure in the microscope. The vessel-like patterns were enhanced by using
morphological filters with linear structuring elements, Li, as it was performed in [71], as
an adaptation of the top-hat method. In a first stage, an opening is carried out using the
previously filtered volume, named as S f , with structuring elements of varying orientation,
Li. In this way, each Li was composed by a length of 51 voxels and a width of 1 voxel. Eight
different orientations were defined in the xy-plane, i.e., horizontal plane (angular variation
was π/8, i.e., 22.5◦) to which eight additional angular variations were added in the z-axis
direction, resulting in 64 possible structuring elements, i.e., Li with i = 1, . . . , 64.

For each one of the Li, a volume was obtained as result of an opening operation. A
new volume, named S0, was constructed assigning to each voxel the maximum value voxel
from the 64 opened volumes previously calculated, as shown in Equation (1):

S0 = maxi=1,...,64

{
γLi

(
S f

)}
(1)

where γ is the opening operator. This step was finished by means of a geodesic reconstruc-
tion using S f as a mask, obtaining the opened volume Sop, as shown in Equation (2):

Sop = Γrec
S f
(S0) (2)

where Γ is the geodesic reconstruction (opening) operator. The next step was to open S f
with the different Li and subtract to Sop. Then, we added every volume calculated.

Ssum =
64

∑
i=1

(
Sop − γLi

(
S f

))
(3)

Once the vascular structure was enhanced, the binarizing of the volume was performed
by using an adaptive threshold [72] of size 71 and a Gaussian statistic (Figure 3a,b). Finally,
the biggest connected region was selected and cleaned with a morphological closing
(3× 3× 3) and a 3D hole-filling approach [73] (Figure 3c).

Vessel Measurements

Once the volumes were binarized (Figure 3), the main geometrical features were
extracted from each region. As first step, the vessel structures were skeletonized using the
corresponding morphological operator by obtaining the medial axis [74,75]. In this manner,
we could easily define the voxels corresponding to the vessels. Those voxels with only
one neighborhood were considered as endpoints, while those others with two neighbors
were treated as vessel points. Lastly, those voxels with more than two neighbors were
labeled as branchpoints (usually three neighbors, but can be more). The parametrization
of our vasculature structure permits breaking our vessel set into individual segments by
eliminating the branchpoints that can be more easily analyzed.
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(a) 

(b) (c) (d) 

Figure 3. Image treatment: (a) Original images (left) and result of filtering (right). (b) Zoomed
versions extracted from (a). Original slice (up), filtered slice (down). (c) Segmented volumen.
(d) Result after artifacts erasing.

Regarding each segment, knowing the voxel size, it was possible to calculate some
shape-related characteristics such as the longitude, the curvature or the tortuosity of the
segment. Using the vessel set volume and the medial axis voxels data, we also calculated
the radius for every skeleton voxel and then computed the mean radius for each segment.
Once all the structures were parameterized, we straightforwardly constructed 1D models
of the five vessel regions in which each voxel and segment are characterized for further
analyses. A final representative model is depicted in the Figure 3d).

2.5. One-Dimensional (1D) Modeling
2.5.1. Governing Equations

The computational models of the previously created geometries were programmed in
MaTLaB, and they were based on the hemodynamic network developed by A. R. Pries and
T. W. Secomb [76]. In the literature, it is worldwide known that in microvascular networks,
the velocities achieved by plasma and red blood cells (RBCs) are very low (60–1 mm/s) [77],
translating into a very low Reynolds number (Re < 0.001 for all the analyzed regions) and
leading to a laminar capillary flow. Hence, inertial forces have less influence than viscous
forces. This fact, in addition with a low Womersley number (Wo < 0.01) indicating that
the flow can be considered as no pulsatile, enabled a simplification of the Navier–Stokes
equation into the Stokes equations (Equation (4)). As a result, we simplified the flow in the
capillary bed as a ratio of the pressure drop in every capillary and its hydraulic resistivity:

µ∇2v +∇p = 0 (4)

The model handled in this study, after its processing, became a 3D network built from
nodes and cylindrical segments in which all the constitutive equations were solved. This
model was composed by a collection of interconnected nodes and segments of the BBB
microvascular geometry. In this vascular network, the nodes represented locations where
vessels bifurcated or ended, and the segments represented the vessels. Each node was
defined by coordinates and each segment was defined by nodes and diameters. Every
segment was then divided into several intermediate segments, making possible the use
of tortuous vessel length instead of simplifying the vessels as straight lines between two
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end points (Figure 4). Hence, the total length of the vessel was obtained as the sum of the
lengths of consecutive intermediate segments (Equation (5), Figure 4).

Figure 4. Schematic representation of the segments subdivisions.

Ltotal
ij =

k

∑
i

Lij,k (5)

where Lij was the total segment length divided by k intermediate segments. Initially, the
mass flow entering a node was the same as the outflow of this node, fulfilling the continuity
equation in every geometry node (Equation (6)).

∇ · v = 0⇒ ṁin = ∑ ṁout (6)

On the other hand, the blood flow (Q) in every capillary segment was calculated as
shown in Equation (7):

Qij =
∆pij

Rij
(7)

where ∆p represented the pressure drop between the defining nodes of the segment ij
and R represented the flow resistance of segment ij, given a cylindrical shape, which was
calculated using the Hagen–Poiseuille Law (Equation (8)):

Rij =
128µijLij

πD4
ij

(8)

The flow resistance of a segment Rij depends on the diameter of the segment Dij and
on its length Lij. In this study, the tortuous length of each vessel was taken into account
instead considering only straight segments adding the tortuosity evaluated during the
images’ treatment. The flow resistance depends on the blood viscosity of the segment µij,
which varies considerably between segments due to the Fahraeus–Lindqvist effect. As
known, the latter is caused by the biphasic nature of the blood and the small dimensions of
the capillaries [78]. The effective viscosity µe f f was calculated using the in vivo empirical
description made by A. R. Pries [78]. This set of empirical equations takes into account the
effects of the biphasic nature of the blood in the capillary bed and calculates its effective
viscosity given a vessel diameter D, velocity and hematocrit HD as follows:

µij = µrel
ij · µplasma (9)

µrel
ij =

[
1 + (µ0.45 − 1) · (1− HD)

C − 1
(1− 0.45)C − 1

(
D

D− 1.1

)2
]
·
(

D
D− 1.1

)2
(10)

µ0.45 = 6 · e−0.085D + 3.2− 2.44 · e−0.06D0.045
(11)

C = 0.8 + e−0.075D ·
(
−1 +

1
1 + 10−11 · D12

)
+

1
1 + 10−11 · D12 (12)

The hematocrit distribution in the bifurcations of the geometry was calculated using
the phase separation law established by A. R. Pries and T. W. Secomb [76]. This law contains
a set of empirical equations that define the hematocrit distribution in a bifurcation knowing
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the hematocrit in the mother branch and the flow and diameters of the daughter branches
(Equations (13)–(15)):

FQE = 0, i f FQB ≤ X0 (13)

logitFQE = A + Blogit
[

FQB − X0

1− 2X0

]
, i f X0 ≤ FQB ≤ 1− X0 (14)

FQE = 1, i f 1− X0 ≤ FQB (15)

where FQB was the fractional blood flow in the daughter branch (ratio of the blood flow
of the daughter branch and the mother branch) and FQE was the fractional erythrocyte
flow in the daughter branch (ratio of the erythrocyte flow of the daughter branch and the
mother branch). The relationship between erythrocyte flow, blood flow and the segment
hematocrit was obtained using the following equation:

QE = QB · HD (16)

The parameters A, B and X0 were obtained as follows:

A = −13.29 ·

 D2
A

D2
B
− 1

D2
A

D2
B
+ 1

 · 1− HD
DF

(17)

B = 1 +
6.98(1− HD)

DF
(18)

X0 =
0.964(1− HD)

DF
(19)

where DA and DB were the diameters of the daughter branches and DF and HD were the
diameter and hematocrit of the mother branch.

2.5.2. Boundary Conditions

It is widely known that one of the most challenging parts in simulating microvascular
networks is to establish the conditions in all the in/outflows that appear in the limits of the
computational domain. These conditions are necessary for the solution of the 1D equations
that describe the blood flow inside the microvasculature. In particular, flow, pressure
and hematocrit conditions must be set and, depending on their values, the calculations
predict accurate (or less accurate) physiologically meaningful results. In this work, as
experimental measurements were not possible in murine brains, some approximations were
taken, and literature data were adopted. Different authors used various solutions to this
problem [5,24,76,77]. In this work, the solution presented by Lorthois et al. [5] was chosen,
as it was simple and fast to implement and achieved valid predictions, comparing the
obtained results. The used set of boundary conditions are taken from [77,79] and are
described below:

(a) Pressures were imposed at the inlet and outlets. With that, there was no need to know
the flow direction in all in- and outflows respectively, as the flow direction in the
segments adjusted to fulfill the pressure boundary conditions.

(b) Boundary nodes (1 segment nodes) inside the geometries limits were assigned with
a zero flow condition and with zero hematocrit. These nodes show the presence of
broken vessels inside the geometry that could be produced during the segmentation.
It is important to notice that these vessels have no physiological meaning but need to
be treated.

(c) Three different sets of pressure boundary conditions were assigned depending on the
segment to which the boundary node was attached to: venule, arteriole or capillary:

1. At the arterial inflow, a pressure of 50 mmHg was given. The arterial pressure
outflow was set to 40 or 45 mmHg depending on its nearness to the inflow. With
that, the risk of a short circuit was eliminated.
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2. At the venular outflows, a pressure of 10 mmHg was given.
3. In the capillary in/outflows, two cases were studied, following Lorthois and

coworkers [5]:

Case 1: Zero flow condition: Flow is set to zero in all the capillary outflows. In
this case, the flow goes from the arterial inlet passing through the whole
geometry until it reaches a venular outlet. As reported [5], this condition
would underestimate the flow in the geometry as it isolates it from its
virtual neighbors.

Case 2: Constant pressure condition: A constant capillary boundary pressure
was calculated so that the net capillary flow (the sum of the flow in all
the inlets and outlets) was zero; thus, everything that enters through
the arterioles exits through the venules. In other words, this pressure
was adjusted such that the total flow entering the arteriolar network
was the same as the total flow entering the venular network. In this
way, the net flux to all the boundary capillary segments was zero. As
a consequence, the net flux leaving the studied brain region through
capillaries to supply neighboring areas was exactly compensated by the
net flux arriving from neighboring areas through capillaries. As shown
in the literature, this condition forces the flux lines to be perpendicular to
the ends of the computational domain, maximizing the exchanges of fluid
with the neighboring region. For this reason, this condition overestimates
the flow in the geometry as it maximizes the flow exchange between the
region itself and its virtual neighbors. [64].

(d) The boundary hematocrits values were set 0.45 at the arterial inlets, 0.4 at the arterial
outlets, 0.2 at the venular outlets and a random value between 0.2 and 0.6 for the rest
of the capillary boundary nodes, mimicking the chaotic and haeterogenic nature of
this variable in the capillary beds [5,64].

The influence of imposing zero flow or a constant pressure at the capillary outlets
was found to be limited. Similar results were found also by [5]. Finally, we chose the
second option (constant pressure condition), as the first one (zero flow) tended to isolate
the volume of the considered capillary regions.

3. Results

This paper focuses on the image-based circulatory network of the BBB and shows the
versatility of the presented methodology for analyzing up to five cortical regions of the
murine brain vasculature. The main purpose of the framework is to introduce a consistent
methodology for elucidating the murine microvascular hemodynamics and other functions
related to the BBB. The presented synthetic anatomical networks are easy to be treated
using 1D hemodynamics. In this section, we illustrate some computational results in terms
of flow, pressure, hematocrit and endothelial shear stress. The results took a few CPU
minutes to be obtained and required around 20 GB of memory in serial execution on a HP
Z440 Intel Xeon computer.

The network geometries are represented in Figure 5 and are colored by the values
of the vessels diameter. These regions considered one inlet each but a different number
of outlets, different vessel densities, mean diameters, curvatures and tortuosities and
the number of bifurcations among other morphological differences. As visible from the
figure, the morphology of the five regions is widely different. Of course, these topologies
strongly influence the flow patterns and the associated nutrient transport in the surrounding
tissue. For these reasons, it is relevant to show the different statistics associated to the
flow simulations of the five cerebral regions. Frequency distributions of vessel diameters,
length, surface area and volume that characterize the five networks reconstructed using the
presented algorithm are shown in Figure 6. The geometries show a very good correlation
in terms of segment diameters (in (µm)) and lengths (in (µm)), surface area (in (µm2)) and
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total vascular volume (in (µm3)) distributions, as shown in Figure 6 where the cumulative
distribution function (CDF) of these variables is depicted. The presented curves match
well the shape and order of magnitude of those presented by Linninger and coworkers [9]
which were obtained using a mathematical synthesis of the cortical circulation for a whole
mouse brain. The obtained relations between the frequency of appearance and diameters,
lengths, surfaces and volumes are in agreement also with those found by other authors,
showing that the used geometries are suitable for further use in the numerical simulations
of the microvascular blood flow. This comparison ensures that our image-based modeling
presents anatomically consistent microvasculature.
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Figure 5. Morphology of the 5 cerebrovascular regions of the murine cortex considered in this
study. The heat map represents by color the distribution of the value of the diameters within the
microcirculatory synthetic network.

Additionally, the framework is capable of controlling the number of arteries and
bifurcations and all the associated geometrical features that are quantified in the image data
and included in the synthetic model. Previously published capillary networks use only
straight segments with cylindrical shape for describing the microvasculature. However,
real networks present curvature and tortuosity. Both variables were measured here directly
from the images. In particular, the tortuosity was computed using the metric SOAM
described by Bullit et al. [80]. We imposed the tortuosity measured directly from the
images for mimicking imaged networks. Its CDF is depicted in the Figure 6e). Moreover,
we provided a venous connection between arteriolar and capillary regions thanks to the
double staining. Previous studies habitually neglected curvature and tortuosity, presenting
straight vessel instead, and only a few consider venous drainage [9].

The five different geometries that have been analyzed in this work and depicted in
Figure 5 are defined by the parameters summarized in Table 1.
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Table 1. Morphological properties of the 5 considered cortical regions.

Region Nodes Boundary Nodes Segments Dimensions (µm)

#1 1250 210 1561 698× 459× 310
#2 751 136 932 466× 432× 207
#3 968 134 1265 559× 365× 318
#4 948 198 1164 517× 532× 220
#5 999 72 1292 508× 383× 345

(a) CDFs of the diameters (µm) (b) CDFs of the lengths (µm)

(c) CDFs of the surface area (µm2) (d) CDFs of the volume (µm3)

(e) CDFs of the tortuosity

Figure 6. Statistical analysis of the considered regions: cumulative distribution functions of diameters (a),
lengths (b), surface areas (c), volumes (d) and tortuosity (e).
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The blood flow distributions of the five regions is depicted in Figure 7 in logarithmic
scale for enhancing differences within the vessel segments. As the regions are of different
size and present important morphological differences, the maximum and minimum of
the scale is different for each geometry. The results of the simulations showed that a peak
blood flow of 437.33 nL/min was found in Geometry #4, while the minimum blood flow
was 99.65 nL/min and belonged to Geometry #3. Summarizing, we found a mean blood
flow of 268.49± 168.84 nL/min. This value differed from the values by Hurtung and
coworkers [24]. However, even though they have found a maximum blood flow of around
780 nLmin, they considered wider regions and scales than the ones used in this work. Of
course, the comparison can be only performed qualitatively because it is about different
samples with variable morphologies. The important variability of the blood flows found in
the present work can be explained by the geometrical differences presented by the 5 regions.
In some of them, the feeding arteriolar branch present ’shortcuts’ to the outlets, having
a preferential flow path of little resistance and increasing the blood flow. This happens,
for example, in Geometries #4 and #5, indicated in Figure 7. Furthermore, there are slight
differences in the feeding arteriolar trunk diameters, varying from 17.24 µm in Geometry
#1 to 22.62 µm in Geometry #5, for instance. This causes less flow resistance for the same
pressure loss between inflow and outflow, leading again to an increase of the blood flow.

(a) #1 (b) #2 (c) #3

(d) #4 (e) #5

Figure 7. Computed blood flow (in [nL/min]) within the 5 cerebrovascular regions of the murine
cortex. The heat map (in logarithmic scale) represents by colors the average blood flow distribution
within the microcirculatory synthetic network.

Figure 8 shows the hematocrit distribution within the five regions. Initially, a max-
imum hematocrit of 80% has been set for any segment. The obtained distributions, as
visible in the figure tend to be chaotic in all the regions. This happens because of the
used geometries, as this distribution mostly depends on the asymmetry of the bifurcations
inside the models due to the nature of the blood. As can be found in the literature, the
hematocrit distribution differs from realistic to synthetic, symmetric, binary tree geometries.
In these geometries, the hematocrit distribution is in fact mostly homogeneous [24]. The
variations seen in Figure 8 are the result of the morphology of the five considered regions.
The position of the venous drainage in the geometries can affect hugely the hematocrit
distribution, as this is the location where the flow exits and where convergent bifurcations
appear. Additionally, there are also some locations in the geometries where divergent
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bifurcations appear, leading to a decrease of the hematocrit in the segments until it reduces
even to 0%, as seen for instance in Geometry #1. On the other hand, in all geometries, some
vessels with slightly high hematocrit values can be seen. These increases of hematocrit
depends both on the segment diameter and on the feeding segment hematocrit, being
usually convergent bifurcations.

(a) #1 (b) #2 (c) #3

(d) #4 (e) #5

Figure 8. Computed hematocrit (in [%]) within the 5 cerebrovascular regions of the murine cortex.
The heat map represents by colors the hematocrit percentage per segment within the microcirculatory
synthetic network.

4. Discussion

The brain is the most complex organ of humans, but despite the extensive work dedi-
cated in recent decades, still little is known about its functionalities, including the anatomy
and the hemodynamics of its vasculature in comparison with all the other organs [81].
Several studies have attempted to describe the microvasculature structure and anatomical
variations in the cerebral surface region often comparing humans and rats that present
many similarities but also differences [82]. We have proposed a comprehensive framework
based on tissue clarification, advanced microscopy and image treatment aimed at the
analysis of the murine microvasculature that is feasible to be applied to humans. Through a
mathematical algorithm, specific regions or even the entire murine brain geometry can the-
oretically be created for the analysis of its hemodynamics. The reconstruction of the entire
anatomy from image data is difficult to be obtained as patient-specific data have a limited
spatial resolution [9]. For this reason, the combination of anatomical images, from the tissue
clarification to the obtention of 3D geometries, and mathematical modeling using advanced
algorithms that allow the analysis of a consistent circulatory network is an efficient strategy,
and it is the standard methodology in the literature. The advantage of the synthetic network
is that it can be used for different purposes, for example for the simulation of blood flow
and nutrients transport phenomena that can mimic the 3D vasculature. These simulations
can cover regions of the in vivo data sets where imaging data are not consistent, as we
have discussed in the Section 2.5.1 or regions not reconstructed [9]. Alternatively, the
use of mathematical networks could also be capable of complementing real anatomical
data serving as boundary conditions for 3D realistic anatomical microcirculatory models.
The 1D modeling can be attached to 3D models replacing the limits of the computational
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vascular domains and can be used for applying the boundary conditions as elucidated by
Linninger and coworkers [9]. Fractal networks have been often used in this sense for large
and small arteries as well as for the cerebral vasculature [83–85].

In the past decade, synthetic vascular models have offered more and more an alter-
native to purely image-based approaches [65,81,86,87]. Unfortunately, binary trees can
only approximate the real microvasculature because they only bifurcate in one direction
and cannot take into account loops. For this reason, more recently, other authors start
creating more complex vascular structures that could include anastomoses improving
previous findings [9]. Our work demonstrated that the presented methodology offers such
morphological structures as the obtained synthetic models faithfully represent the imaged
cortical regions.

At the same time, researchers have progressively proposed improved mathematical
algorithms providing increased models complexity yet providing accurate brain data-
based networks. An example is the synthetic model introduced by Linninger et al., which
simulates the cortical blood supply in a section of the human cortex. They provided a
computational method for building realistic microcirculatory beds using Voronoi tessel-
lation [66]. Due to the high computational costs, they later further extended this model
using a single algorithm including arterial and venous trees with capillary connection [9].
Another example is the algorithm developed by Su et al. for creating a set of networks based
on experimental statistics to bypass the complexities to reconstruct a cerebral microvascular
network from real brain tissue data [81].

The principles of the modeling proposed in the present work are similar to those intro-
duced by other studies in the literature [63]. The cerebral vasculature is represented by a
network of bifurcating cylinders that provide a resistance to flow according to the Stokes equa-
tions. The proposed mathematical model was further used for studying the hemodynamic in
the brain for showing the application of the developed methodology. Some computational
results regarding the blood flow, the hematocrit and the endothelial shear stress distribu-
tion have been presented (see Figures 7–9) and demonstrate the feasibility, the utility and
versatility of the presented framework. With the proposed framework, it is also possible to
have a consistent quantification of the vascular morphology, providing data of the number
of bifurcations, tortuosity, surface, vessel length and diameter, volume and volume density
that can be used for characterizing the vascular structure and its functionality (see Figure 6).
It is widely known that the neuronal tissue varies with the depth of the cerebral cortex so
that the presented results may be used to help elucidate the relationship of the flow, pressure
and shear stress characteristics with the depth in 1D realistic vascular networks as studied by
other authors but still not yet fully understood [77]. The computational results support the
hypothesis already diffused in the literature that the flow field and the hematocrit distribution
are highly heterogenous in the microvasculature, suggesting that the oxygen and nutrients
brain regulations depend on the cortical layer [25,77].

The presented simulations are based on a real anatomical data so that reconstructed
geometries are controllable. However, the results leads to 1D flow and average values of
velocity, WSS and other variables that approximate the real cerebrovascular hemodynamics.
Of course, synthetic models are based on simplified geometries and simplified hemody-
namic constraints as a boundary condition so that the resulting hemodynamic features are
simplified as well [9]. For this reason, the results obtained in this study were compared
with published results for demonstrating the consistency and robustness of the presented
tool. Unfortunately, currently, an in vitro or an experimental validation is not feasible.
Nevertheless, as stated in the literature [9], simplified hemodynamic models used in combi-
nation with synthetic vascular networks do not preclude rigorous blood flow simulations.
In this sense, the advantage of the presented model is that one can control all geometrical
parameters and preview the results in real time. Additionally, as explained before, the
presented framework is feasible to be more and more complicated adding or improving
model details and additional specific conditions. In conclusion, although it includes some
simplifications, the presented mathematical model which incorporates anatomic-based
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morphometric properties can potentially be used for addressing open questions regarding
healthy and diseased cortical blood flow in the cerebral microvasculature.

(a) #1 (b) #2 (c) #3

(d) #4 (e) #5

Figure 9. Computed endothelial shear stress of the 5 cerebrovascular regions of the murine cortex.
The heat map represents by colors the average value of the shear stress per segment within the
microcirculatory synthetic network.

5. Conclusions

We presented a comprehensive numerical tool for the generation and analysis of image-
based artificial vascular networks. This novel methodology is based on tissue clearing,
two-photons microscopy, image acquisition and treatment and 1D computational modeling.
We have analyzed five cortical regions showing that the framework is capable of correctly
synthesizing the cortex microvasculature from a morphological and hemodynamical point
of view. Furthermore, the tissue clearing-based methodology is flexible and it can be
applied to human brains that have bigger sizes. In contrast with previous studies, the
methodology includes a physiological connection to the venous drainage and some mor-
phological features such as curvature and tortuosity. The obtained results are in line with
the literature so that the presented mathematical model allows studying the healthy cere-
bral microvasculature for computing the hemodynamics of the BBB. Lastly, the presented
methodology is feasible to be applied as well to pathological cerebral microvasculature
helping understanding the role of the hemodynamics in neurodegenerative diseases.
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