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Abstract: Nowadays, graph representation learning methods, in particular graph neural network
methods, have attracted great attention and performed well in many downstream tasks. However,
most graph neural network methods have a single perspective since they start from the edges (or
adjacency matrix) of graphs, ignoring the mesoscopic structure (high-order local structure). In
this paper, we introduce HS-GCN (High-order Node Similarity Graph Convolutional Network),
which can mine the potential structural features of graphs from different perspectives by combining
multiple high-order node similarity methods. We analyze HS-GCN theoretically and show that it is a
generalization of the convolution-based graph neural network methods from different normalization
perspectives. A series of experiments have shown that by combining high-order node similarities, our
method can capture and utilize the high-order structural information of the graph more effectively,
resulting in better results.

Keywords: graph representation learning; graph neural network; node similarity; node classification

MSC: 68T07

1. Introduction

Graph is a flexible data modeling and storage structure, which is widely used in
biology [1,2], sociology [3], engineering [4] and other fields. With the advent of the big
data era, the graph structure becomes more and more complex. For this reason, among
various technical tools for studying graphs, GNNs (graph neural networks, data-driven
deep learning methods) have evolved rapidly and excelled in many important problems,
such as node classification [5] and community detection [6].

One of the earliest studies on GNNs can be traced back to the work of Scarselli
et al. [7], which has sparked a great deal of research interest among researchers. After that,
Bruna et al. [8] first introduce convolution into GNNs. Subsequently, Defferrard et al. [9]
and Kipf et al. [5] successively make optimization of the graph convolution operation
and the resulting model GCN (graph convolution network) is one of the most popular
basic models now. Another very famous base model is GAT (graph attention network)
introduced by Velickovic et al. [10], in which the attention mechanism [11,12] is applied.

Based on the success of GCN and GAT, a large number of methods [13–16] and
applications [17–20] have been developed. However, the GCN model uses only the graph
adjacency matrix and can not assign different weights to each neighbor. More specifically,
the GCN treats all neighbor nodes equally during convolution and can not assign different
weights based on node importance. As for GAT model, it learns the weight parameters
of node neighbors through the attention mechanism, which allows assigning different
importance to neighboring nodes. However, this approach ignores the prior information of
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nodes, which is stored in the graph structure. On the other hand, most of these methods
utilize only the edge structure, ignoring the important role of high-order structures in the
information transfer process.
Present work. In this paper, we introduce HS-GCN, which is a graph convolutional net-
work combining high-order node similarity features. HS-GCN can exploit node similarities
to mine the potential structural features of the graph from different perspectives and assign
different weights to node neighbors. We also analyze theoretically that these different
perspectives are actually equivalent to different normalizations of the weight matrix. At the
same time, we have conducted a large number of experiments. The experimental results
and analyses have shown that by combining node similarities, our method can capture and
utilize the structural information of the graph more effectively, resulting in better results.
In particular, the results are even better when combining high-order node similarities, since
the structural information is richer.

In fact, it is worth noting that our method is a framework that can combine arbitrary
node similarities. Because we believe that high-order node similarities contain richer
structural information (it is confirmed in our experiments), three representative high-order
similarities are selected as specific implementations.

The rest of this paper is organized as follows. In Section 2, we present related work
including the general architecture of GNNs and several node similarities utilized in this
paper. Then our method is described in detail in Section 3. The experiments are arranged
in Section 4. Finally, the conclusion part is in Section 5.

2. Related Work

In this part, we focus on previous work closely related to our method. First, some
notations are agreed: let G = (V, E) denote a graph, where V is the node set (v ∈ V) and
E ⊆ (V ×V) denotes the set of edges. If node u and node v are connected in graph G, then
(u, v) ∈ E. A ∈ {0, 1}n×n is the adjacency matrix of G, where n = |V| is the number of
nodes and if (vi, vj) ∈ E, then Ai,j (the element on row i and column j of A) is 1, the others
are 0:

Ai,j =

{
1, if (vi, vj) ∈ E;
0, otherwise.

(1)

2.1. Graph Neural Networks

GNNs generalize deep learning methods to graph structured data [21,22] and have
recently produced many successful applications in many areas, such as recommendation
system [23], transportation [24], image processing [25], etc. In general, GNNs follow a
two-stage operation of “aggregation” and “update”. Specifically, GNNs get “message”
from neighbor nodes in the first stage; and then GNNs update the representation of the
central node. The form can be expressed as follows:

h(k+1)
N(v)

= M(k)({h(k)u , h(k)v |u ∈ N(v)}), (2)

h(k+1)
v = U(k)(h(k)v , h(k+1)

N(v)
), (3)

where N(v) represents the neighbor node set of node v, k = 0, 1, . . . , K represents the kth

layer of the GNN network. h(k)v represents the embedding of node v in kth layer. M(·) and
U(·) represent the message aggregate function and update function respectively.

For example, the general form of the classical GCN is as follows [5]:

Z = f (X, A) = Softmax
(

Â ReLU
(

ÂXW(0)
)

W(1)
)

, (4)

where X ∈ Rn× f is the feature information matrix ( f denotes the dimension of features).
Â = (D + I)−

1
2 (I + A)(D + I)−

1
2 is the renormalized matrix of the adjacency matrix A,
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where I is identity matrix and D is a diagonal matrix, satisfying Dii = ∑j Aij. W(0) and
W(1) are parameter matrices of the first and second layers. As we can see, this two-layer
GCN has performed information aggregation and updating at each layer.

2.2. Node Similarities

Node similarity is a metric that describes the degree of similarity between nodes
and is often used for link prediction [26]. In the past decades, a large number of meth-
ods with different definitions of similarity have been proposed, such as Adamic-Adar
(AA) [27], Preferential Attachment (PA) [28], Hub Promoted Index (HPI) [29], Individual
Attraction (IA) [30], Katz Index (KI) [31] and so on [32–35], which are important in practical
applications.

Some of these methods compute node similarity using only the node information at
both ends of the edge, like PA, which uses only the degree of the nodes at both ends of the
edge. In addition, there are also methods that use global topology information to calculate
global metrics, like KI, which aggregates over all the paths between node u and v and
penalizes them. The latter utilizes more topology information, however, the computational
complexities of such methods are higher and seem to be infeasible for large networks.

Therefore, this article mainly considers similarity indexes in between the above two,
that is, the high-order node similarity indexes. Specifically, the following three well-known
similarity indexes are considered as proxies:
Resource Allocation (RA) [36]. The similarity index is based on the resource allocation
process, and thus a higher degree of common neighbor results in a lower degree of similarity
between targets. This is expressed mathematically as:

SRA(u, v) = ∑
z∈N(u)

⋂
N(v)

1
kz

, (5)

where kz denotes the degree of node z.
Cannistrai-Alanis-Ravai (CAR) [37]. CAR considers that two nodes have high similarity
if their common neighbors are also closely connected, and is defined as:

SCAR(u, v) = ∑
z∈N(u)

⋂
N(v)

1 +
|N(u)

⋂
N(v)

⋂
N(z)|

2
, (6)

from which we can see that CAR utilizes the common neighbors and second-order neighbor
information of the target node pair.
Clustering Coefficient (CCLP) [38]. This index utilizes the local clustering coefficient of
nodes to quantify the contribution of each common neighbor. Mathematically, its form is as
follows:

SCCLP(u, v) = ∑
z∈N(u)

⋂
N(v)

CCz, (7)

where CCz =
2× t(z)

kz(kz − 1)
is the clustering coefficient of node z, and t(z) is the number of

triangles passing through node z.
A simple example is shown in Figure 1. We first calculate the clustering coeffi-

cients of nodes c, d. Since there are 2 triangles (triangles ‘abc’, ‘ce f ’) passing through

node c, the clustering coefficient of node c is CCc =
2× 2

4× (4− 1)
=

1
3

. As for node d,

CCd =
2× 1

2× (2− 1)
= 1, since there is only 1 triangle (triangle ‘abd’) passing through node

d. Then CCLP similarity of a and b is:
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SCCLP(a, b) = ∑
z∈N(a)

⋂
N(b)

CCz

= CCc + CCd

=
1
3
+ 1

=
4
3

. (8)

As for CCLP similarity of e and f , it can be easily calculated as
1
3

.

𝒂

𝒃

𝒄 𝒅

𝒆

𝒇

Figure 1. An example for CCLP, where SCCLP(a, b) > SCCLP(e, f ).

As we can see, these high-order node similarity indexes use information not only
from the target node pair but also from their common neighbors or high-order neighbors,
and they are simpler to compute compared to the global approach. In addition, these
high-order similarities provide different (or even opposite) information, but later (at the
end of Section 3.2 and in the experiment) we will see that it is just fine.

3. Method

A global overview of HS-GCN is shown in Figure 2. As we can see, we first collect
the high-order structural information through high-order similarity method and get the
corresponding weighted graph in Subfigure (B). Then, the weighted graph and node
features are fed to the GCN layers to update the node representation. Finally the output
(prediction) is obtained using the node representation, which will be compared with labels.
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Figure 2. Overview of the HS-GCN process. Subfigure (A): high-order structural information is
collected through high-order similarity method; Subfigures (B–D): graph convolution operations are
performed on the weighted graph.

Next we describe the specific details in the algorithm:
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3.1. Algorithm

Our algorithm is shown as Algorithm 1. First, We calculate the high-order node
similarity matrix S in lines 1–4. Specifically, for the three similarities studied in this paper,
we have:

SM(u, v) =


∑z∈N(u)

⋂
N(v)

1
kz

, M = RA;

∑z∈N(u)
⋂

N(v)
1 +

|N(u)
⋂

N(v)
⋂

N(z) |
2 , M = CAR;

∑z∈N(u)
⋂

N(v)
CCz, M = CCLP,

(9)

which are introduced in Section 2.2.

Algorithm 1 HS-GCN embedding algorithm.

Input: Graph G = (V, E); Node feature matrix X; Adjacency matrix A; High-order node
similarity method M; Self-loop weights λ; High-order node similarity matrix weights
α; The number of graph convolutional neural network layers K;

Output: Representation matrix Z
1: Initialize the high-order node similarity matrix S as zero matrix
2: for (u, v) ∈ E do
3: Suv ← SM(u, v)
4: end for
5: A ← A + λ · I + α · S
6: Normalized(A)
7: H(0) ← X
8: Z ← GCN(A, H(0))
9: return Z

Then the weighted matrixA is obtained in line 5. Note that here we use the unit matrix
I, which is equivalent to adding the self-loop on nodes and its weight is λ. In this way, the
results are prevented from scattering during the training process [5] and the centrality of
the nodes is increased. More specifically, increasing the self-loop weight can increase the
weight of the nodes’ own information and prevent the updated node feature information
from covering too much information about neighboring nodes.

After that, A is normalized as follows:

Â = D
−

1
2
A AD

−
1
2
A , (10)

where DA is a diagonal matrix, satisfying DA,ii = ∑jAij.
Next, the normalized weighted matrix Â is used for graph convolution in line 8.

Specifically, the graph convolution operation is performed in each layer to updated the
node feature information h(k)v , k = 1, . . . , K. Formally, in layer k− 1, we have:

h(k)v = ∑
u∈N(v)∪{v}

Âvu · h(k−1)
u ·W(k−1), (11)

where W(k−1) is the parameter matrix of layer k− 1.
After that, the node features of each layer are transformed nonlinearly by ReLU(·) function

except for the final output layer. Finally, the representation matrix Z = H(K) is obtained.
After obtaining the representation matrix Z, the representation vector zv of node v can

be sent to the downstream task classifier. Here, we use a simple Softmax classifier:

Softmax(zv)i =
exp(zv,i)

∑d
j=1 exp(zv,j)

, i = 1 . . . d, (12)
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where Softmax(zv)i is the ith component of the predicted category vector ŷv = Softmax(zv),
and d is the dimension of the representation vector. Then for the loss function, the cross-
entropy function is chosen as it is most often used for classification tasks:

loss = ∑
v
(yv · log(ŷv) + (1− yv) · log(1− ŷv)), v ∈ trainset, (13)

where yv is the true label of the node v.

3.2. Theoretical Analysis

First, we show that using different node similarities in HS-GCN is equivalent to
normalizing the weighted matrix from different perspectives. In fact, many GNNs based
on convolution can be regarded as models under different normalization perspectives,
such as GCN and APPNP [39]. Therefore, our method can be considered as a natural
generalization of a series of convolution-based methods. Specifically, the normalization in
GCN is expressed as:

Â = (D + I)−
1
2 (I + A)(D + I)−

1
2 , (14)

and for each edge (u, v), it can be expressed as:

Âuv =
1√

du · dv
, (15)

where dv is the degree of node v.
AS for APPNP, it computes the node representation by power iteration [39]:

Z(k+1) = (1− β)ÂZ(k) + βZ(0), k = 0, . . . , L− 1 (16)

where Z(0) is the hidden representation matrix of nodes before iteration, L is the maximum
number of propagation layers, and β is transmission probability [39].

So Z(L) can be calculated as:

Z(L) = (1− β)Â((1− β)Â . . . ((1− β)Â[(1− β)ÂZ(0) + βZ(0)] + βZ(0)) + · · ·+ βZ(0)) + βZ(0)

= (1− β)L ÂLZ(0) + β(1− β)L−1 ÂL−1Z(0) + β(1− β)L−2 ÂL−2Z(0) + · · ·+ βZ(0) (17)

= ([(1− β)Â]L + β
L−1

∑
i=0

[(1− β)Â]i)Z(0)

Therefore, the normalized propagation matrix P̂ of APPNP can be expressed as:

P̂ = [(1− β)Â]L + β
L−1

∑
i=0

[(1− β)Â]i, (18)

As we can see, it is clear from Equation (18) that its normalization is jointly determined by
the number of L-step paths between nodes and transmission probability β.

Now consider the high order node similarity matrix S in HS-GCN, whose correspond-
ing normalization is:

Ŝ = (DS)
− 1

2 (S)(DS)
− 1

2 , (19)

where DS is a diagonal matrix, satisfying DS,ii = ∑j Sij, and for each edge, we have:

Ŝuv =
SM(u, v)√

∑u′∈N(u)
SM(u, u′) ·

√
∑v′∈N(v)

SM(v, v′)
, (20)

where SM(·) indicates a node similarity equation. Since the similarity metric can be chosen
arbitrarily, HS-GCN can be considered as a natural generalization of a series of convolution-
based methods. For example, let SM(u, v) = 1, then we have:
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Ŝuv =
1√

∑u′∈N(u)
1 ·
√

∑v′∈N(v)
1

=
1√

|N(u)| ·
√
|N(v)|

=
1√

du · dv
, (21)

which degenerates to the normalized form in GCN (Equation (15)).
Here, we would like to emphasize the role of “high order” in high order node similarity.

As shown in Figure 2A, information is transmitted along the arrow. As we can see, edge
(u, v) aggregates not only the information of the end nodes u, v, but also the information
from high-order structures, which are also known as motifs [40] or hyperedges [41].

This means that high-order information and edge information function simultaneously.
In other words, HS-GCN directly utilizes the high-order structure (weighted matrix A in
Section 3.1), not only the edge structure (adjacency matrix) which is the base component of
most GNN models.

In addition, the focus of our method is to capture and leverage high-order structural
information through high-order similarity. Note that it is enough to capture the high-order
information without caring too much about the difference in the nature of the information.
In fact, even if the indicators give the exact opposite information, the opposite way of using
the information can be obtained by training the graph neural network. In this way, the final
results will be consistent.

4. Experiments
4.1. Datasets

HS-GCN is evaluated on six real world datasets from different fields, which are
summarized in Table 1.

Table 1. Summary of the datasets.

Datasets Nodes Edges Features Classes k

Cora 2708 5429 1433 7 4.0
Citeseer 3327 4732 3703 6 2.8
Pubmed 19,717 44,338 500 3 4.5
ACM 3025 13,128 1870 3 8.7
UAI2010 3067 28,311 4973 19 18.5
414Ego 159 3386 105 7 42.6
1912Ego 755 60,050 480 46 159.1
2106Ego 2457 174,309 2094 2 141.9

Cora, Citeseer and Pubmed [5]: These three networks are paper citation network, where
nodes are documents and edges are citation links. In addition, each node has a bag-of-
words representation of the corresponding paper as its feature. The datasets can be found
on the website https://paperswithcode.com/datasets (accessed on 1 January 2022).
ACM [42]: This network comes from ACM dataset where nodes represent papers and
edges represent co-authorship (there is an edge if the two papers have the same author).
And the node features are keyword word bags for articles. The datasets can be found on
the website https://github.com/Jhy1993/HAN (accessed on 1 January 2022).
UAI2010 [43]: This dataset has 3067 nodes and 28311 edges and has been tested in graph
convolutional networks for community detection [44]. The datasets can be found on the
website http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html (accessed on 1
January 2022).

https://paperswithcode.com/datasets
https://github.com/Jhy1993/HAN
http://linqs.umiacs.umd.edu/projects//projects/lb c/index.html
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414Ego, 1912Ego and 2106Ego [45]: These datasets are subsets of the ego-network, from
Facebook and Google. The nodes of the networks represent the users and the edges
represent the interactions between users. As for the number, 414Ego for example, represents
that the core node of the subnetwork is 414. The datasets can be found on the website
http://snap.stanford.edu/data/index.html (accessed on 1 January 2022).

4.2. Experimental Setup and Baselines

Our method has a simple structure and is mainly based on GCN [5] with only two
additional hyperparameters α and λ (see Section 3.1). For α and λ, we perform a grid search
in [0.0001, 0.001, 0.01, 0.1, 1, 10] and [0.5, 1, 5, 10], respectively. The other hyperparameters
(such as learning rate and number of network layers) follow the settings in GCN.
Baselines. HS-GCN is compared with various state-of-the-art methods, including two
random-walk based representation learning methods and five graph neural network
based methods.

• DeepWalk [46] is the well-known random walk based method proposed by Perozzi
et al. in 2014. DeepWalk obtains contextual information about nodes by modeling graph
structure data as sequences of nodes using random walk.

• Node2vec [47] generalizes DeepWalk, which controls the exploration of node neigh-
borhoods by random walk using two hyperparameters (return parameter and in-
out parameter).

• GCN [5] is a semi-supervised GNN model and also the base model of our method.
• GraphSAGE [13] determines node neighborhoods by sampling and can generate

embeddings for unseen data. In addition, GraphSAGE allows the use of aggregation
functions of a more general form.

• GIN [16] is a GNN framework with a simple structure which is also based on GCN.
Its differentiation and representation capabilities are comparable to WL-test [48].

• GAT [10] introduces attention mechanism into graph convolution network, which can
flexibly aggregate node feature information.

• APPNP [39] is a diffusion based model which introduces PageRank algorithm to GNN,
and it reduces computational complexity by iteratively computing the matrix product.

4.3. Results and Analysis

Each experiment is run 10 times, and the results are summarized in Table 2, where we
report the maximum accuracy for each experiment (‘max %’ means that if the maximum
accuracy in 10 times is 0.83, then it is recorded as 83.0). For presentation purposes, we
report the optimal results of the three similarities in our method here and the details of
each similarity method will be introduced later.

As we can see, our method has achieved the best performance in seven of the eight
datasets and the performance on Cora is suboptimal. Compared with GCN which is
directly related to our method, HS-GCN has achieved better performance on all datasets.
In particular, our method exceeds GCN by more than 5% on datasets UAI2010 and 1912Ego.
In conclusion, the experimental results show that our method can effectively use the high
order node similarities and capture the structural features of nodes.

In my opinion, these better results indicate that our method is able to capture more
structural information by combining similarities, and then the subsequent training process
can also make good use of these information. As for the phenomenon of different degrees
of improvement among different datasets, we believe that the reason may be that different
datasets rely on these structural information to different degrees. For example, Pubmed
doesn’t seem to need much of these structural information, and its performance is good by
simply aggregating feature information (GCN).

http://snap.stanford.edu/data/index.html
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Table 2. The results (max %) of node classification for baseline methods and our method. (Bold: best
performance for each dataset).

Method Cora Citeseer Pubmed ACM

DeepWalk 67.2 43.2 65.3 62.8
Node2vec 67.9 51.5 69.1 64.2

GCN 81.6 71.0 79.5 87.8
GraphSAGE 82.6 71.2 78.5 86.4

GIN 82.8 71.4 79.6 78.1
GAT 83.4 71.7 79.0 87.4

APPNP 83.6 72.1 80.0 85.4

HS-GCN 83.0 73.5 80.3 87.9

Method UAI2010 414Ego 1912Ego 2106Ego

DeepWalk 42.4 79.2 66.5 75.8
Node2vec 44.0 91.7 75.0 82.4

GCN 51.6 93.8 77.0 95.6
GraphSAGE 54.5 91.7 82.0 94.3

GIN 52.9 95.8 82.5 93.4
GAT 57.2 93.8 77.0 87.4

APPNP 62.9 97.9 82.5 96.3

HS-GCN 63.1 97.9 85.5 97.8

Next, we want to study the role of self-loop weights. So we set λ = 0 for the control
experiment. The results are shown in Table 3. And the experiment with λ = 0 is marked as
HS-GCN(?)- where HS-GCN(?) indicates that the high order node similarity ? is used in
the corresponding experiment.

Table 3 shows the results of HS-GCN based on each high-order node similarity method
(the corresponding optimal hyperparameters are shown in Section 4.4). Compared to the
method without adding self-loop weights (λ = 0), the results with self-loop weights are
basically all better. This intuitively shows that the use of self-loop weights can effectively
prevent information from being overly dispersed over the node neighborhoods. More
specifically, this experiment also reconfirms the role of self-loops in increasing the centrality
of nodes and decreasing the degree of assimilation (too much neighbor node information is
covered in the updated feature information).

In addition, it is worth noting that experiments without self-loop weights also achieve
optimal results on 414Ego dataset. We speculate the reason is that the network structure
of 414Ego is simple (it has only 159 nodes and 3386 edges) and the optimal result can be
achieved using only ‘GCN+node similarity’, which is verified in the next experiments.

Finally, we are also interested in node similarity using only the node information at
both ends of the edge. Thus, we conduct experiments on more low order similarities and
compare them with our method. The low order similarity methods we use include CN [32],
SA [33], SO [34], HPI [29], HDI [29], LLHN [35] and PA [28]. The experimental results are
shown in Table 4, where HS-GCN(∗) means that ∗ is used to replace the high-order node
similarity in our method.

As shown in Table 4, we can clearly see that the method combining higher order
similarities has achieved optimal results. This shows that HS-GCN can use local information
more effectively by combining higher order node similarities. More specifically, compared
to similarities using only the node information at both ends of the edge, high-order node
similarities contain more structural information, and our method has captured and made
good use of these high-order information.

In addition, we see that all methods have achieved optimal results on 414Ego dataset,
which confirms our previous assumption (i.e. the network structure of 414Ego is so simple
that the optimal result can be achieved using only ‘GCN+node similarity’).
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Table 3. The results (max %) of node classification for each high order similarity method. (Bold: best
performance for each dataset).

Method Cora Citeseer Pubmed ACM

HS-GCN(RA)- 82.0 72.5 79.8 87.0
HS-GCN(RA) 83.0 73.3 80.0 87.4

HS-GCN(CAR)- 82.0 72.7 79.9 87.2
HS-GCN(CAR) 82.7 73.5 80.2 87.9

HS-GCN(CCLP)- 81.8 72.6 79.7 86.8
HS-GCN(CCLP) 82.5 72.8 80.3 87.3

Method UAI2010 414Ego 1912Ego 2106Ego

HS-GCN(RA)- 61.7 95.8 84.5 95.6
HS-GCN(RA) 63.5 97.9 85.0 96.7

HS-GCN(CAR)- 61.9 97.9 84.0 96.2
HS-GCN(CAR) 63.1 97.9 85.5 97.8

HS-GCN(CCLP)- 61.7 97.9 84.0 95.6
HS-GCN(CCLP) 62.7 97.9 85.0 96.7

Table 4. The results (max %) of node classification for low order similarity methods. (Bold: best
performance for each dataset).

Method Cora Citeseer Pubmed ACM

HS-GCN(CN) 82.1 72.8 80.0 87.2
HS-GCN(SA) 82.5 72.9 80.0 87.2
HS-GCN(SO) 82.3 72.6 80.0 87.1
HS-GCN(HPI) 82.2 73.2 80.1 87.2
HS-GCN(HDI) 82.2 73.3 79.8 87.3
HS-GCN(LLHN) 82.1 73.1 80.3 87.3
HS-GCN(PA) 82.4 72.9 80.1 87.3

HS-GCN 83.0 73.5 80.3 87.9

Method UAI2010 414Ego 1912Ego 2106Ego

HS-GCN(CN) 62.7 97.9 85.0 95.6
HS-GCN(SA) 62.5 97.9 85.0 95.6
HS-GCN(SO) 62.7 97.9 85.5 95.6
HS-GCN(HPI) 62.3 97.9 84.5 96.7
HS-GCN(HDI) 62.3 97.9 85.5 95.6
HS-GCN(LLHN) 62.8 97.9 84.5 96.7
HS-GCN(PA) 62.1 97.9 85.0 97.8

HS-GCN 63.1 97.9 85.5 97.8

4.4. Hyperparameters

Table 5 shows the values of the two hyperparameters corresponding to the experiments
when they achieve the best results. It can be found that the optimal role of different node
similarity methods has different weights (α). For CCLP, its optimal weights are generally
small (twice 0.0001 and all less than 1). As for the other two, α = 1 occurs 3 times for both.

Table 5. The hyperparameters (λ, α) for optimal results.

Cora Citeseer Pubmed ACM

HS-GCN(RA) 5, 0.0001 0.5, 0.1 10, 0.01 5, 1
HS-GCN(CAR) 5, 0.1 0.5, 0.001 10, 1 5, 0.01
HS-GCN(CCLP) 5, 0.01 1, 0.1 5, 0.1 1, 0.0001
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Table 5. Cont.

UAI2010 414Ego 1912Ego 2106Ego

HS-GCN(RA) 0.5, 0.01 1, 1 0.5, 1 5, 0.001
HS-GCN(CAR) 0.5, 1 5, 1 0.5, 0.01 1, 0.0001
HS-GCN(CCLP) 0.5, 0.0001 1, 0.1 5, 0.1 1, 0.001

It is also worth noting that there is consistency in the self-loop weights (λ) on the same
dataset. This phenomenon is consistent with the intuition that the central nodes of the same
dataset should have similar roles. For example, on dataset Pubmed, λ tends to take large
values (10, 10, 5), which indicates that the central nodes of Pubmed have high importance.
For Citeseer and UAI2010, λ tends to take small values, which indicates that neighborhood
nodes have a greater impact on central nodes.

In addition, we take Citeseer, UAI2010 and 1912Ego as examples for parameter sensi-
tivity analysis. Note that we are concerned about the influence of α, for which λ is controlled
to take the corresponding optimal value (Give an example, when studying RA on Citeseer,
we control λ = 0.5, and then let α change and record the accuracy of the results).

As we can see in Figure 3, the fluctuations of accuracy are around 2% on Citeseer and
1912Ego. The fluctuation of accuracy on UAI2010 is much larger (about 6%), which means
the results of UAI2010 are more sensitive to parameter α. In addition, we can see that node
similarity methods behave differently on each dataset. On dataset UAI2010, method RA
is clearly superior among the three methods. For 1912Ego, the most dominant method is
CAR. As for Citeseer, there is no clearly superior method.

0.0001 0.001 0.01 0.1 1 10

71.75
72.00
72.25
72.50
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73.00
73.25
73.50

ac
cu

ra
cy
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CCLP

0.0001 0.001 0.01 0.1 1 10
57

58

59

60

61
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0.0001 0.001 0.01 0.1 1 10
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83.5

84.0

84.5

85.0

85.5
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Figure 3. Parameter sensitivity analysis on Citeseer, UAI2010 and 1912Ego. The x-axis is the values
of α, and the y-axis represents the accuracy (max%).

5. Conclusions and Discussion

In this paper, we have designed a new framework combined with high-order node
similarities – HS-GCN, which can exploit node similarities to mine the potential high-order
structural features of graphs from different perspectives and effectively aggregate informa-
tion from the nodes. We have analyzed theoretically that HS-GCN can be considered as a
natural generalization of a series of convolution-based methods and conducted numerous
experiments. The experimental results have shown that HS-GCN can effectively generate
embeddings for nodes of unknown categories.

There are many extensions and potential improvements to our method, such as ex-
ploring more general methods of exploring node similarities or extending our method to
more types of graphs.
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