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Abstract: The connective eccentricity index (CEI) of a hypergraph G is defined as ξce(G) = ∑v∈V(G)
dG(v)
εG(v)

,
where εG(v) and dG(v) denote the eccentricity and the degree of the vertex v, respectively. In this paper,
we determine the maximal and minimal values of the connective eccentricity index among all k-uniform
hypertrees on n vertices and characterize the corresponding extremal hypertrees. Finally, we establish some
relationships between the connective eccentricity index and the eccentric connectivity index of hypergraphs.
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1. Introduction

A hypergraph G is a pair (V(G), E(G)), where V(G) is the nonempty vertex set, E(G)
is the edge set, and each edge e ∈ E(G) is a nonempty subset of V(G). We call n = |V(G)|
and m = |E(G)| the order and the size of the hypergraph G, respectively. For an integer
k ≥ 2, if each edge in E(G) has exactly k vertices, then G is called k-uniform. Hence, a
simple graph is called a 2-uniform hypergraph. For a vertex v ∈ V(G), we use dG(v) (or
just d(v)) to denote the degree of the vertex v, which is the number of edges of G containing
v. The complete hypergraph and k-uniform complete hypergraph with order n are denoted
by Kn and Kk

n, respectively. A pendant vertex is the vertex with degree 1. A pendant edge
e is the edge which contains exactly |e| − 1 pendant vertices. Let W be a sub-hypergraph of
G and the vertex u ∈ V(W), the degree of the vertex u in the sub-hypergraph W, denoted
by dW(u). If W = {u}, then dW(u) = 0.

A path of length q from v0 to vq in a hypergraph G is defined as a sequence of
vertices and edges (v0, e1, v1, · · · , vq−1, eq, vq), where all vi are distinct and all ei are distinct
such that vi−1, vi ∈ ei for i = 1, · · · , q. If v0 = vq and q ≥ 2, then it is called a cycle.
For any vertices u, v ∈ V(G), if there exists a path between them, then we say that the
hypergraph G is connected. Otherwise, the hypergraph G is disconnected. A hypertree is a
connected hypergraph without cycles. It is evident that the size of a k-uniform hypertree
is m = n−1

k−1 . For vertices u, v ∈ V(G), the distance between u and v is the length of a
shortest path between them in the hypergraph G, denoted by dG(u, v)(or just d(u, v) for
short). In particular, dG(u, u) = 0. The eccentricity εG(v)(or just ε(v)) of a vertex v in G is
the maximum distance from v to any other vertex in G, i.e.,

ε(v) = max
u∈V(G)

d(u, v)

and the diameter D(G) of a hypergraph G is the maximum eccentricity of any vertex in G,
that is, D(G) = maxv∈V(G) ε(v). The diametral path of a hypergraph is the shortest path
between two vertices which has a length equal to the diameter of the hypergraph.

In organic chemistry, many topological indices (for example, Balaban’s index [1],
Wiener index [2–6], Zagreb index [7]) have been found to be useful for the isomer discrimi-
nation and pharmaceutical drug design. Some topological indices have been employed
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associated with the eccentricity such as eccentric distance sum [8–13] and the eccentric
connectivity index [14–17]. In 2000, Gupta et al. [18] introduced another topological index
associated with the eccentricity, named as the connective eccentricity index. Through
experiments, the authors found that the connective eccentricity index was more effective
than Balaban’s mean square distance index in predicting biological activity.

In this paper, we study the connective eccentricity index on hypergraphs. The connec-
tive eccentricity index (CEI) of a hypergraph G is defined as

ξce(G) = ∑
v∈V(G)

dG(v)
εG(v)

.

Many researchers have investigated the connective eccentricity index (CEI) of a simple
graph [19–22]. A hypergraph is the generalization of a simple graph. Hypergraph theory
has many applications in chemistry [23,24]. For example, the study in [23] indicated that
the hypergraph model has a higher accuracy for molecular description. In order to study
the topological and organizational properties of hypergraph models more comprehensively,
some topological indices (for example, Eccentric connectivity index (ECI) [25], Wiener
index [5,6], Degree [26]) have been extended from graphs to hypergraphs. Hence, it
is interesting and meaningful to investigate the connective eccentricity index (CEI) of
a hypergraph.

This paper is organized as follows. In Section 2, we study how the connective ec-
centricity index of hypergraphs changes under two types of graph transformations. In
Section 3, we determine the maximal and minimal values of the connective eccentricity
index among all k-uniform hypertrees on n vertices. In Section 4, we determine the maximal
and minimal values of the connective eccentricity index among all k-uniform hypertrees
with given diameter d. In Section 5, we establish some relationships between the connective
eccentricity index and the eccentric connectivity index of hypergraphs.

2. Hypertree Transformations and CEI

In this section, we propose two types of transformations on hypertrees and show the
changes of the connective eccentricity index under these transformations. These two trans-
formations can simplify the structure of the hypertrees and reveal the change trend of CEI.
These can help determine the extremal values of CEI and characterize the extremal graphs.

Theorem 1. Let e = {u1, u2, · · · , ut−1, ut} (t ≥ 3) be an edge of a connected hypertree T1,
and suppose that e contains at least three non-pendant vertices. Let u1, u2, ut be three non-
pendant vertices in e and let Hi be the sub-hypertree of T1 such that {ui} = e ∩ V(Hi) and
dT1(ui) = 1 + dHi (ui) for i = 1, 2, · · · , t. Assume that the eccentricity εHt(ut) ≥ εHi (ui) for
i = 3, 4, · · · , t− 1. Let T2 be the hypertree obtained from T1 by moving the sub-hypertree H2 − u2
from u2 to u1 (as depicted in Figure 1). Then, ξce(T2) ≥ ξce(T1).

Figure 1. Transformation I.
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Proof. Note that εT1(x) = εT2(x) and dT1(x) = dT2(x) for any vertex x ∈ V(T1 \ (H1 ∪H2)),
εT1(y) ≥ εT2(y) and dT1(y) = dT2(y) for any vertex y ∈ V(H1 ∪ H2) \ {u1, u2}.

For vertices u1 and u2, we have
dT1(u1) = dH1(u1) + 1, εT1(u1) = max{εH1(u1), εH2(u2) + 1, εHt(ut) + 1};
dT2(u1) = dH1(u1) + dH2(u2) + 1, εT2(u1) = max{εH1(u1), εH2(u2), εHt(ut) + 1};
dT1(u2) = dH2(u2) + 1, εT1(u2) = max{εH2(u2), εH1(u1) + 1, εHt(ut) + 1};
dT2(u2) = 1, εT2(u2) = max{εH1(u1) + 1, εH2(u2) + 1, εHt(ut) + 1}.
In this sequel, we divide into four cases to verify the result.
Case 1. εH1(u1) ≥ εH2(u2) + 1 and εH1(u1) ≥ εHt(ut) + 1.
In this case, εT1(u1) = εH1(u1), εT2(u1) = εH1(u1), εT1(u2) = εH1(u1) + 1, εT2(u2) =

εH1(u1) + 1. It follows that

ξce(T1)− ξce(T2) ≤
dT1(u1)

εT1(u1)
−

dT2(u1)

εT2(u1)
+

dT1(u2)

εT1(u2)
−

dT2(u2)

εT2(u2)

=
dH1(u1) + 1

εH1(u1)
−

dH1(u1) + dH2(u2) + 1
εH1(u1)

+
dH2(u2) + 1
εH1(u1) + 1

− 1
εH1(u1) + 1

= −
dH2(u2)

εH1(u1)
+

dH2(u2)

εH1(u1) + 1
< 0.

Case 2. εH2(u2) ≥ εH1(u1) + 1 and εH2(u2) ≥ εHt(ut) + 1.
In this case, εT1(u1) = εH2(u2) + 1, εT2(u1) = εH2(u2), εT1(u2) = εH2(u2), εT2(u2) =

εH2(u2) + 1. It follows that

ξce(T1)− ξce(T2) ≤
dT1(u1)

εT1(u1)
−

dT2(u1)

εT2(u1)
+

dT1(u2)

εT1(u2)
−

dT2(u2)

εT2(u2)

=
dH1(u1) + 1
εH2(u2) + 1

−
dH1(u1) + dH2(u2) + 1

εH2(u2)
+

dH2(u2) + 1
εH2(u2)

− 1
εH2(u2) + 1

=
dH1(u1)

εH2(u2) + 1
−

dH1(u1)

εH2(u2)
< 0.

Case 3. εH1(u1) = εH2(u2) ≥ εHt(ut) + 1.
In this case, εT1(u1) = εH2(u2) + 1 = εH1(u1) + 1, εT2(u1) = εH1(u1), εT1(u2) =

εH1(u1) + 1, εT2(u2) = εH1(u1) + 1. It follows that

ξce(T1)− ξce(T2) ≤
dT1(u1)

εT1(u1)
−

dT2(u1)

εT2(u1)
+

dT1(u2)

εT1(u2)
−

dT2(u2)

εT2(u2)

=
dH1(u1) + 1
εH1(u1) + 1

−
dH1(u1) + dH2(u2) + 1

εH1(u1)
+

dH2(u2) + 1
εH1(u1) + 1

− 1
εH1(u1) + 1

= −
dH1(u1) + dH2(u2) + 1

εH1(u1)
+

dH1(u1) + dH2(u2) + 1
εH1(u1) + 1

< 0.

Case 4. εHt(ut) ≥ εH1(u1) and εHt(ut) ≥ εH2(u2).
In this case, εT1(u1) = εHt(ut) + 1, εT2(u1) = εHt(ut) + 1, εT1(u2) = εHt(ut) + 1,

εT2(u2) = εHt(ut) + 1. It follows that

ξce(T1)− ξce(T2) ≤
dT1(u1)

εT1(u1)
−

dT2(u1)

εT2(u1)
+

dT1(u2)

εT1(u2)
−

dT2(u2)

εT2(u2)

=
dH1(u1) + 1
εHt(ut) + 1

−
dH1(u1) + dH2(u2) + 1

εHt(ut) + 1
+

dH2(u2) + 1
εHt(ut) + 1

− 1
εHt(ut) + 1

= 0.

This completes the proof.
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Theorem 2. Let e = {u1, u2, · · · , ut−1, ut} (t ≥ 2) be an edge of a connected hypertree T1.
Assume that u2 and u1 are the only two non-pendant vertices in e. In addition, H1 and H2 are two
sub-hypertrees of T1 such that {ui} = e ∩V(Hi) and dT1(ui) = 1 + dHi (ui) for i = 1, 2. Let T2
be the hypertree obtained from T1 by moving the sub-hypertree H2 − u2 from u2 to u1 (as depicted
in Figure 2). Then, ξce(T2) > ξce(T1).

Figure 2. Transformation II.

Proof. Note that εT1(x) = εT2(x) and dT1(x) = dT2(x) for any vertex x ∈ V(T1 \ (H1 ∪H2)),
εT1(y) ≥ εT2(y) and dT1(y) = dT2(y) for any vertex y ∈ V(H1 ∪ H2) \ {u1, u2}.

For vertices u1 and u2, we have
dT1(u1) = dH1(u1) + 1, εT1(u1) = max{εH1(u1), εH2(u2) + 1};
dT2(u1) = dH1(u1) + dH2(u2) + 1, εT2(u1) = max{εH1(u1), εH2(u2)};
dT1(u2) = dH2(u2) + 1, εT1(u2) = max{εH2(u2), εH1(u1) + 1};
dT2(u2) = 1, εT2(u2) = max{εH1(u1) + 1, εH2(u2) + 1}.
In this sequel, we divide into three cases to verify the result.
Case 1. εH1(u1) ≥ εH2(u2) + 1.
In this case, εT1(u1) = εH1(u1), εT2(u1) = εH1(u1), εT1(u2) = εH1(u1) + 1, εT2(u2) =

εH1(u1) + 1. It follows that

ξce(T1)− ξce(T2) ≤
dT1(u1)

εT1(u1)
−

dT2(u1)

εT2(u1)
+

dT1(u2)

εT1(u2)
−

dT2(u2)

εT2(u2)

=
dH1(u1) + 1

εH1(u1)
−

dH1(u1) + dH2(u2) + 1
εH1(u1)

+
dH2(u2) + 1
εH1(u1) + 1

− 1
εH1(u1) + 1

= −
dH2(u2)

εH1(u1)
+

dH2(u2)

εH1(u1) + 1
< 0.

Case 2. εH1(u1) = εH2(u2).
In this case, εT1(u1) = εH2(u2) + 1 = εH1(u1) + 1, εT2(u1) = εH1(u1), εT2(u2) =

εH1(u1) + 1, εT2(u2) = εH1(u1) + 1. It follows that

ξce(T1)− ξce(T2) ≤
dT1(u1)

εT1(u1)
−

dT2(u1)

εT2(u1)
+

dT1(u2)

εT1(u2)
−

dT2(u2)

εT2(u2)

=
dH1(u1) + 1
εH1(u1) + 1

−
dH1(u1) + dH2(u2) + 1

εH1(u1)
+

dH2(u2) + 1
εH1(u1) + 1

− 1
εH1(u1) + 1

=
dH1(u1) + dH2(u2) + 1

εH1(u1) + 1
−

dH1(u1) + dH2(u2) + 1
εH1(u1)

< 0.

Case 3. εH1(u1) < εH2(u2).
In this case, εT1(u1) = εH2(u2) + 1, εT2(u1) = εH2(u2), εT1(u2) = εH2(u2), εT2(u2) =

εH2(u2) + 1. It follows that
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ξce(T1)− ξce(T2) ≤
dT1(u1)

εT1(u1)
−

dT2(u1)

εT2(u1)
+

dT1(u2)

εT1(u2)
−

dT2(u2)

εT2(u2)

=
dH1(u1) + 1
εH2(u2) + 1

−
dH1(u1) + dH2(u2) + 1

εH2(u2)
+

1 + dH2(u2)

εH2(u2)
− 1

εH2(u2) + 1

=
dH1(u1)

εH2(u2) + 1
−

dH1(u1)

εH2(u2)
< 0.

This completes the proof.

In order to better demonstrate the influence of hypertree transformations I and II
on CEI, we apply them on 3-uniform hypertree T3 (Figure 3) and 3-uniform hypertree T6
(Figure 4), respectively, and calculate the corresponding CEI before and after the structural
change of the corresponding hypertree.

Figure 3. Transformation I on T3.

Applying Transformation I, we calculate and compare the CEI of hypertrees T3, T4,
and T5 as follows.

ξce(T3) = ξce(T5) =
29
6

< ξce(T4) =
31
6

.

Figure 4. Transformation II on T6.
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Applying Transformation II, we calculate and compare the CEI of hypertrees T6 and
T7 as follows.

ξce(T6) =
23
6

< ξce(T7) = 6.

3. The Maximal and Minimal Values of CEI of k-Uniform Hypertrees with Size m

In this section, we shall determine the maximal and minimal values of CEI among all
k-uniform hypertrees on n vertices with size m.

Firstly, we recall the concept of a loose path introduced in [27,28]. For a connected
k-uniform hypertree T with vertex set V(T) = {v1, v2, · · · , vn} and edge set E(T) =
{e1, e2, · · · , em}, if ei = {v(i−1)(k−1)+1, v(i−1)(k−1)+2, . . . , v(i−1)(k−1)+k} for i = 1, · · · , m,
then T is called a k-uniform loose path, denoted by Pn,k.

For a connected hypertree T on n vertices with m edges, if all edges of T are pendant
edges at a common vertex u, then T is called a hyperstar (with center u), denoted by Sn,m. If
the hypertree Sn,m is k-uniform, then it is called a k-uniform hypertree, denoted by Sn,k.

Theorem 3. Let T be a connected hypertree on n vertices with m(m ≥ 3) edges. Then,

ξce(T) ≤ ξce(Sn,m).

The equality holds if and only if T ∼= Sn,m.

Proof. Suppose on the contrary that T � Sn,m, then at least one edge of T is a non-pendant
edge. Without loss of generality, we denote a non-pendant edge of T by ei.

By applying the transformations of Theorems 1 and 2 on T, we move all the sub-
hypertrees Hi − {x} on one common edge ei of T from different vertices x to a common
vertex v, x ∈ ei, v ∈ ei. The resulting hypertree is denoted by T1. By Theorems 1 and
2, we conclude that ξce(T) < ξce(T1). After finitely performing the transformations of
Theorems 1 and 2, we can get a hypertree T∗ such that T∗ ∼= Sn,m and ξce(T) < ξce(T∗) =
ξce(Sn,m).

Theorem 4. Let T be a connected k-uniform hypertree on n vertices with size m = n−1
k−1 ≥ 3. Then,

ξce(T) ≤ nk + n− k− 1
2(k− 1)

.

The equality holds if and only if T ∼= Sn,k.

Proof. From Theorem 3, we conclude that the equality holds if and only if T ∼= Sn,k. Note
that dSn,k (u) =

n−1
k−1 = m, εSn,k (u) = 1, dSn,k (x) = 1 and εSn,k (x) = 2 for x ∈ V(Sn,k) \ {u}.

Therefore, it follows that

ξce(Sn,k) = ∑
x∈V(Sn,k)\{u}

dSn,k (x)
εSn,k (x)

+
dSn,k (u)
εSn,k (u)

= ∑
x∈V(Sn,k)\{u}

1
2
+

n− 1
k− 1

=
n− 1

2
+

n− 1
k− 1

=
nk + n− k− 1

2(k− 1)
.

The following lemma is immediate, and so we omit its proof.



Mathematics 2022, 10, 4574 7 of 15

Lemma 1. Let T be a k-uniform hypertree on n vertices. Then, ∑v∈V(T) dT(v) =
(n−1)k

k−1 .

Theorem 5. Let T be a connected k-uniform hypertree on n vertices with size m = n−1
k−1 ≥ 3. Then,

ξce(T) ≥


∑

m−1
2

i=1
4

m−i + ∑
m−1

2 −1
i=0

2(k−2)
m−i + 2

m + 2(k−2)
m+1 , if m is odd,

∑
m
2 −1

i=1
4

m−i + ∑
m
2 −1

i=0
2(k−2)

m−i + 2
m + 4

m , if m is even.

The equality holds if and only if T ∼= Pn,k.

Proof. It is evident that the diameter of Pn,k is m = n−1
k−1 , i.e., the number of the edges of

Pn,k. Let T1 be a connected k-uniform hypertree on n vertices. Suppose on the contrary
that T1 � Pn,k. Let d be the diameter of T1 and P = (v1,1, e1, v1,k, · · · , vd−1,k, ed,vd,k) be the
diametral path of T1, where ei = {vi,1, vi,2, · · · , vi,k} (i = 1, 2, · · · , d) and vj,k = vj+1,1 for
j = 1, 2, · · · , d− 1. Then, d < m and |E(T1) \ E(P)| ≥ 1.

Next, we move a pendant edge in E(T1) \ E(P) to vd,k and produce a new hypertree.
It means that we delete this pendant edge and organize vd,k and k− 1-pendant vertices in
the pendant edge to build a new edge. We denote the new hypertree by T′1. In fact, we can
repeat the above operation by finite steps to get a new hypertree T2 such that T2 ∼= Pn,k.

Note that εT2(x) ≥ d + 1 > εT1(x) for x ∈ V(E(T1) \ E(P)), εT2(y) ≥ εT1(y) for
y ∈ V(P). It is evident that dT2(v1,1) = 1, dT2(vd,k) = 2, dT2(vi,k) = 2 for i = 1, 2 · · · , d− 1,
dT2(vj,s) = 1 for j = 1, 2, · · · , d and s = 2, 3, · · · , k− 1.

Let DT1(P′) = ∑v∈V(T1)\V(P) dT1(v) + |E′|, where E′ = {ei|ei is incident to one ver-
tex in V(P) and k − 1 vertices in V(T1) \ V(P)}. Let DT2(P′) = ∑v∈V(T2)\V(P) dT2(v) +
1
2 dT2(vd,k) = ∑v∈V(T2)\V(P) dT2(v)+ 1. By Lemma 1, we have DT1(P′) = ∑v∈V(T1)\V(P) dT1(v)
+|E′| = ∑v∈V(T2)\V(P) dT2(v) + 1 = DT2(P′). From the definition of CEI, it follows that

ξce(Pn,k) = ξce(T2) = ∑
v∈V(T2)

dT2(v)
εT2(v)

= ∑
v∈V(T2)\V(P)

dT2(v)
εT2(v)

+ ∑
v∈V(P)

dT2(v)
εT2(v)

≤ ∑
v∈V(T2)\V(P)

dT2(v)
d + 1

+ ∑
v∈V(P)

dT2(v)
εT2(v)

< ∑
v∈V(T2)\V(P)

dT2(v)
d

+ ∑
v∈V(P)

dT2(v)
εT2(v)

=
∑v∈V(T2)\V(P) dT2(v)

d
+ ∑

v∈V(P)

dT2(v)
εT2(v)

=
DT2(P′)− 1

d
+ ∑

v∈V(P)

dT2(v)
εT2(v)

≤
DT2(P′)− 1

d
+ ∑

v∈V(P)

dT2(v)
εT1(v)

=
DT2(P′)− 1

d
+

dT2(vd,k)

εT1(vd,k)
+ ∑

v∈V(P)\{vd,k}

dT2(v)
εT1(v)

=
DT2(P′)− 1

d
+

2
d
+ ∑

v∈V(P)\{vd,k}

dT2(v)
εT1(v)

=
DT2(P′)

d
+

1
d
+ ∑

v∈V(P)\{vd,k}

dT2(v)
εT1(v)
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=
DT1(P′)

d
+

dT1(vd,k)

εT1(vd,k)
+ ∑

v∈V(P)\{vd,k}

dT2(v)
εT1(v)

=
∑v∈V(T1)\V(P) dT1(v) + |E′|

d
+

dT1(vd,k)

εT1(vd,k)
+ ∑

v∈V(P)\{vd,k}

dT2(v)
εT1(v)

=
∑v∈V(T1)\V(P) dT1(v)

d
+
|E′|

d
+

dT1(vd,k)

εT1(vd,k)
+ ∑

v∈V(P)\{vd,k}

dT2(v)
εT1(v)

<
∑v∈V(T1)\V(P) dT1(v)

d
+
|E′|

d− 1
+

dT1(vd,k)

εT1(vd,k)
+ ∑

v∈V(P)\{vd,k}

dT2(v)
εT1(v)

≤ ∑
v∈V(T1)

dT1(v)
εT1(v)

= ξce(T1).

Therefore, ξce(Pn,k) < ξce(T1) if T1 � Pn,k, and for any k-uniform hypertrees T with
size m ≥ 3, we conclude that ξce(Pn,k) = ξce(T) if and only if T ∼= Pn,k. By direct calculation,
we get the CEI of Pn,k.

For a k-uniform hypertree T, if k = 2, then T is a tree. From Theorems 4 and 5, we can
deduce the following known theorem.

Theorem 6 ([22]). Let T be a tree on n vertices. Then,

3n
2
− 3

2
≥ ξce(T) ≥


∑

n−2
2

i=1
4

n−1−i +
2

n−1 , if n is even,

∑
n−3

2
i=1

4
n−1−i +

6
n−1 , if n is odd.

The right equality holds if and only if T ∼= Pn and the left equality holds if and only if T ∼= Sn.

4. The Maximal and Minimal Values of CEI of k-Uniform Hypertrees with
Given Diameter

In this section, we shall determine the maximal and minimal values of CEI of k-uniform
hypertrees with a given diameter. Firstly, we introduce two kinds of k-uniform hypertrees
of order n with diameter d.

Let P = (v1,1, e1, v1,k, · · · , vd−1,k, ed,vd,k) be a path where ei = {vi,1, vi,2, · · · , vi,k} (i =
1, 2, 3, · · · , d) such that vi,k = vi+1,1 and ei ∩ ei+1 = {vi,k} for i = 1, 2, 3, · · · , d− 1. For even
d, let Tn,d be a k-uniform hypertree obtained from a path P by attaching t pendant edges
at vertex v d

2 ,k, where t = n−d(k−1)−1
k−1 is a nonnegative integer. It means that all edges of

E(Tn,d) \ E(P) are pendant edges at v d
2 ,k. For odd d, let Tt

n,d be the hypertree obtained from

the path P by attaching t = n−d(k−1)−1
k−1 pendant edges at some vertices in e d+1

2
. Note that

Tt
n,d is not unique. We denote by Tt

n,d the set of hypertrees of the form Tt
n,d for odd d.

Theorem 7. Let T be a connected k-uniform hypertree on n vertices with diameter d ≥ 2, and let
t = n−[d(k−1)+1]

k−1 be a nonnegative integer. Then,

ξce(T) ≤


∑

d
2−1
i=1

4
d−i + ∑

d
2−1
i=1

2(k−2)
d−i + 6+2t

d + 2t(k−1)
d+2 , if d is even,

∑
d−1

2
i=1

4
d−i +

2
d + ∑

d−1
2 −1

i=0
2(k−2)

d−i + 2(k−2)+2t
d+1 + 2t(k−1)

d+3 , if d is odd.

The equality holds if and only if T ∼= Tn,d for even d, or T ∈ Tt
n,d for odd d.
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Proof. Let T1 be the extremal k-uniform hypertree which has the maximal CEI among all k-
uniform hypertrees on n vertices with diameter d. Let P = (v1,1, e1, v1,k, · · · , vd−1,k, ed,vd,k)
be the diametral path of T1, where ei = {vi,1, vi,2, · · · , vi,k} (i = 1, 2, 3, · · · , d) such that
vi,k = vi+1,1 and ei ∩ ei+1 = {vi,k} for i = 1, 2, 3, · · · , d − 1. By Theorems 1 and 2, we
conclude that all edges of E(T1) \ E(P) must be pendant edges at some vertices in V(P) \V1
where V1 = (e1 ∪ ed) \ {v1,k, vd−1,k}. For convenience, we denote V(P) \V1 by V0.

We now consider the case when d is even. Assume that e′1, e′2, · · · , e′r be pendant
edges attached a vertex in V0 \ {v d

2 ,k} and e′r+1, e′r+2, · · · , e′t attached at v d
2 ,k. If r ≥ 1, then

T1 � Tn,d. We build a new hypertree T2 which is obtained from T1 by moving these pendant
edges e′1, e′2, · · · , e′r to v d

2 ,k. Assume that u′ = e′i ∩V(P), w′i ∈ e′i\{u′} for i = 1, 2, · · · , r. It

is evident that all vertices in e′i\{u′} have the same eccentricity in T1( i = 1, 2, · · · , r). The
same result holds in T2. From the definition of CEI, one has

ξce(T1)− ξce(T2) =
r

∑
i=1

(
(k− 1)

1
εT1(w

′
i)

+
1

εT1(u
′)

)
−

r

∑
i=1

(
(k− 1)

1
εT2(w

′
i)

+
1

εT2(v d
2 ,k)

)
=

r(k− 1)
εT1(w

′
i)

+
r

εT1(u
′)
− r(k− 1)

εT2(w
′
i)
− r

εT2(v d
2 ,k)

.

Since εT1(w
′
i) > εT2(w

′
i) = d

2 + 1, εT1(u
′) > εT2(v d

2 ,k) = d
2 , ξce(T1)− ξce(T2) < 0, which

contradicts to the fact that T1 has the maximal CEI. Then, r = 0. We conclude that all edges
of E(T1) \ E(P) are pendant edges attaching at v d

2 ,k, i.e., T1
∼= Tn,d. By direct calculation, we

get the CEI of Tn,d.
For odd d, these vertices in e d+1

2
have the same eccentricity d+1

2 , and the eccentricities

of the vertices in V(P) \ e d+1
2

are more than d+1
2 . Similarly to the above proof, we get that

all edges of E(T1) \ E(P) are pendant edges at some vertices in e d+1
2

, i.e., T1 ∈ Tt
n,d. By

direct calculation, we get the CEI of the hypertrees in Tt
n,d.

Lemma 2. Let T be a connected k-uniform hypertree with diameter d and the diameter path
P = (v1,1, e1, v1,k, · · · , vd−1,k, ed,vd,k). Let ω /∈ V(P) be a vertex with some pendant edges
attached. Let T1 be the hypertree obtained by moving these pendant edges from ω to some vertices in
(e2 \ {v2,k}) ∪ (ed−1 \ {vd−2,k}). Then, ξce(T) ≥ ξce(T1).

Proof. Let e′i (i = 1, 2, · · · , t) be all pendant edges attached at ω. Let ωi,j (j = 1, 2, · · · , k)
be the vertices in e′i and ωi,1 = ω for i = 1, 2, · · · , t. For convenience, we set V0 = (e2 \
{v2,k}) ∪ (ed−1 \ {vd−2,k}). It is evident that these vertices in V0 have the same eccentricity
d− 1. Therefore, it follows that

ξce(T)− ξce(T1) =
(dT(ω)

εT(ω)
−

dT1(ω)

εT1(ω)

)
+
( k

∑
j=2

t

∑
i=1

1
εT(ωi,j)

−
k

∑
j=2

t

∑
i=1

1
εT1(ωi,j)

)
+
(

∑
v∈V0

dT(v)
εT(v)

− ∑
v∈V0

dT1(v)
εT1(v)

)
=

t
εT(ω)

+
(
(k− 1)

t
εT(ωi,j)

− (k− 1)
t

εT1(ωi,j)

)
− t

d− 1
.

Note that εT(ω) = εT1(ω) ≤ d− 1 = εT1(v) = εT(v) for v ∈ V0, εT(ωi,j) ≤ εT1(ωi,j) =
d for i = 1, 2, · · · , t; j = 2, 3 · · · , k. Therefore, ξce(T)− ξce(T1) ≥ 0.

In the rest of this section, we shall deal with the minimal CEI of k-uniform hypertrees
with a given diameter. For nonegative integers p, q, let Td

n (p, q) be the k-uniform hypertree
obtained from the diametral path P = (v1,1, e1, v1,k, · · · , vd−1,k, ed,vd,k) by attaching p and q
pendant edges at some vertices in e2 \ {v2,k} and some vertices in ed−1 \ {vd−2,k}, respec-
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tively. It is evident that |V(P)| = d(k− 1) + 1 and p + q = n−[d(k−1)+1]
k−1 . Let Td

n(p, q) be the
set of hypertrees of the form Td

n (p, q).

Theorem 8. Let T be a connected k-uniform hypertree on n vertices with diameter d ≥ 3 and
t = n−[d(k−1)+1]

k−1 be a nonnegative integer. Then,

ξce(T) ≥


∑

d
2−1
i=1

4
d−i + ∑

d
2−1
i=0

2(k−2)
d−i + t(k−1)+6

d + t
d−1 , if d is even,

∑
d−1

2
i=1

4
d−i +

t(k−1)+2
d + ∑

d−1
2 −1

i=0
2(k−2)

d−i + t
d−1 , if d is odd.

The equality holds if and only if T ∈ Td
n(p, q).

Proof. Let T1 be the hypertree that has the minimal CEI among all hypertrees on n vertices
with diameter d. Let P = (v1,1, e1, v1,k, · · · , vd−1,k, ed,vd,k) be the diametral path of T0, where
ei = {vi,1, vi,2, · · · , vi,k} (i = 1, 2, 3, · · · , d) such that vi,k = vi+1,1 and ei ∩ ei+1 = {vi,k} for
i = 1, 2, 3, · · · , d− 1. We only need to verify that all edges of E(T1) \ E(P) are pendant
edges attaching at some vertices in (ed−1 \ {vd−2,k}) ∪ (e2 \ {v2,k}).

By Lemma 2, T1 has the following form: some pendant edges are attached at some
vertices in (e2 \ {v2,k}) ∪ (ed−1 \ {vd−2,k}) while others are attached at some vertices in
e3 ∪ e4 ∪ · · · ∪ ed−2. Assume that there exists a vertex u ∈ e3 ∪ e4 ∪ · · · ∪ ed−2 with a
pendant edge eu attached in T1. For a vertex w ∈ (e2 \ {v2,k}) ∪ (ed−1 \ {vd−2,k}) and
v′ ∈ (eu \ {u}). It is evident that these vertices in eu \ {u} have the same eccentricity and
|eu \ {u}| = k − 1. Let T2 be the hypertree obtained from T1 by moving eu from u to w.
Next, we compare the CEI of T1 and T2. By the definition of CEI, it follows that

ξce(T2)− ξce(T1) =
dT2(u)
εT2(u)

+
dT2(w)

εT2(w)
+ (k− 1)

dT2(v
′)

εT2(v′)

−
(dT1(u)

εT1(u)
+

dT1(w)

εT1(w)
+ (k− 1)

dT1(v
′)

εT1(v
′)

)
=

(dT2(u)
εT2(u)

−
dT1(u)
εT1(u)

)
+
(dT2(w)

εT2(w)
−

dT1(w)

εT1(w)

)
+
(
(k− 1)

dT2(v
′)

εT2(v′)
− (k− 1)

dT1(v
′)

εT1(v
′)

)
= − 1

εT2(u)
+

1
εT2(w)

+
k− 1

εT2(v′)
− k− 1

εT1(v
′)

.

Note that εT1(u) = εT2(u) < εT1(w) = εT2(w) = d− 1, εT2(v
′) = d > εT1(v

′). Then,
ξce(T2)− ξce(T1) < 0. This contradicts to the fact that T1 has the minimal CEI. Therefore,
we conclude that all edges of E(T1) \ E(P) are pendant edges attaching at some vertices in
(ed−1 \ {vd−2,k}) ∪ (e2 \ {v2,k}), then T1 ∈ Td

n(p, q). By direct calculation, we get the CEI
of Td

n (p, q).

From Theorems 7 and 8, we can deduce the following known theorems, respectively.

Theorem 9 ([22]). Let T be a tree on n vertices with diameter d(d ≥ 2). Then,

ξce(T) ≤


2n−2d−2

d+2 + 2n−2d+4
d + ∑

d
2−1
i=1

4
d−i , if d is even,

2n−2d−2
d+3 + 2

d + 2n−2d+6
d+1 + ∑

d−1
2 −1

i=1
4

d−i , if d is odd.

This equality holds if and only if T ∼= Tn,d for even d, or T ∈ Tt
n,d for odd d.
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Theorem 10 ([22]). Let T be a tree of order n with diameter d(d ≥ 3). Then,

ξce(T) ≥


n−d+5

d + n−d−1
d−1 + ∑

d
2−1
i=1

4
d−i , if d is even,

n−d+1
d + n−d−1

d−1 + ∑
d−1

2
i=1

4
d−i , if d is odd.

.

This equality holds if and only if T ∈ Td
n(p, q).

5. Some Relations between CEI and ECI of Hypergraphs

The first Zagreb index [7,29,30] on simple graphs was widely studied. In this paper,
we generalize the first Zagreb index to hypergraphs. In addition, we establish some
relationships between the connective eccentricity index (CEI) and the eccentric connectivity
index (ECI).

The eccentric connectivity index (ECI) of a hypergraph G is defined as

ξc(G) = ∑
u∈V(G)

εG(u)dG(u).

The first Zagreb index of a hypergraph G is defined as

M1(G) = ∑
u∈V(G)

d2
G(u).

Theorem 11. Let G be a k-uniform hypergraph on n vertices with m edges. Then,

ξce(G) ≤ mk.

This equality holds if and only if G ∼= Kk
n.

Proof. Since εG(u) ≥ 1 for all u ∈ V(G), then

ξce(G) = ∑
u∈V(G)

dG(u)
εG(u)

≤ ∑
u∈V(G)

dG(u) = mk.

This equality holds if and only if εG(u) = 1 for all u ∈ V(G), i.e., G is a k-uniform complete
hypergraph.

Theorem 12. Let G be a hypergraph of order n. Then,

ξce(G) ≤ ξc(G).

This equality holds if and only if G ∼= Kn.

Proof. Evidently, 1
εG (u)

≤ εG(u) for any vertex u ∈ V(G). Then, we have

ξce(G) = ∑
u∈V(G)

dG(u)
εG(u)

≤ ∑
u∈V(G)

dG(u)εG(u) = ξc(G).

This equality holds if and only if εG(u) = 1 for any vertex u ∈ V(G), i.e., G is a complete
hypergraph.

Theorem 13. Let G be a k-uniform hypergraph on n vertices with m edges. Then,

ξce(G) ≥ m2k2

ξc(G) .
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This equality holds if and only if εG(u) is a constant for any vertex u ∈ V(G).

Proof. By the Cauchy inequality, we have

∑
u∈V(G)

dG(u)
εG(u)

∑
u∈V(G)

dG(u)εG(u) ≥
(

∑
u∈V(G)

dG(u)
)2

.

Therefore,

ξce(G) ≥ m2k2

ξc(G) .

This equality holds if and only if εG(u) is equal to a constant for any vertex u ∈ V(G).

We introduce the self-centered hypergraph as follows. For a hypergraph G with
the vertex set V(G) = {u1, u2, · · · , un}, G is called a self-centered hypergraph (or SC
hypergraph for short) if εG(u1) = εG(u2) = · · · = εG(un). Evidently, a hypergraph G is
a SC hypergraph if and only if r(G) = d(G), where r(G) is the radius and d(G) is the
diameter of G.

Lemma 3 ([20]). Let c1, c2, · · · , cn and z1, z2, · · · , zn be two sets of real numbers. Then,

n

∑
j=1

c2
j

n

∑
i=1

z2
i −

( n

∑
j=1

cjzj

)2
= ∑

j<i
(cjzi − cizj)

2. (1)

Theorem 14. Let G be a connected k-uniform hypergraph on n vertices with size m(m ≥ 2),
diameter d and radius r. Then,

ξce(G)ξc(G)−m2k2 ≤ (d− r)2

2rd
(m2k2 −M1(G)). (2)

This equality holds if and only if G is a k-uniform SC hypergraph.

Proof. Set ci =
√

dG(ui)εG(ui) and zi =

√
dG (ui)
εG (ui)

(i = 1, 2, · · · , n). By Lemma 3, we have

n

∑
j=1

dG(uj)εG(uj)
n

∑
i=1

dG(ui)

εG(ui)
−
( n

∑
j=1

dG(uj)
)2

= ∑
j<i

(√
dG(uj)εG(uj)

√
dG(ui)

εG(ui)
−
√

dG(ui)εG(ui)

√
dG(uj)

εG(uj)

)2
.

That is,

ξce(G)ξce(G)−m2k2 = ∑
j<i

dG(uj)dG(ui)
(√ εG(uj)

εG(ui)
−
√

εG(ui)

εG(uj)

)2
.

Note that√
εG(uj)

εG(ui)
−
√

εG(ui)

εG(uj)
≤
√

d
r
−
√

r
d

for any i = 1, 2, · · · , n; j = 1, 2, · · · , n).

So, it follows that

ξce(G)ξc(G)−m2k2 ≤ (d− r)2

rd ∑
j<i

dG(uj)dG(ui).

Since

m2k2 =
( n

∑
j=1

dG(uj)
)2

=
n

∑
j=1

d2
G(uj) + 2 ∑

j<i
dG(uj)dG(ui),
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we have

ξce(G)ξc(G)−m2k2 ≤ (d− r)2

2rd
(m2k2 −M1(G)).

The first part of the proof is done.
If d = r, then εG(uj) = d = r for all uj ∈ V(G). Therefore, ξce(G)ξc(G) = m2k2 and

the equality holds in (2). If d 6= r, then there exist at least two vertices uj and ui that have
the same eccentricity d in G, then for (uj, ui), we have√

εG(uj)

εG(ui)
−
√

εG(ui)

εG(uj)
= 0 <

√
d
r
−
√

r
d

.

Therefore, the inequality in (2) is strict. This completes the proof.

We introduce the R− D hypergraph as follows. A hypergraph G is called an R− D
hypergraph if εG(u) = r or d for any u ∈ V(G), where r is the radius and d is the diameter
of G.

Lemma 4 ([31]). Let a and b be two real constants. If the real numbers cj 6= 0 and zj(j =

1, 2, · · · , n) satisfy a ≤ zj
cj
≤ b, then

ab
n

∑
j=1

c2
j +

n

∑
j=1

z2
j ≤ (a + b)

n

∑
j=1

zjcj. (3)

This equality holds if and only if zj = acj or bcj for any j = 1, 2, · · · , n.

Theorem 15. Let G be a connected k-uniform hypergraph of order n with size m(m ≥ 2), diameter
d and radius r. Then,

drξce(G) + ξc(G) ≤ mk(d + r). (4)

This equality holds if and only if G is a k-uniform R− D hypergraph.

Proof. Set cj =

√
dG (uj)

εG (uj)
and zj =

√
dG(uj)εG(uj) for j = 1, 2, 3, · · · , n. Since r ≤ εG(uj) ≤ d

and εG(uj) =
zj
cj

for j = 1, 2, 3, · · · , n, we get

dr
n

∑
j=1

dG(uj)

εG(uj)
+

n

∑
j=1

dG(uj)εG(uj) ≤ (d + r)
n

∑
j=1

dG(uj).

For one vertex uj, if εG(uj) = r, then

dr
dG(uj)

r
+ dG(uj)r = (d + r)dG(uj).

If εG(uj) = d, then

dr
dG(uj)

d
+ dG(uj)d = (d + r)dG(uj).

Therefore, from Lemma 4, we conclude that the equality holds if and only if εG(uj) = r
or d for any uj ∈ V(G), i.e., G is a k-uniform R− D hypergraph.

6. Conclusions

We have determined the maximal and minimal values of the connective eccentricity
index among all k-uniform hypertrees on n vertices. We have also determined the maximal
and minimal values of the connective eccentricity index among all k-uniform hypertrees
with given diameter further and established some relationships between the connective
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eccentricity index and the eccentric connectivity index of hypergraphs. Different topo-
logical indices can reflect the topological properties of hypergraph models from different
perspectives, and more different topological indices are worth further study. Determining
the extreme values of these topological indices and the relationships between different
topological indices will help us to design the structure of some chemical molecules and
networks more rationally.
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