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Abstract: Computer-aided diagnosis (CAD) systems have been used to assist doctors (radiologists) in
diagnosing many types of diseases, such as thyroid, brain, breast, and lung cancers. Previous studies
have successfully built CAD systems using large, annotated datasets to train their models. The use of
a large volume of training data helps these CAD systems to collect rich information for application
in the diagnosis process. However, a large amount of training data is sometimes unavailable for
training the models, such as for a new or less common disease and diseases that require expensive
image acquisition devices. In such cases, conventional CAD systems are unable to learn their models
efficiently. As a result, diagnostic performance is reduced. In this study, we focus on dealing with
this problem; thus, our classification method can enhance the performance of conventional CAD
systems based on the ensemble model of a support vector machine (SVM), multilayer perceptron
(MLP), and few-shot (FS) learning network when working with small training datasets of brain tumor
images. Through experiments, we confirmed that our proposed method outperforms conventional
deep learning-based CAD systems when working with a small training dataset. In detail, we verified
that the lack of training data led to the reduction of classification performance. In addition, we
enhanced the classification accuracy from 3% to 10% compared to previous studies that used the
SVM-based classification method or fine-tuning of a convolutional neural network (CNN) using two
public datasets.

Keywords: artificial intelligence; computer-aided diagnosis systems; small training data;
classification of brain tumor image; few-shot learning; ensemble model

MSC: 68T07; 68U10

1. Introduction

With the development of imaging technology, many organs of the human body can be
made easily visible on images, which helps to diagnose many kinds of diseases without the
need to perform operations [1–3]. Due to this advantage, imaging techniques are widely
used as high-quality and cheap diagnostic methods compared to other diagnostic methods.
Many imaging techniques have been developed to suit different organ types and diseases.
For example, X-ray imaging was one of the earliest imaging techniques used to capture
images of the lung and bone [2]. Using X-ray images, doctors can assess the lung cancer
condition or determine the position of the broken bone [2]. Ultrasound imaging techniques
are currently used to capture images of the breast or thyroid region to detect and evaluate
the condition of breast and thyroid cancers [3]. Computed tomography (CT) or magnetic
resonance imaging (MRI) are used to capture brain images [1,4]. Using these images,
doctors (radiologists) can diagnose the type and condition of the disease and determine a
more accurate treatment method based on their experiences. However, the disadvantage
of this diagnosis and treatment method is that doctors (radiologists) must perform every
step in the diagnosis process based on their knowledge and experience of a specific type of
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disease. Therefore, diagnostic performance varies and depends heavily on the personal
ability of a doctor (radiologist).

Computer-aided diagnosis (CAD) systems have been widely developed and used
to assist doctors and to enhance the performance of diagnosis and treatment processes.
This technique uses a computer program to process the captured images of organs and
provides suggestions to doctors during the diagnosis and treatment process. The advantage
of this method is that it can be trained using large amounts of data with the help of experts
(experienced doctors). Therefore, performance is not affected by the personal ability of a
doctor. In addition to these advantages, the design and development of CAD systems face
several difficulties, such as the performance of the processing algorithm and data collection.

Brain diseases, such as brain tumors [5], brain strokes [6], and brain disorders [7], are
important problems in human health. Brain tumors are the main cause of cancer-related
death [5], whereas brain stroke also causes death and disability in elderly people with
health problems, such as hypertension, abundant utilization of liquor, diabetes, cholesterol,
and smoking [6]. Therefore, the classification of brain tumor/stroke images are important
for the diagnosis and treatment of brain diseases. Studies on CAD systems for brain tumor
classification problems are mainly based on either handcrafted image feature extraction,
followed by a classification method or a deep learning network using a convolutional
neural network (CNN).

1.1. Handcrafted Feature-Based Methods

In the first category, previous studies mainly used expert design feature extraction
methods to extract information from brain images and classified the input images into
predefined categories using either classification or distance measurement (image retrieval)
methods. In a study by Jun Cheng et al. [8], they used the Fisher vector representation (FV)
method to extract brain image features for several subregions. With the extracted FV, they
can retrieve brain tumor images in a dataset using the similarity distance measurement
between two FVs. Similarly, Huang et al. [9] used a bag-of-words model to successfully
retrieve brain tumor images. Ismael et al. [10] used a 2D discrete wavelet transform and 2D
Gabor filtering technique to extract statistical information from brain images, such as the
mean, variance, skewness, and contrast, to form a feature vector that represents the content
of the brain images. Finally, they used a multilayer perception network (MLP) to classify the
input brain images into several predefined categories of brain images. Gurbina et al. [11]
also used different types of wavelets transform to extract information from images and
a support vector machine (SVM) to identify whether a brain image contains a tumor.
Zaw et al. [12] used the naïve Bayes classification method to classify brain images based on
eight region properties (area, perimeter, eccentricity, equivalent diameter, solidity, convex
area, major axis length, and minor axis length) and three intensity features (maximum,
mean, and minimum) of the extracted brain tumor region. Minz et al. [13] extracted gray
level co-occurrence matrix (GLCM) features from brain images and used the Adaboost
classification algorithm to classify an input brain image into cancerous or non-cancerous
categories. While these methods can classify brain images into predefined categories, they
use expert-design feature extractors (statistical, Fisher vector, wavelet transform, Gabor
filter, and GLCM). As a result, the extracted image features capture only limited aspects of
brain images, which can result in the low performance of classification systems.

1.2. Deep Feature-Based Method

Deep learning-based methods have recently been used to deal with the detection
and classification of brain tumor images. Many deep learning-based systems have been
proposed for brain tumor image segmentation or the classification problem. For example,
Chen et al. [14] proposed a brain tumor segmentation network using a combination of the
convolutional neural network (CNN) and transformer architecture, namely CSU-Net. This
research yielded higher segmentation accuracy than other segmentation methods, such as
the 3DU-Net network.
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To overcome the limitations of handcrafted-based brain tumor classification meth-
ods, deep learning-based classification methods have recently been used. In a study by
Abiwinanda et al. [5], they proposed the use of a convolutional neural network (CNN) to
classify three types of brain tumors, including glioma, meningioma, and pituitary. They
validated the classification performance using CNNs at various depths. As a result, they
showed that a CNN that consists of two convolution layers and one dense (fully connected
layer) layer outperforms other network architectures in their experiments. To reduce the
number of network parameters of a CNN, Isunuri et al. [15] proposed the use of separable
convolution in CNNs for brain tumor classification problems. In several other studies,
Swati et al. [16], Kumar et al. [17], and Deepak et al. [18] used a fine-tuning method to
train a CNN for brain tumor image classification problems. By using the pretrained CNN
models (such as AlexNet, VGG16, VGG19, residual network, and GoogleNet network
architectures that were successfully trained on the ImageNet dataset for a general image
classification problem), they successfully trained the classification model using a small
amount of training data that is difficult to perform compared to training the network from
scratch. Furthermore, Alanazi et al. [19] proposed a CNN-based classification method
based on a fine-tuning procedure using two brain tumor datasets. In this approach, the
authors first trained a CNN on the first dataset. The trained CNN model was then fine-
tuned using the second dataset to associate the knowledge of the two datasets. They
showed that the fine-tuning approach is efficient for the development of brain tumor image
classification systems. Bodapati et al. [20] used two pretrained CNNs (Inception ResNet
and Xception) to extract deep image features. Using two different CNN architectures,
the authors showed that they can extract two different sets of feature representations.
Finally, they proposed a fusion method based on a multi-layer perceptron (MLP) network
to combine the extracted image features for the classification problem. To extract image
features at different image scales, Togacar et al. [21] proposed the use of image features
at various stages of a CNN. The shallow convolution layers help to extract low-abstract
image features, whereas the deep convolution layers help to extract highly abstract image
features. By combining low- and high-abstract image features, they showed that their
proposed method is efficient for brain tumor image classification. In a similar approach,
Diaz-Pernas et al. [22] proposed a multiscale CNN that processes input images using
several subnetworks with different-sized convolution kernels to extract multiscale image
features. They confirmed that multiscale features are efficient for brain tumor classification.
Kang et al. [23] recently proposed an ensemble approach for the brain tumor classification
problem. For this purpose, they first used three different pretrained CNN models, namely,
DenseNet, InceptionNet, and residual-based networks, to extract image features. With
the extracted image features, they applied several classification methods, such as support
vector machines (SVMs), to the combined concatenated features to classify input images
into several predefined categories of brain tumor images. By using pretrained CNNs that
were successfully trained on a large dataset (ImageNet dataset), Kang’s method does not
need to train the CNN again while utilizing the power of deep features. A similar study
conducted by Deepak et al. [24] confirmed the efficiency of deep features and SVM-based
classifiers in brain tumor classification systems. Kesav et al. [25] proposed a combination
of detection and classification networks for brain tumor detection and the classification
problem. They first constructed a two-channel CNN network to efficiently classify brain
images into either tumor or non-tumor images. After that, a region-based CNN (RCNN)
network is used to identify the tumor region. Most recently, Chatterjee et al. [26] proposed
spatio-spatial models for classifying the 3D scan of brain images into different types of
brain tumors by learning information in both spatial and temporal spaces.

While these deep learning-based studies have shown that they successfully classify
brain tumor images into predefined categories, they require a large amount of training data
to train the classification network, which is normally difficult to obtain for medical image
processing. Therefore, their performance will be significantly reduced in the case of less
data being available for training. In addition, the classification performance can be affected
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by the architecture of the CNN. Table 1 summarizes previous studies on the brain tumor
image classification problem in comparison to our proposed method.

Table 1. Summary of previous studies on brain tumor image classification in comparison to our
proposed method.

Category Method Strength Weakness

Handcrafted feature-
based method

Extract image features by handcrafted
methods [8–13]

Image features are extracted by expert
knowledge that are suitable for the
problem

Performance is limited as the image
features are not optimal.

Deep feature-based method

- CNN-based network [5]
- CNN-based with separable

convolution [15]
- Fine-tuned deep CNN

networks [16–22]
- SVM-based classification based

on deep feature extraction from
pretrained CNNs [23,24]

- Deep spatiospatial models for
3D volumetric MRI image
classification [26]

High performance can be obtained
when training with large amount of
training data

- Requires strong hardware
equipment to perform training
procedure.

- Takes time to train network
with large amount of data

Proposed Method: Combines
classification results of SVM-, MLP-,
and FS-based networks

- Uses multiple CNN
architectures for feature
extraction

- Ensemble of SVM, MLP, and FS
networks

- Requires fewer images for
training network

- Complex architecture
- Takes longer time to process

than previous methods

The rest of our paper is organized as follows. In Section 2, we highlight the main
contribution of our work. In Section 3, we present our proposed method in detail. Using
the proposed method, we performed experiments with two public datasets to evaluate
the performance of brain tumor image classification using a small training dataset and the
experimental results are presented in Section 4. In Section 5, we discuss our experimental
results presented in Section 4. Finally, the conclusion of our work is presented in Section 6.

2. Contributions of Our Study

In this study, we focused on designing a brain tumor image classification system when
small amounts of data are available for training. To overcome the limitations of previous
studies, as well as to deal with small training dataset situations, we propose an ensemble
deep learning-based classification network for brain tumor image classification problems.
Our proposed method is novel in the following four ways compared with previous studies:

- Our proposed method is designed to address the problem of when a large number of
brain tumor images is not available for training models.

- We designed a deep learning-based method to measure the distance between two
images such that we can find the most similar image to the input image. We called
this network a few-shot (FS) learning network because it can be trained using a small
annotated dataset and uses few-shot learning technology to measure the similarity
between the images.

- We combined the classification outputs of SVM, MLP, and FS methods as ensem-
ble models using three fusion rules, including SVM, weighted-SUM, and weighted-
PRODUCT, to enhance the performance of the individual method.

- We constructed our algorithm with a publicly available, pretrained model for fair
comparison with our work [27].

3. Proposed Method
3.1. Datasets

In this study, we proposed a brain image classification system using the MRI imaging
model. For this purpose, we used two public MRI datasets: BT-Small and BT-Large, to
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evaluate the performance of our proposed method. The BT-Small dataset was downloaded
from the Kaggle website [28], which contains 253 brain images, out of which 155 images
were marked with tumors, and the remaining 98 images were marked without tumors (non-
tumors). The second dataset is a public dataset that can be downloaded from its official
website [29] and has been used in previous studies [8,30]. This dataset contains a total of
3064 T1-weighted images with three different types of brain tumors: Meningioma, glioma,
and pituitary. We named these datasets as the BT-Small and BT-Large for convenience.
Images in the BT-Small dataset are stored in jpeg file format with varied image resolution,
whereas the images in the BT-Large dataset are stored in the Matlab file format with the
fixed size of 512-by-512 pixels. As we are dealing with the training dataset that is relatively
small, we performed several data augmentation methods, such as random cropping and
resizing and flipping, on the input images in the training dataset. In detail, the flipping
method yields an additional three flipped images (left-right, and up-down direction) for
each input image; whereas we randomly cropped 90% of original images to make an
augmented image using the cropping and resizing method. In total, we made about
23 augmented images as we repeated the cropping and resizing procedure 20 times for
each image in the training dataset.

3.2. Overview of the Proposed Method

In Figure 1, we depict the flow chart of our proposed method for a small training-data-
based brain tumor classification system. As shown in this figure, the proposed method
consists of three classification heads: Support vector machines (SVMs), a MLP, and a FS
network. As we are working with small training datasets (the number of training images
is from 5 to 10), it is difficult to train deep CNNs or FS networks from scratch or by
fine-tuning. Therefore, for the inputs to all classification heads, we used pretrained CNN
models that were successfully trained on the ImageNet dataset to extract deep features. As
the pretrained CNN models were trained on a large RGB color image dataset (ImageNet
dataset), they are efficient to extract texture information from images such as blobs, line,
and other complex texture features. While the MRI brain images are different from RGB
color images in the ImageNet dataset, they also contain texture features such as blobs,
lines, etc. Therefore, we designed our classification method in which the pretrained CNN
networks are used only for image feature extraction. While it is not the best way to extract
efficient image features from MRI images, it is acceptable as it was successfully used
in previous study by Kang et al. [23] for the brain tumor image classification problem.
This method helps our proposed method extract sufficient features from the input image
without a training procedure. Descriptions of the SVM, MLP, and FS methods are given in
Sections 3.4–3.6.
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As each classification method has advantages and disadvantages in the classification
task, we further combined the classification results of the SVM, MLP, and FS methods using
score-level fusion to enhance the classification accuracy of each method. In our proposed
method, we proposed and evaluated three combination methods: SVM, weighted-SUM,
and weighted-PRODUCT rules. Detailed descriptions of these fusion methods are provided
in Section 3.7.

3.3. Preprocessing of Input Images

A captured brain image typically contains two parts: A brain and a background region,
as shown in Figure 2a. As the background region contains no information for the brain
tumor image classification problem, it should be removed before other processing steps.
This step is important because it not only helps to remove non-information regions, but
also helps to localize the brain region. With the localized brain region, we then performed
a size normalization step to create a uniform brain region for our proposed method.
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According to our observations, the background region of the brain tumor images,
normally composed of darker pixels than that of the brain region (foreground region) that
contains pixels in brighter. Based on this observation, we developed a simple but efficient
method for brain region localization, as shown in the algorithm presented in Algorithm 1.
An example of the localization results of a brain tumor image is shown in Figure 2 for
demonstration purposes. As shown in this figure, we can efficiently localize the brain
region of an input-captured brain image. In addition, we created a uniform brain image
by scaling the detected brain regions to a fixed size of 256 × 256 pixels. This final image is
then inputted to our proposed method for feature extraction and classification, as shown in
Figure 1.

In Algorithm 1, we used the size-threshold value to remove small-sized and dark objects
from brain images. The optimal threshold was experimentally selected from training data.

We used two public MRI datasets in our experiments, i.e., BT-Small and BT-Large,
as presented in Section 3.1. In these datasets, the brain images were captured in the axial
plane. While there could exist a small misalignment among images, the orientation of the
brain is not strongly varied. Therefore, our brain tumor region detection algorithm does not
detect the brain orientation. As shown in Figure 2a, the background regions of brain MRI
images mostly contain darker pixels compared to those in the brain regions. Based on this
characteristic, we first classified the brain MRI image into two classes of the background
and brain regions using a threshold value, as shown in Algorithm 1. This threshold can
be calculated using some adaptive thresholding methods, such as the Otsu’s method or
experimentally decided based on characteristics of images. In our study, we used the
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Otsu’s method to adaptively detect the background region. As shown in Algorithm 1,
we accumulated the gray profile in the horizontal and vertical directions to find the most
concentrated region where the brain appears. Therefore, although there could exist some
individual white pixels due to an error of the segmentation method, our algorithm can
easily be removed during brain region estimation.

Algorithm 1: Preprocessing of brain tumor image

Input: A captured brain tumor image (I) with size H ×W
Steps:

1 Image binarization to completely force the background pixels to zeros using Equation (1).

MI = I > threshold (1)

2 Image masking by multiplying the original image with the binarized image using Equation (2).

I = I×MI (2)

3 Accumulate the gray density levels (gray profile) along horizontal and vertical directions,
i.e., PH and PV using Equations (3) and (4).

PHj = {
1

W ∑W
i=1 Iji} f or j = 0, . . . , H (3)

PVj = {
1
H ∑H

i=1 Iij} f or j = 0, . . . , W (4)

4 Find the left and right boundaries of each direction on gray profiles (PH and PV) by finding the
first and last positions which have gray density levels greater than a size-threshold value.

5 Normalize the detected brain region image to a fixed size of 256 × 256 pixels.

Output: Normalized 256 × 256-pixel image

Of the two public datasets used in our experiments, the BT-small dataset contains
various sizes of MRI images, whereas the BT-large dataset contains a fixed size of 512-
by-512 pixels. As shown in Figure 2a, the brain region is normally much smaller than
the original size of the brain image. In addition, our proposed method uses pretrained
CNN models (Residual, Inception, and Dense network) for image feature extraction. These
models are initially designed to accept the input image with a size of roughly 256-by-
256 pixels, and the use of a larger size image can cause inefficiency in the processing speed.
Due to these reasons, we resized the brain region to the fixed size of 256-by-256 pixels in
our experiments.

3.4. Classification Based on MLP Network

Inspired by the success of the CNN for classification problems, our study also uses
a CNN for brain image classification. The methodology of a CNN-based classification
system is depicted in Figure 3 [31–37]. This technique uses a convolution operation with a
trainable convolution kernel to extract efficient image features and a conventional multi-
layer perceptron (MLP) network for the classification problem.

However, as we are dealing with a small training dataset, it is insufficient for training
a CNN-based classification network from scratch because the CNN requires a large amount
of training data to learn its parameters. Instead, we use CNN networks such as image
feature extractors to extract efficient image features. This method has been successfully
used in previous studies on image-based classification systems [23]. Based on the results
obtained by Kang et al. [23], we used a multiple network architecture for image feature ex-
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traction in our study, including: The residual network [35] (ResNeXt50 network), inception
network [33] (Inception V3 network), and dense [34] (DenseNet169 network) network.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 30 
 

 

models (Residual, Inception, and Dense network) for image feature extraction. These 
models are initially designed to accept the input image with a size of roughly 256-by-256 
pixels, and the use of a larger size image can cause inefficiency in the processing speed. 
Due to these reasons, we resized the brain region to the fixed size of 256-by-256 pixels in 
our experiments. 

3.4. Classification Based on MLP Network 
Inspired by the success of the CNN for classification problems, our study also uses a 

CNN for brain image classification. The methodology of a CNN-based classification sys-
tem is depicted in Figure 3 [31–37]. This technique uses a convolution operation with a 
trainable convolution kernel to extract efficient image features and a conventional multi-
layer perceptron (MLP) network for the classification problem. 

 
Figure 3. Methodology of the CNN-based method for the classification problem. 

However, as we are dealing with a small training dataset, it is insufficient for training 
a CNN-based classification network from scratch because the CNN requires a large 
amount of training data to learn its parameters. Instead, we use CNN networks such as 
image feature extractors to extract efficient image features. This method has been success-
fully used in previous studies on image-based classification systems [23]. Based on the 
results obtained by Kang et al. [23], we used a multiple network architecture for image 
feature extraction in our study, including: The residual network [35] (ResNeXt50 net-
work), inception network [33] (Inception V3 network), and dense [34] (DenseNet169 net-
work) network. 

Based on the three popular network architectures, we designed our classification net-
work using the extracted image features, as shown in Figure 4. As shown in this figure, 
we use a multi-layer perceptron network (MLP) to learn a classifier for brain tumor image 
classification problems using the image features extracted by three pretrained CNN mod-
els, including ResNext50, Inception, and Dense networks. While it takes longer for pro-
cessing input images using multiple networks than using a single network, the use of 
three pretrained networks for image feature extraction helps to extract richer information 
than the use of a single network that can help to increase the classification performance of 
the overall system. An MLP network with a small number of neurons and layers was de-
signed. Therefore, we do not need to learn many network parameters as we must when 
training a conventional CNN from scratch. In addition, we can utilize the power of the 
CNN by using pretrained networks as image feature extractors. 

Figure 3. Methodology of the CNN-based method for the classification problem.

Based on the three popular network architectures, we designed our classification
network using the extracted image features, as shown in Figure 4. As shown in this
figure, we use a multi-layer perceptron network (MLP) to learn a classifier for brain tumor
image classification problems using the image features extracted by three pretrained CNN
models, including ResNext50, Inception, and Dense networks. While it takes longer for
processing input images using multiple networks than using a single network, the use of
three pretrained networks for image feature extraction helps to extract richer information
than the use of a single network that can help to increase the classification performance
of the overall system. An MLP network with a small number of neurons and layers was
designed. Therefore, we do not need to learn many network parameters as we must when
training a conventional CNN from scratch. In addition, we can utilize the power of the
CNN by using pretrained networks as image feature extractors.
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The detailed description of the MLP-based network used in our study is given in
Table 2. As shown in this table, we used three pretrained CNN models, including
ResNeXt50, InceptionV3, and DenseNet169 network for image feature extraction. The
image features are obtained at the output of the last convolution layer of each CNN model
after a global average pooling operator. As a result, we obtained three feature vectors in a
4096-, 4096-, and 1664-dimensional space for the cases of using ResNeXt50, InceptionV3,
and DenseNet169 network, respectively. These feature vectors are then concatenated to
form a 5760-dimensional feature vector. Finally, a three-layer MLP network with 512, 1024,
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and C neurons was used to classify the input images into predefined categories using the
extracted image features, as shown in Table 2. In this table, C indicates the number of
predefined categories of brain images. In our experiments with the BT-Small dataset, C
takes the value of two; whereas C takes the value of three in our experiments with the
BT-Large dataset. As we used pretrained CNN models for image feature extraction, we
froze the convolution layers of these CNN models in our experiments. As a result, the
number of trainable parameters of these models are zero, as shown in Table 2.

Table 2. Detailed description of the MLP-based classification network in our study (C means the
number of classes).

Layer Output Dimension #Trainable
Parameters

ResNeXt50 1 × 4096 0

InceptionV3 1 × 4096 0

DenseNet269 1 × 1664 0

Concatenation 1 × 5760 0

MLP Layer

Dense Layer 1 1 × 512 2,949,632

Dense Layer 2 1 × 1024 525,312

Dense Layer 3 1 × C C × 1024 + 2

3.5. Classification Based on SVMs

The support vector machine (SVM) is a well-known and efficient method for classi-
fication and regression problems that are based on the selection of support vectors [38].
Suppose we have a training dataset of n samples of two classes, and each training sample
is represented as a feature vector in an m-dimensional space. Then, the SVM method learns
to select a subset of k feature vectors (called support vectors) to construct a hyperplane
with the largest margin by which n samples are efficiently separated, as shown in Figure 5.
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For a two-class classification problem, the classifier is selected by learning the parame-
ters that satisfy Equation (5).

f (x) = sign(∑k
i=1 aiyiK(x, xi) + b) (5)
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where xi and yi denote the selected support vectors and their corresponding class labels, re-
spectively; ai and b denote the parameters of the classifier; and K() is a kernel function that is
used to transform the input feature vector into a higher dimensional space in which the data
samples can be linearly separable. The kernel function is normally useful when the original
training data samples are not completely separable in the original data space but are more
separated in a higher dimensional space. There are four popular kernel functions that have
been widely used in applications: Linear, radial basis function (RBF), polynomial (Poly), and
sigmoid functions, as shown in Equations (6)–(9). In our experiments, we evaluated classifi-
cation performance using all four kernels. The detailed experimental results are presented
in Section 4. In the case of a multiclass classification problem, the problem is simplified to a
two-class classification problem using either a one-versus-one or one-versus-rest refinement
strategy. In Equations (6)–(9), γ, r, and deg are the transformation parameters and can
be selected using a grid-search algorithm to find the best parameters for a given dataset.

Linear Kernel K
(

xi, xj

)
= xT

i xj (6)

RBF Kernel K
(

xi, xj

)
= e−γ‖xi−xj‖2

(7)

Polynomial Kernel K
(

xi, xj

)
=

(
γxT

i xj + r
)deg (8)

Sigmoid Kernel K
(

xi, xj

)
= tan h

(
γxT

i xj + r
)

(9)

We used three pretrained CNNs, including ResNext50 [35], Inception [33], and
DenseNet [34], to extract the image features of the input images. With these image fea-
tures, we performed SVM classification on the combined features using four SVM kernels
mentioned in Equations (6)–(9). As shown in these equations, there are trainable param-
eters that need to be learnt to obtain SVM classifiers. To obtain the optimal parameters,
we used a grid search method provided in the scikit-learn library [39] to find the best
possible values.

3.6. Classification Based on FS Network
3.6.1. Few-Shot Learning Technique

The few-shot learning technique is an efficient method that aims to recognize samples
from very few labeled data. By definition, the few-shot learning technique is a relation
network (RN) that consists of two components: An embedding module that is responsible
for image feature representation and a relation module that is responsible for finding the
relation (similarity) between two samples [40]. Suppose that we have a dataset containing
images in N classes. Then, the embedding module (fe) is used to extract the feature map fe
(xi) of the images in the dataset, as shown in Equation (10).

Ei = fe(xi) (10)

The feature maps are then manipulated by an operator C to further transform them
into a feature space in which a better representation of the images can be obtained. Finally,
the relation between two inputs (xi and xj) is measured using a relation function fr that
eventually outputs a relation score (rsc) between 0 and 1, where a score of 0 indicates that
xi and xj are from different categories and a score of 1 indicates that the two samples are
from the same category, as shown in Equation (11) [40].

rsc = fr
(
C
(

fe(xi), fe
(
xj
)))

(11)

Conventionally, a few-shot learning method works on three datasets: training, support,
and testing. The training set is a large set that has a disjoint label space from the support
and testing sets. The support set is a small set that shares the same label space as the testing
set. We denote a few-shot learning method as n-way-k-shot, where n indicates the number
of classes and k indicates the number of samples in each class of the support set.
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3.6.2. Proposed Few-Shot Learning-Based Network for Brain Tumor Image Classification

We designed a third classifier using the few-shot learning approach [40–42] as a
similarity measurement network, as mentioned in Figure 1, and depicted in Figure 6. In
this classifier, we designed a network that can distinguish the content of two images, that
is, if the two images have a similar content, our network produces a high output value
(close to 1); otherwise, our network produces a low output value (close to 0). We called this
network a FS network in this study.
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As shown in Figure 6, our proposed network accepts two inputs (Images A and
B in Figure 6). With these two images, we first used a pretrained CNN to extract the
image feature vectors. The use of a pretrained CNN not only helps to extract efficient
image features, but also removes the requirement for training an efficient network for
image feature extraction. We further transformed the extracted image features into another
feature space using an MLP network (Feature Transformation in Figure 6). The role of
this MLP network is to convert image feature vectors from the original (extracted) space
to another feature space in which the feature vectors of similar images are close together,
while separating the feature vectors of two different images. The detail structure of MLP
network is given in Table 3.

Table 3. Designing of the MLP-based feature transformation for the FS network.

Layer #Neurons Output Dimension #Parameters

Input 0 1 × 5760 0

Dense Layer 1 512 1 × 512 2,949,632

Dense Layer 2 1024 1 × 1024 525,312

Dense Layer 3 1 1 × 1 1025

Total 3,475,969

To achieve this goal, we designed a distance measurement and loss function based
on the cosine distance and binary cross-entropy. While we can use other types of distance
measurements, such as Euclidian or Manhattan distance, the cosine distance has an ideal
property in that it measures the content-based similarity between two images, instead
of detailed position-based similarity as performed by Euclidian or Manhattan distance
measurements. In addition, the cosine distance produces a distance measurement in the
range of zero–one, in which an output of one indicates that the two images are completely
similar, and an output of zero indicates two different images. The cosine distance is given
by Equation (12). In this equation, x and y indicate the feature vectors extracted from two
input images (Images A and B in Figure 6), and θ represents the angle between these two
feature vectors (x and y).

similarity = cosin(θ) =
x ◦ y
|x||y| (12)

Finally, we used the binary cross-entropy function to evaluate the loss of training and
update the weights of the FS network. As the ground-truth label of every image pair is
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0 or 1, which indicates that the two images are different or similar, respectively, and the
output of the network is also a cosine distance in the range of 0 to 1, we can easily calculate
the loss between the ground-truth label and the output of the network using the binary
cross-entropy function, as shown in Equation (13), where N is the batch size and yi and oi
are the ground-truth label and output of the FS network, respectively.

Loss = − 1
N ∑N

i=1 yi log(oi) + (1 – yi) log(1 – oi) (13)

To classify an input image into predefined classes, we measure the cosine distance
(the output of FS network mentioned in Figure 6) with all images in the support set. In an
ideal case, if the input image is identical to one of the images in the support set, then the
similarity score (cosine distance) is one. However, the new input image can never be same
as images in support set. As a result, the output of FS network is a score value ranging
from zero to one. By measuring the distance from the input image to all the support images,
we classify the input image into predefined categories according to the best match (largest
cosine distance) image in the support set.

3.7. Fusions of SVM, MLP, and FS

The last step in our proposed method is to combine the classification results of SVMs,
MLP, and FS networks. For this purpose, we propose the use of score-level fusion methods
based on SVMs, weighted-SUM, and weighted-PRODUCT rules. This is a popular fusion
method and has been used by previous studies [43,44]. The output of each classifier (SVM,
MLP, FS) is a tuple of non-binary numbers ranging from zero to one that indicates the
probability of an input image sample belonging to a class. For example, we obtained the
output probabilities for two classes as (0.1, 0.9) for an input image using the SVM classifier.
This output result indicates that the input image has a probability of 10% belonging to the
non-tumor class (the first class), whereas it has a higher probability of 90% belonging to
the tumor class (the second class). For a classification system that uses a single classifier,
the final decision is made by selecting the class with the highest probability, i.e., the input
image belongs to the tumor class. For a classification system using multiple classifiers, we
compared the SVM, weighted SUM and weighted PRODUCT rules to combine the output
probabilities of individual classifiers.

For the first combination rule, we propose the use of the SVM-based method as the
second-order classifier to combine the outputs of the first three classifiers: SVM, MLP,
and FS. For this purpose, all outputs of the first three classifiers (SVM, MLP, and FS) are
concatenated to form a new feature vector for training the second SVM layer.

For the second and third combination rules, we evaluated the classification perfor-
mance by taking weights for each output of the first three classifiers (SVM, MLP, and
FS) using the weighted-SUM (wSUM) and weighted-PRODUCT (wPROD), as shown in
Equations (14) and (15), respectively. In these equations, αi indicates the weight value of
the ith classifier (SVM, MLP, or FS) and Si,j indicates the probability of the input image
belonging to the class jth using the ith classifier; and the best weight values are determined
experimentally to obtain the highest classification performance. Finally, the classification
is performed by selecting the class that has the highest probability in a similar way as the
classification using a single classifier. The optimal weight value of αi was experimentally
determined with the training and validation data.

wSUM = ∑N
i=1 αiSi,j (14)

wPROD = ∏N
i=1 Sαi

i,j (15)

For example, in the case of two classes, we obtained the output probabilities (Si,j of
Equation (14)) of two classes (j = 1 and 2 of Equation (14)) by SVM (I = 1 of Equation (14)),
MLP (I = 2 of Equation (14)), and FS classifiers (I = 3 of Equation (14)) as (0.1, 0.9), (0.2, 0.8),
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and (0.3, 0.7), respectively. Using the weighted SUM rule with the weights (αi of Equation
(14)) for the SVM, MLP, and FS classifiers of 0.4, 0.5, 0.1, we obtained the final classification
result as a tuple of (0.17 (=0.1 × 0.4 + 0.2 × 0.5 + 0.3 × 0.1), 0.83 (=0.9 × 0.4 + 0.8 × 0.5 +
0.7 × 0.1)). As a result, the final classification is made, so that the input image belongs to
the second class (j = 2 of Equation (14)) with a probability of 0.83 (83%). In our experiments,
we measured the classification accuracy of all three combination rules using two public
datasets and evaluated their performance in the brain tumor classification problem. The
experimental results are presented in Section 4.

4. Experiments
4.1. Experimental Setups

We performed a five-fold cross-validation procedure to evaluate the performance of
our proposed method using the BT-Small dataset. For this purpose, we randomly divided
the entire BT-Small dataset into five equal parts and assigned them to the training, valida-
tion, and testing sets. However, in contrast to the conventional five-fold cross-validation
procedure that uses most of the data for training and less data for testing, we used data
from one part for training and validation and data from the remaining four parts for
the testing dataset, as our study focuses on a small training dataset for the brain tumor
image classification system. Among the images in one part that were assigned as the
training and validation sets, we randomly selected an equal small number of images in
each class for training, and the other images were used for validation. Based on this di-
vision, we used the training set to train the classifiers, which were then validated using
the validation set. As the FS network mentioned in Section 3.6 requires a support set to
evaluate the similarity function between a test image and the images in the support set,
we randomly selected a subset of the testing set to form a support set for the FS network.
The remaining data of the testing set were assigned to the final test set, which was used
to measure the performance of the classifiers on real-world data. The experiments were
repeated five times by iterating the training, validation, support and testing set division.
Finally, the overall performance of the classification system was measured by taking the
average performance of all five experiments. Table 4 summarizes the characteristics of
the BT-Small dataset with detailed information on the training, validation, and testing
sets. As can be observed from this table, the test dataset is much larger than the train-
ing and validation sets. In Figure 7, we show some examples of brain images from the
BT-Small dataset.

Table 4. Summary of images in the BT-Small dataset.

Tumor Images Non-Tumor Images Total

155 98 253

Train Validation Test Train Validation Test Train Validation Test

Tiny-DB

5 26 114 5 15 68 10 41 182

Small-DB

10 21 114 10 10 68 20 31 182
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Figure 7. Example images in BT-Small: (a) Non-tumor brain images and (b) tumor brain images.

For the BT-Large dataset, the authors already divided this dataset into training (ap-
proximately 80% of the entire dataset) and testing parts (approximately 20% of the entire
dataset). Similar to our experiments with the BT-Small dataset, we used a small part of the
testing set for training and validation purposes, whereas the remaining part of the dataset
was used for testing purposes, as we were dealing with the small training set problem. We
repeated our experiments five times, and the final classification performance was measured
by taking the average value of the performances obtained in each experiment. Table 5
provides a detailed description of the BT-Large dataset. Figure 8 shows some example
images from this dataset.

Table 5. Summary of images in the BT-Large dataset.

Meningioma Glioma Pituitary Total

708 1426 930 3064

Train Validation Test Train Validation Test Train Validation Test Train Validation Test

Tiny-DB

5 5 688 5 5 1406 5 5 910 15 15 3004

Small-DB

10 10 678 10 10 1396 10 10 900 30 30 2974
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To investigate the effects of the training data size, we performed two experiments using
two training datasets with different numbers of training samples per class. In particular,
we randomly selected images and formed two training datasets, namely a Tiny-DB that
contains five images for each class and a Small-DB that contains ten images for each class,
in our experiments with BT-Small and BT-Large datasets, as shown in detail in Tables 4
and 5. In addition, we randomly selected 10 images (10-shot) from each class to form a
support set for classification using the FS network.

4.2. Performance Measurement Metrics

To measure the performance of the classification system, we used the classification
accuracy metric suggested in previous studies [23]. Suppose that a classification system
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classifies an input image into N classes. Then, the classification accuracy is measured by
Equation (16) as follows:

Accuracy =
∑N

i=1 ∑M
j TCij

∑N
i=1 ∑M

j=1 TCij + ∑N
i=1 ∑M

j=1 FCij
(16)

where TCij indicates the true classification of the jth images of the ith class (the image of
the ith class was correctly classified as an image of the ith class), whereas FCij indicates
the false classification of the jth images of the ith class (the image of the ith class was
incorrectly classified as an image of another class). The values of N and M indicate the
number of classes and images in each class, respectively. Consequently, classification
accuracy indicates how well a classifier performs on a classification problem, and a high
classification accuracy indicates better classification performance.

4.3. Training of MLP and FS Network

In our proposed method, we use three classifiers, including SVM, MLP, and FS net-
work. For the case of SVM, the image features were first extracted using pretrained CNN
networks (Residual, Inception, and Dense network). With the extracted image features,
we trained SVM model for classification using the conventional SVM method without the
backpropagation procedure. For the cases of MLP and FS networks, we connected the
outputs of the last convolution layers of pretrained CNN networks to the MLP layers to
form a CNN-based or FS-based network and the weights of the MLP layers are trained
using the backpropagation method.

In our first experiment, we trained the MLP and FS network using the training datasets
of the BT-Small and BT-Large datasets, as detailed in Section 4.1. In this experiment, we
used the TensorFlow library [45] to implement and train the network. Table 6 lists the
detailed parameters of the training procedures. As shown in this table, we used the Adam
optimizer [46] to update the weights of these networks with a learning rate of 0.0001, and
the network was trained for 20 epochs with a batch size of 32. Figures 9 and 10 show the
results of our training procedure for the MLP and FS network, respectively. As shown in
the Figures 9 and 10, we see that the loss and accuracy of the validation set do not approach
to zero and 1, respectively, as those produced by the training set. As shown in these figures,
the losses of the validation set are higher than those of the training set for the both cases of
MLP and FS network. It is a common phenomenon as these networks are optimized for the
training set, not validation set. It indicates some level of overfitting that caused by the fact
that we are using very small data for training. However, the classification accuracies of the
validation set are still high (more than 80% for the case of MLP as shown in Figure 9, and
more than 76% for the case of FS as shown in Figure 10). Therefore, we can conclude that
the MLP and FS network are not too overfitted with the training data and the training of
the MLP and FS network is still successful.

Table 6. Parameters for the training procedure of the MLP and FS networks in our study.

Optimizer Learning Rate Epochs Batch Size

Adam 0.0001 20 32
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4.4. Evaluation of Classification Performance Using our Proposed Method in Comparison to
Previous Studies

Based on the results of the training procedure, we further measured the classification
performance by using the support and testing sets of the BT-Small and BT-Large datasets.

4.4.1. Performance Evaluation on BT-Small Dataset

Table 7 shows the performance measurement of various classification methods, includ-
ing the SVM-based and MLP-based methods, on the BT-Small dataset with two different
sizes of the training dataset, that is, Tiny-DB (10 images in total, five images for each class)
and Small-DB (20 images in total, 10 images for each class). As shown in this table, we
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obtained the best classification accuracy of 75.903% using the MLP-based method with
Tiny-DB. This classification value is higher than that obtained by the SVM-based method
with four kernels: linear, radial basis function (RBF), polynomial, and sigmoid. When using
Small-DB, the best classification accuracy using the MLP-based method was enhanced to
80.951%, whereas the classification accuracies of the SVM-based method also increased
compared to those obtained when training with Tiny-DB, as shown in the last row of
Table 7. These experimental results demonstrate that the SVM- and MLP-based methods
are sufficient for brain tumor image classification using a small training dataset with the
BT-Small dataset.

Table 7. Classification performance of SVM and MLP using the BT-Small dataset according to the
size of the training data (unit: %).

Training
Dataset

Single Classification Method

SVM-Based Method
MLP

Linear RBF Poly Sigmoid

Tiny-DB 72.626 69.437 71.857 74.050 75.903

Small-DB 80.178 76.344 76.890 74.025 80.951

Table 8 presents our experimental results for the cases using only the FS network and
our proposed method, according to the size of the training set and number of shots. The
upper part of this table presents the experimental results of our experiment with Tiny-DB
with four shot values (k = 1, 3, 5, and 10). Specifically, we obtained the best classification
accuracy for the FS network of 77.755%, which is higher than those obtained using the SVM-
and MLP-based methods presented in Table 7. Using our proposed method, we obtained
the best classification accuracy of 78.963% using the weighted SUM fusion rule.

Table 8. Classification performance of FS and the proposed method using BT-Small dataset according
to the size of the training data and size of the support set (unit: %).

Training
Dataset

FS
Proposed Method

SVM-Based Method
wSUM wPROD

Shot Accuracy Linear RBF Poly Sigmoid

Tiny-DB

1 76.883 79.294 79.625 78.201 78.745 78.310 78.201

3 76.882 76.328 75.667 76.443 78.524 77.653 77.762

5 77.647 70.832 76.436 76.553 78.745 77.871 77.980

10 77.755 77.756 75.228 77.103 78.305 78.963 78.963

Small-DB

1 82.039 82.148 81.273 80.060 81.491 83.033 83.033

3 82.260 81.928 81.383 79.840 82.371 82.923 82.923

5 82.260 82.037 81.383 79.949 82.371 82.923 82.923

10 82.370 81.707 81.163 78.850 81.822 83.253 83.143

Similar results were obtained in our experiments with Small-DB, as shown in the
lower part of Table 8. We obtained the best classification accuracy of 82.370% when using
the FS network with a 10-shot setup. This result is also higher than those obtained using
the SVM- and MLP-based methods, as presented in the last row of Table 7. Using the
proposed method, we enhanced the classification results to 83.253% using the weighted
SUM fusion rule. From these results, we confirmed that our proposed method is superior to
all individual classification methods (SVM-, MLP-, and FS-based methods) when working
with the BT-Small dataset.
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4.4.2. Performance Evaluation on BT-Large Dataset

Similar to Tables 7–10, show the experimental results obtained in our experiments
with the BT-Large dataset according to the size of the training data and the various shot
values for the FS network. Table 9 presents our experimental results for the cases of using
SVM- and MLP-based methods using the BT-Large dataset with two different training set
sizes, that is, a Tiny-DB (15 images in total, five images for each class) and a Small-DB (30
images in total, 10 images for each class). As shown in this table, we obtained the best
classification accuracy of 48.995% when training the classification model using Tiny-DB
and 49.159% when training the classification model using Small-DB using the SVM-based
method with a polynomial kernel. These classification accuracies are higher than those
produced by the MLP-based method (41.112% and 46.705% for the case of using the Tiny-
DB and Small-DB datasets, respectively) and the other SVM kernels. However, we can see
that all the classification accuracies in our experiments with the BT-Large dataset are lower
than those with the BT-Small dataset. The reason for this is explained in more detail in
Section 5.

Table 9. Classification performance of SVM- and MLP-based methods using the BT-Large dataset
according to the size of the training data (unit: %).

Training
Dataset

Single Classification Method

SVM-Based Method
MLP

Linear RBF Poly Sigmoid

Tiny-DB 48.189 41.771 48.995 42.064 41.112

Small-DB 49.159 48.931 49.159 48.958 46.705

Table 10. Classification performance of FS and the proposed method using the BT-Large dataset
according to the size of the training data and size of the support set (unit: %).

Training
Dataset

FS
Proposed Method

SVM-Based Method
wSUM wPROD

Shot Accuracy Linear RBF Poly Sigmoid

Tiny-DB

1 41.085 49.527 44.794 44.308 45.786 50.685 50.872

3 47.164 49.621 38.216 42.170 43.382 50.945 50.985

5 48.882 49.441 38.315 41.891 43.263 51.238 51.012

10 45.460 48.755 37.823 40.100 43.389 55.592 55.792

Small-DB

1 36.990 45.750 46.994 44.116 46.785 51.069 51.170

3 40.161 45.387 46.557 41.607 45.683 51.197 51.109

5 41.574 44.909 46.813 41.917 46.147 51.177 51.432

10 45.602 42.811 46.806 43.067 44.950 51.446 51.708

Table 10 shows the experimental results for the FS network and the proposed method.
We obtained the best classification accuracy of 48.882% for the FS network when using Tiny-
DB and a classification accuracy of 45.602% when using Small-DB. Using our proposed
method, we obtained the best classification accuracy of 55.792% using the fusion rule
based on the weighted PRODUCT with Tiny-DB and a classification accuracy of 51.708%
using Small-DB. These classification accuracies are higher than those produced by the
individual classification methods. This result again confirms that our proposed method
is more efficient than the individual classification method for brain tumor classification
problems with the BT-Large dataset. However, we observed from Tables 9 and 10 that
the classification accuracies obtained with the BT-Large dataset were low for all the cases
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of the classification method (SVM, MLP, FS, and our proposed method). These results
demonstrate the strong negative effects of the size of the training data on classification
accuracy using the BT-Large dataset. The reason for this low classification accuracy is
discussed in more detail in Section 5.

4.4.3. Performance Evaluation Using Single Network for Feature Extraction

As shown in Figure 1, our proposed method used three pretrained CNN networks
to extract image features. While this approach takes long processing and makes the
classification system become complex, it was used in order to extract rich information
from input images. To validate the efficiency of this design, we performed an additional
experiments using a less complex system in which the three pretrained CNN networks
are replaced by a simple and less complex pretrained CNN network. For this purpose, we
used the MobileNet network [47] instead of the combination of three networks (Residual,
Inception, and Dense network) mentioned in Figure 1. The MobileNet network was
introduced by Google research team that used the depthwise separable convolution to
reduce the complexity and number of network parameters. As a result, the MobileNet
network is a light network that is suitable for mobile applications. We called this setup a
MobileNet-based classification system for convenience. The detailed experimental results
are presented in Table 11.

Table 11. Comparison of the classification accuracies between the MobileNet-based classification
system and our proposed method (unit: %).

Dataset MobileNet-Based System Proposed System

BT-Small 83.133 83.253

BT-Large 43.782 55.792

As observed from Table 11, the MobileNet-based classification system yielded a clas-
sification accuracy of 83.133% using the BT-Small dataset, and an accuracy of 43.782%
using the BT-Large dataset. As mentioned in Tables 8 and 10, we obtained the best clas-
sification accuracies of 83.253% and 55.792% for the cases of using the BT-Small and
BT-Large datasets, respectively. We see that the classification accuracies are similar be-
tween our proposed method and the MobileNet-based classification method for the case
of using the BT-Small dataset (83.133% vs. 83.353%). However, our proposed method
outperformed the MobileNet-based classification method when working with the BT-Large
dataset (43.782% vs. 57.792%). Through these experimental results, we conclude that
the use of multiple pretrained CNN networks for image feature extraction is efficient for
extracting richer information from input images than the use of a single and less complex
pretrained CNN network.

4.4.4. Performance Evaluation Using F1Score Metric

In a multi-class classification system, the classification accuracy, as presented in
Equation (16), has been widely used. In a medical image classification system, the classifica-
tion accuracy is the measurement of a classification system ability to detect both the positive
and negative cases. To investigate the classification performance in detecting positive cases
(i.e., detecting disease), we further used the F1Score metric to measure the performance
of our proposed method. By definition, the F1Score is a harmonic mean of two metrics:
precision and recall, as shown in Equation (19). In detail, the precision is the measurement
of a classification system ability to detect the positive cases (TP) and reduce the errors of
incorrectly recognizing a negative case as a positive case (false positive—FP) as shown in
Equation (17); whereas the recall is the measurement of a classification system ability to
detect the positive cases and reduce the errors of incorrectly rejecting a positive case (false
negative—FN), as shown in Equation (18). In these equations, K indicates the number of
classes. Therefore, the precision and recall metrics are normally used to evaluate the ability of
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a classification system in detecting disease. As observed from Equations (17) and (18), the
higher values of precision and recall indicate high performance of a classification system
on detecting disease. However, there is a trade-off between precision and recall. Therefore,
the F1Score, as shown in Equation (19), is normally used to measure the performance of a
medical image classification system.

Precision =
1
K

K

∑
i=1

TPi
TPi + FPi

(17)

Recall =
1
K

K

∑
i=1

TPi
TPi + FNi

(18)

F1Score = 2× Precision× Recall
Precision + Recall

(19)

The detailed experimental results using the F1Score are given in Table 12. As shown in
this table, our proposed method outperformed all of these individual classification methods
by producing the highest F1Score values of 82.330% and 51.888% for the cases of using the
BT-Small and BT-Large datasets, respectively. From the experimental results, we conclude
that our proposed method is efficient for recognizing the positive cases and outperforms
the SVM-, MLP-, and FS-based classification methods.

Table 12. Evaluation of the classification performance (F1Score) of our proposed method in compari-
son to the SVM-, MLP-, and FS-based methods (unit: %).

Dataset
SVM-Based Method MLP-Based

Method
FS-Based
Method

Proposed
MethodLinear RBF Poly Sigmoid

BT-Small 79.608 75.78 76.518 73.897 80.182 80.898 82.330

BT-Large 44.843 35.192 45.136 37.027 39.005 43.491 51.888

4.4.5. Comparison with Previous Studies

As the final experiment, we compared the classification performance of our proposed
method with those produced by previous studies. For this purpose, we compared the per-
formance of our proposed method with two previous classification approaches, including
the SVM-based and fine-tuning CNN-based method. In the first approach, Kang et al. [23]
successfully used three pretrained networks (Residual, Inception, and Dense network) to
extract image features and used the SVM for classifying the brain image into predefined
categories. For the second approach, fine-tuning of a CNN network was used for the
classification problem [16–18]. These approaches are suitable for working with a small
training dataset because the pretrained CNN networks are suitable for extracting efficient
image features without a training procedure [23]. The first approach was used in our work,
as described in Section 2, and the experimental results were reported in Tables 7 and 9 for
the cases of using BT-Small and BT-Large, respectively.

For the second approach, we performed various experiments by fine-tuning four
different CNN network architectures, including the residual, inception, dense, and mobile
network. For each CNN network architecture, we reused all the convolution layers, and
replaced the fully connected layers with the new ones according to the number of output
nodes (i.e., 2 with the BT-Small dataset, and 3 with the BT-Large dataset). We trained
and evaluated these networks using the same data with our experiment for measuring
the performance of our proposed method, as mentioned in Sections 4.4.1–4.4.3. The final
experimental results are given in Table 13. As shown in this table, our proposed method
outperformed all of the previous studies (SVM-based, and fine-tuning-based methods)
using both the BT-Small and BT-Large dataset. In detail, we obtained accuracy of roughly
3% (83.253% vs. 80.178%) better than the SVM-based method; and more than 10% (83.253%
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vs. 72.504%) better than the fine-tuning-based method using the BT-Small dataset. With
the BT-Large dataset, we obtained an accuracy of roughly 6% (55.792% vs. 49.159%) better
than the SVM-based method; and roughly 5.5% (55.792% vs. 50.108%) better than the fine-
tuning-based method. Through these experimental results, we conclude that our proposed
method is efficient for enhancing the classification performance of previous studies when
working with the small training dataset.

Table 13. Comparison on the classification performance (accuracy and F1Score) between the proposed
method and previous studies (unit: %).

Dataset Metrics SVM-Based
Method [23]

DenseNet-Based
Method

InceptionNet-
Based Method

[18]

ResNet-Based
Method [17]

MobileNet-
Based

Method

Proposed
Method

BT-Small
Accuracy 80.178 70.632 72.504 57.475 62.642 83.253

F1Score 79.608 68.779 71.196 55.779 60.682 82.330

BT-Large
Accuracy 49.159 50.108 46.490 34.089 44.405 55.792

F1Score 45.136 47.795 44.950 32.249 41.249 51.888

5. Discussion

A large dataset for brain tumor segmentation purpose exists, namely the BraTS
dataset [48–50]. This dataset contains 3D MRI scans of human brain with tumors. There-
fore, it does not fit with our study as we tend to classify 2D MRI images. In addition,
although we can use tumor-free slices as non-tumor and the rest as tumor images, it makes
difficulties for training and testing of our proposed method because slices in 3D MRI scans
exhibit high correlation that makes it difficult to train classification methods (SVM, MLP,
and FS). Therefore, we did not use the BraTS dataset in our experiments. Instead, we
used two public datasets that have been used in previous study [23] to evaluate the per-
formance of our proposed method, including the BT-small [28] and BT-large datasets [29].
These datasets were used in a previous study for the brain tumor image classification
problem [15,16,18,20,23] and open for all researchers. Therefore, the use of these datasets
allow other researches to easily use and compare with our study.

In a previous study conducted by Kang et al. [23], a very high classification accuracy
was obtained using an SVM- or CNN-based method, approximately 98.04% with the
BT-Small dataset, and 93.72% with the BT-Large dataset. Using the BT-Large dataset,
previous studies conducted by Abiwinanda et al. [5], Swati et al. [16], Deepak et al. [18],
Bodapati et al. [20], Díaz-Pernas et al. [22], and Isunuri et al. [15] showed very high
classification accuracies, ranging from 84% to more than 98% when training with a large
amount of images. From our experimental results, we confirmed that the lack of training
data is a critical problem in a classification system as lower classification accuracies were
produced by our experiments compared to those produced by previous studies using
the same dataset. This is because previous studies performed training on a large dataset
and testing on a small dataset. However, our study focuses on a different scenario, in
which the classification system lacks training data. In this special case, the performance of
conventional methods, such as SVM- or CNN-based methods (features extraction by CNN
followed by MLP for classification), is significantly reduced, as shown in our experimental
results presented in Tables 7 and 9. However, as shown in Tables 8 and 10, our proposed
method enhanced the overall classification accuracy by combining the results of the SVM-
and MLP-based methods with a new classification method based on the few-shot learning
technique. Based on these experimental results, we believe that our proposed method is
more efficient than previous methods and helps to enhance the classification accuracy for
classification problems that lack training data.

As explained in Section 3.1, the BT-Large dataset contains brain images that belong
to three predefined categories: Meningioma, glioma, and pituitary, as shown through
some examples in Figure 8. This dataset is different from the BT-Small dataset, which
contains images of two categories of tumor (with tumor region) and non-tumor (without
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any tumor region) images. As the BT-Small dataset contains images with and without
tumors, the difference between the images in the two categories in the BT-Small dataset is
high. Therefore, we can easily distinguish between tumor and non-tumor images. However,
the difference between images among categories in the BT-Large dataset was low because
all images in the BT-Large dataset contained tumors. In addition, the BT-Small dataset
contained two image classes (categories), whereas the BT-Large dataset contained three
image classes (meningioma, glioma, and pituitary). Therefore, classifying images into a
large number of predefined categories using a small amount of training data is also a more
difficult problem than classifying images into a small number of predefined categories.
Therefore, the classification performance of the BT-Small dataset was much better than
that of the BT-Large dataset, as shown in Tables 7–10. For a 3-class classification system,
a random guessing system produces an accuracy of about 33.333% that is much lower
than our classification accuracy (55.792% mentioned in Table 10). In addition, Table 13
shows that our proposed method also outperformed various classification methods when
using small data for training. From this result, we think that our algorithm successfully
enhanced the classification performance compared to previous classification methods. From
our experimental results, we showed that the lack of training data lead to reduction in
performance of conventional classification systems. Knowing this problem, our proposed
method can be used in real-world applications when there is less data for training the
classification system such as a new or less common disease is presented.

Classifying images into a large number of predefined categories is more difficult a
problem than classifying images into a smaller number of categories. This problem is
caused by the fact that there always exist the inter-class and intra-class correlation among
images in the dataset. As a result, when the number of classes (predefined categories)
increases, it causes more errors because of the interclass correlation. To reduce the negative
effects of this problem, a possible solution is that we should collect more data and perform
data augmentation to make the dataset generalize for a general classification problem. In
addition, we could perform a pre-classification scheme that classifies the data into some
major categories before fine-tuning into detailed categories.

In Figure 11, we show some example error cases caused by individual method, includ-
ing the SVM-, MLP-, and FS-based methods. As shown in this figure, all these methods
(SVM-, MLP-, and FS-based methods) can falsely classify a non-tumor image as a tumor
image when the input images contain noise and/or high-contrast brain regions, as shown
in the images on the left side of this figure. When the size of the tumor is relatively small or
unclear, these methods can falsely classify a tumor image as a non-tumor image, as shown
in the images on the right side of this figure.

As shown in Section 4, our proposed method outperformed previous methods for
brain tumor image classification using a small training dataset. For demonstration purposes,
we show some examples in which our proposed method (based on the weighted-SUM rule)
helps to enhance the classification performance of individual classifiers in Figure 12. We
can observe from this figure that, although an individual method (among three methods)
can falsely classify an image, the fusion with the result of other classifiers helps to correct
that error and consequently enhances the classification performance of the overall system.
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Figure 11. Examples of error cases of single classification methods: (a) SVM-based method,
(b) MLP-based method, and (c) FS-based method. (Left pair: Non-tumor to tumor cases; Right
pair: Tumor to non-tumor cases).
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tumor image; Label 1 indicates the tumor image).

To investigate the internal functioning of the MLP-based method for the classification
problem, we extracted the class activation map (CAM) image [51] of example input images
using a CNN-based network (feature extracted by CNN and followed by classification by
MLP) presented in Figure 4, as shown in Figures 13 and 14, for the case where the input
image is a tumor image (Figure 13) and for the case where the input image is a non-tumor
image (Figure 14). As shown in Figure 13, the MLP network pays more attention to the
tumor region (higher weight) than the other regions for making a decision on the input
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image belonging to the tumor class (Figure 13c), whereas it uniformly analyzes the overall
input image for making a decision on the input image belonging to the non-tumor class
(Figure 13b). When the input image is a non-tumor image, as shown in Figure 14, the
networks pay attention to the entire brain region for making decisions on the input image
belonging to the non-tumor class, whereas they pay attention to some high-frequency
regions such as the skull or brain boundary region to make decisions on the input image
belonging to a tumor class. From these figures, we see that the MLP network pays attention
to tumor regions or high-frequency regions for making decisions on input images belonging
to the tumor region and pays uniform attention to the entire brain region to make decisions
on input images belonging to the non-tumor class.
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Figure 14. Examples of CAM images using MLP network: (a) Input image without tumor region,
(b) CAM image at the last convolution layer of the DenseNet (Left), InceptionNet (Middle), and
ResidualNet (Right) with respect to the non-tumor class; and (c) CAM images at the last convolution
layer of the DenseNet (Left), InceptionNet (Middle), and ResidualNet (Right) with respect to the
tumor class.

To investigate the internal functioning of the FS network, we plotted the extracted
image features before and after transformation using the FS network of some input image
pairs, as shown in Figures 15 and 16. In these figures, the D value indicates the measured
cosine distance between two extracted image features. The upper part of Figure 15a shows
the original deep image features extracted by pretrained CNNs, and the cosine distance
between the two features is approximately 0.8 (D = 0.80 in Figure 15). This indicates that
the two images are quite similar (close to 1). By transforming the input image features to
other spaces using the FS network, as shown in the lower part of Figure 15a, the cosine
distance between two input images is increased to roughly 0.98 (D = 0.98 in Figure 15a),
which indicates that the two images are very close together. This is what we expect, as
they are all in the same class of non-tumor images. Similarly, Figure 15b shows the case of
two tumor input images. Without the use of the FS network, the similarity of two input
images is approximately 0.81 (D = 0.81 in Figure 15b). Using our proposed FS network,
the similarity becomes 0.99 (D = 0.99 in Figure 15b), which indicates that the two images
belong to the same category.

Figure 16 shows a case in which two input images were from different classes. As
shown in the upper part of this figure, the cosine distance between the two images is
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obtained as 0.70 (D = 0.70 in Figure 16) using the deep features extracted using pretrained
CNNs. This value indicates that the contents of the two images are quite similar, even
though they belong to two different classes. Using our proposed FS network, the distance
between two input images is reduced to 0.01 (D = 0.01 in Figure 16), which indicates that
the two images are different (cosine distance is now close to 0). This is what we expect
because the two images are from two different classes. From Figures 15 and 16, we can see
that the FS network helps to adjust the similarity measurement when two images from the
same class will have high similarity measurements, whereas the two images from different
classes will have very low similarity measurements.

In our experiments, we used less data for training, and a large amount of data for
testing to simulate the situation in which a new or less common disease appears, as
explained in Section 4. The use of less data for training is more difficult than training deep
learning models using a large amount of data because of the lack of information. Due to
this problem, some level of overfitting in the classification models exists, which makes the
testing result worse than the training result. As a result, the classification result decreases
when more data are used for testing. As shown in Tables 4 and 5, the number of training
images are similar in both cases of BT-Small and BT-Large, but the number of testing images
in BT-Large is much larger than that in BT-Small.
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As shown in Tables 8, 10 and 13, our study produced higher performance than those of
previous studies when working with small training data. While the errors produced by our
proposed method are high (17% for the binary problem, and 44% for the ternary problem),
they are much lower than that of a random classification system. In addition, we are
working with a computer-aided diagnosis (CAD) system. Therefore, the results produced
by our proposed method cannot be used directly in the diagnosing and treatment process.
Instead, our proposed method provides suggestions for doctors in a double screening
procedure. Therefore, it can be used to help enhance the disease diagnosis and treatment
performance conducted by doctors.

BT-Small and BT-large datasets used in our experiments were public datasets which
have been widely used for previous research. They have the image variations including
some level of the mix of orientations and contrast changes. As these datasets were originally
collected considering the MRI images of real application, we used these datasets including
the image variations for our experiments.

6. Conclusions

This paper deals with the image-based classification problem when less data is avail-
able for training. For this purpose, we proposed a classification method based on the score
level fusion of multiple classification methods. In detail, we used three classifiers of SVM,
MLP, and few-shot learning to classify input images into several categories of brain diseases.
As each method has advantages and disadvantages in classification problems, we used
the score level fusion technique based on SVM, weighted-SUM, and weighted-PRODUCT
rules to enhance the classification performance of individual methods. We applied our
proposed method on the brain tumor image classification problem and showed that our
proposed method outperformed individual methods (SVM, MLP, and few-shot) as well as
the fine-tuning of various CNN networks (Residual, Inception, Dense, and Mobile network)
using two public brain tumor image datasets. In addition, we observed from our experi-
mental results that the classification performance was still low for all classification methods.
Therefore, we plan to investigate this issue in future research, such as using generative
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models to learn and generate additional images for training, and using pretrained models
that are trained using MRI images for image feature extraction; investigate the effects of
the depth of MLP network on the classification system; and using less complex mixture in
the dataset (contrast and/or orientations).
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