
Citation: Fortin, S.; Gadella, M.;

Holik, F.; Jorge, J.P.; Losada, M. An

Algebraic Model for Quantum

Unstable States. Mathematics 2022, 10,

4562. https://doi.org/10.3390/

math10234562

Academic Editor: Jan Sładkowski

Received: 14 November 2022

Accepted: 30 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Algebraic Model for Quantum Unstable States
Sebastian Fortin 1,†, Manuel Gadella 2,*,† , Federico Holik 3,† , Juan Pablo Jorge 4,5,† and Marcelo Losada 6,†

1 CONICET, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
2 Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, Paseo Belén 7,

47011 Valladolid, Spain
3 Instituto de Física La Plata, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata 1900, Argentina
4 Facultad de Filosofía y Letras, Universidad de Buenos Aires, Puan 480, Buenos Aires 1428, Argentina
5 Instituto de Filosofía, Universidad Austral, Mariano Acosta 1611, Argentina
6 Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina

Allende s/n, Córdoba 5000, Argentina
* Correspondence: manuelgadella1@gmail.com
† These authors contributed equally to this work.

Abstract: In this review, we present a rigorous construction of an algebraic method for quantum
unstable states, also called Gamow states. A traditional picture associates these states to vectors
states called Gamow vectors. However, this has some difficulties. In particular, there is no consistent
definition of mean values of observables on Gamow vectors. In this work, we present Gamow states
as functionals on algebras in a consistent way. We show that Gamow states are not pure states, in
spite of their representation as Gamow vectors. We propose a possible way out to the construction of
averages of observables on Gamow states. The formalism is intended to be presented with sufficient
mathematical rigor.

Keywords: Gamow states; algebras of observables; time evolution of states
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1. Introduction

The conceptual development of non-relativistic quantum mechanics includes two
points of view concerning the mathematical definitions of the basic notions of states and
observables. In the former, a pure state is a normalized vector in a linear space, usually a
Hilbert space, while mixed states and observables are represented by self-adjoint operators
on a Hilbert space. In the latter, observables are certain distinguished members of an algebra,
while states are linear functionals over this algebra with some additional conditions.

There exists a kind of states that somehow escape to this classification: those states that
describe unstable quantum states. Traditionally, these unstable states have been described
by vectors in a linear space, called Gamow vectors. In order to describe the meaning of
these Gamow vectors, one uses a representation of unstable quantum states in terms of
scattering resonances. A scattering resonance is characterized by a potential V perturbing
an otherwise free dynamics H0. Thus, one has a Hamiltonian pair {H0, H = H0 + V}.
Assume that a particle that evolves freely under the action of H0 enters in the interacting
region, where the potential V acts. If the time that the particle stays in the interacting region
is much larger than the time that one expects it to stay if the potential V does not exist,
we say that it is on a quasi-stable state or resonance. Resonances are the most intuitive
representation of unstable quantum states [1–9].

Resonances have a simple characterization in terms of the S-matrix in the energy
representation. Each of the resonances appear as a pair of complex conjugate poles of the
analytic continuation of S(E) into a two sheeted Riemann surface. Each pair is located
on the second sheet and is of the form ER ± iΓ/2, where ER > 0 is the resonant energy
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and 1/Γ > 0 is the mean life. For more formal details see [10], and for applications to
decoherence phenomena see [11–18].

Quantum unstable states decay (approximately) exponentially for most times, with the
exception of very short (Zeno time) [19] or very long (Khalfin time) times [20]. The last one
is very weak and difficult to detect experimentally [21]. Since Zeno times are very short and
Khalfin times appear after a very long time of exponential decay [22–25], a mathematical
object showing exponential decay at all times, t > 0, would be a good approximation for
the description of an unstable quantum state.

From this point of view, Nakanishi [26] proposed that this mathematical object should
be an eigenvector ψD of the total Hamiltonian H = H0 + V with an eigenvalue ER − iΓ/2,
so that HψD = (ER − iΓ/2)ψD. In this case, for t > 0, one has the following formal time
evolution of ψD (D stands for decay)

e−itH ψD = e−itER e−tΓ/2 ψD , t > 0 .

Since Γ > 0, this decay is exponential for all positive times. Equivalently, the energy
distribution of a decaying state should have a Breit–Wigner shape

Γ
2π

1
(E− ER)2 + Γ2/4

.

This picture has serious flaws. First of all, a self-adjoint Hamiltonian cannot have
complex eigenvalues. In addition, physical Hamiltonians in non-relativistic quantum
mechanics are semibounded, which is incompatible with the existence of a state with
non-zero energy distribution for all values −∞ < E < +∞.

Nevertheless, Nakanishi’s picture of a Gamow state looks attractive. A rigorous
definition of ψD is possible, provided that we extend the Hilbert space H supporting
the Hamiltonian pair {H0, H = H0 + V} into a larger space where ψD can be defined
and has the desired properties. This can be done in several, albeit related, ways. One
possibility is that ψD is a vector in a Hilbert space and it has the desired Breit–Wigner
energy representation, although it is outside of the domain of H. Another equivalent
possibility is that ψD cannot be normalized. The extension of the Hilbert space consists
in immerse it into a larger structure called rigged Hilbert space or Gelfand triplet. Below in
Section 2, we describe this structure, since it is important for our later discussion.

The vector state ψD is called the Gamow vector or more precisely, the decaying Gamow
vector for the resonance characterized by the parameters ER and Γ. It describes the decaying
part of a unstable quantum state, which is the dominant part for most of values of time. We
should say that Zeno and Khalfin times are not easily observable [21,27–33].

Although the picture is totally consistent, it is not free of some problems. For instance,
averages of observables on Gamow vectors are difficult to define. See some attempts
in [34–36].

This is just a part of the story concerning the representation of unstable quantum states
as vector states. Indeed, this formalism has been applied in issues such as nuclear physics
and irreversible phenomena in quantum mechanics [37–42]. This representation suggest
that Gamow states are pure states, as being described by a single vector. However, these
vectors are not ordinary Hilbert space vectors and do not represent stable states; therefore,
one may suspect that Gamow states are not pure states. In fact, they are not and this will be
discussed along the paper. However, this is not evident with the solely representation of a
Gamow state as a Gamow vector.

Then, we need a more complete representation of Gamow states that preserves all
good properties of Gamow vectors, yet permits us to define averages of observables on
Gamow states and provides clear evidence that Gamow states are not pure states. This
opens other kind of discussions such that in what sense we may define a non-zero entropy
for a Gamow state. Although this latter problem has been already discussed [43,44], it is
far from being closed.
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Thus, the main objective of this paper is to propose an algebraic context in which
Gamow states are functionals over an algebra of operators containing the relevant observ-
ables of the system under study. In this context, a state is a functional (linear mapping), f ,
between a complex topological algebra A (with unit, I, and an involution A 7−→ A†, for all
A ∈ A) and the field of complex numbers, f : A 7−→ C, with the following properties:

(i) f (I) = 1;
(ii) for any A ∈ A, f (A† A) ≥ 0 (positivity);
(iii) continuity with respect to the topologies on A and C.

We shall construct a Gamow state satisfying all these properties. Most of results have
been discussed elsewhere, so that we have written this paper to provide a consistent review
of these results.

This paper is organized as follows: In Section 2, we discuss the properties of rigged
Hilbert spaces. They are an important pillar for our construction of the algebras of operators.
In Section 3, we construct the algebras and define the Gamow functionals. Mathematical
properties are given in Section 4. We finish the paper with some concluding remarks
and an appendix on Hardy functions on a half plane, which play an essential role in our
construction.

2. Rigged Hilbert Spaces: An Overview

Along this section, we review some important facts that concern either to the con-
struction of Gamow states as well as the correct mathematical presentation of the Dirac
formulation of quantum mechanics [45].

Definition 1. A rigged Hilbert space or Gelfand triplet is a tern of spaces,

Φ ⊂ H ⊂ Φ× , (1)

where:

(i) H is a separable Hilbert space of infinite dimension.
(ii) Φ is a dense subspace ofH having its own topology under the condition that the canonical

injection i : Φ 7−→ H, i(ϕ) = ϕ, ∀ ϕ ∈ Φ, be continuous.
(iii) The space Φ× is the antidual space of Φ, which is the set of all continuous antlinear

functionals on Φ.

If F ∈ Φ×, ϕ, ψ ∈ Φ and α, β ∈ C, we have

〈α ϕ + β ψ|F〉 ≡ F(α ϕ + β ψ) = α∗ F(ϕ) + β∗ F(ψ) ≡ α∗〈ϕ|F〉+ β∗〈ψ|F〉 , (2)

where the star stands for complex conjugation. Antilinearity is chosen instead of linearity
in order to fit with the Dirac notation of quantum mechanics, where brackets are linear to
the right and antilinear to the left. The space Φ× is linear over the field of complex numbers
and may have its own topology compatible with the topology on Φ [46–56]. We discuss
here neither definitions nor use of these topologies.

Definition 2. Let us assume that A is a (densely defined) linear operator on the Hilbert space
H and A† its adjoint, such that for any ϕ in Φ, its image by A†, A† ϕ, is also in Φ. We denote
this property by A†Φ ⊂ Φ. Then, we may extend A into the antidual space Φ× by using the
duality formula:

〈A† ϕ|F〉 = 〈ϕ|AF〉 , ∀ ϕ ∈ Φ , ∀ F ∈ Φ× . (3)

For simplicity, we have use the same notation, A, equally valid for the operator A on
H and for its extension on Φ×. In addition, if A† would have been continuous on Φ, then A
should be continuous on Φ× with whatever topology on Φ× compatible with the topology
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on Φ. Note that if A is symmetric (Hermitian) and its domain, D(A), has the property that
Φ ⊂ D(A), with AΦ ⊂ Φ, then (3) is valid if we replace A† by A.

It is interesting to discuss some properties that we shall use later and that we include
here in order to make this paper self-contained and easier to read. We shall not use the
following results in full generality as is not necessary to follow our ideas. More details can
be found in the bibliography [46,48–54,57]. The next result helps to fix ideas.

Theorem 1 (The Gelfand–Maurin Theorem). Let H be an infinite dimensional separable
Hilbert space and A a self-adjoint operator on H with domain D(A) and having a simple (not
degenerate) absolutely continuous spectrum R+ ≡ [0, ∞). Then [46,57], there exists a RHS,
Φ ⊂ H ⊂ Φ×, as in (1), such that:

(i) The space Φ ⊂ D(A), AΦ ⊂ Φ (which means that for any ϕ ∈ Φ, Aϕ ∈ Φ) and A is
continuous on Φ with the own topology on Φ.

(ii) For almost all λ ∈ R+ (with respect to the Lebesgue measure on R+), there exists a
functional |λ〉 ∈ Φ× such that A|λ〉 = λ |λ〉, where A has been extended to Φ× using
the duality Formula (3). Functionals in the set {|λ〉}λ∈[0,∞) are often called generalized
eigenvectors of A.

(iii) For any ϕ, ψ ∈ Φ, one has

〈ψ|Aϕ〉 =
∫ ∞

0
λ 〈ψ|λ〉〈λ|ϕ〉 dλ , (4)

where 〈ψ|λ〉 is the action of the functional |λ〉 ∈ Φ× on the vector ψ ∈ Φ and
〈λ|ϕ〉 = 〈ϕ|λ〉∗.

(iv) Each function 〈λ|ϕ〉, with λ ∈ [0, ∞), is square integrable, and therefore, belongs to the
Hilbert space L2(R+).

(v) The mapping U : H 7−→ L2(R+) that assigns to each ϕ ∈ Φ a 〈λ|ϕ〉 ∈ L2(R+) is
unitary, so that the norms of the vector ϕ inH and 〈λ|ϕ〉 in L2(R+) are identical.

Remark 1. If we omit the arbitrary vectors ϕ, ψ ∈ Φ, we may write (4) as

A =
∫ ∞

0
λ |λ〉〈λ| dλ . (5)

The property AΦ ⊂ Φ, with continuity, implies that AnΦ ⊂ Φ, with continuity. In
addition, if n ∈ N0, we have

An =
∫ ∞

0
λn |λ〉〈λ| dλ , (6)

where the meaning of (6) is analogous to the meaning of (5). For n = 0, the above equation
shows that

I =
∫ ∞

0
|λ〉〈λ| dλ . (7)

It is quite interesting to deepen on the meaning of the above formulas. Let us apply (7)
to an arbitrary ϕ ∈ Φ. Since I is an identity, we must have that

ϕ = Iϕ =
∫ ∞

0
|λ〉〈λ|ϕ〉 dλ =: Fϕ . (8)

This formula is quite interesting as shows that any ϕ ∈ Φ admits a span in terms of the
generalized eigenvectors of A with complex coefficients given by 〈λ|ϕ〉. This span is very
similar to the span of a vector in terms of an orthonormal basis, where the series has been
replaced by an integral. This is why one refers to the set of eigen-functionals of A given
by {|λ〉}λ∈R+ as a continuous basis for Φ. Relations between continuous and orthonormal
basis are well known [55].
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The form of the integral in (8) suggests that it may represent a functional in Φ×. In
fact, if we define its action to the left on a ψ ∈ Φ as

〈ψ|Fϕ〉 :=
∫ ∞

0
〈ψ|λ〉〈λ|ϕ〉 dλ , (9)

we obtain the scalar product 〈ψ|ϕ〉. Therefore, the scalar product of two vectors in Φ admits
an expansion in terms of the generalized eigenvectors {|λ〉}λ∈R+ . At the same time, it may
be expressed as a scalar product on the Hilbert space L2(R+). The antilinearity of Fϕ is
obvious after (9). Let us prove that it is also continuous on Φ. Linearity and continuity of
Fϕ imply that Fϕ ∈ Φ× as we want to show.

The topology on any locally convex space such as Φ is given by seminorms. A seminorm
is like a norm in which we drop the requirement that the only vector with seminorm zero
must be the zero vector. All other properties are identical to the properties of norms. In
particular, a norm is a seminorm.

Let us assume that the topology on Φ is given by a family of seminorms {pi}i∈I . This
family must contain the norm on H, since the canonical injection i : Φ 7−→ H must be
continuous.

Then, let us give a couple of continuity criteria for linear mappings on Φ [58].

Theorem 2. A linear mapping F : Φ 7−→ C is continuous on Φ if and only if for each ϕ ∈ Φ,
there exist a positive constant C > 0 and a finite number of the seminorms that define the topology
on Φ, say {pi1 , pi2 , . . . , pik} such that

|〈ϕ|F〉| ≤ C {pi1(ϕ) + pi2(ϕ) + · · ·+ pik (ϕ)} . (10)

The action of F on ϕ is 〈ϕ|F〉. The constant C and the seminorms {pi1 , pi2 , . . . , pik} are the
same for all ϕ ∈ Φ.

Theorem 3. An operator (we assume that operators are always linear) A : Φ 7−→ Ψ, where Φ is
another locally convex space, is continuous if and only if for each seminorm qj on Ψ, there exists a
constant Cj > 0 and a finite number of seminorms {pj1 , pj2 , . . . , pjk} on Φ, such that for all ϕ ∈ Φ,
one has

qj(Aϕ) ≤ Cj {pj1(ϕ) + pj2(ϕ) + · · ·+ pjk (ϕ)} . (11)

The seminorms {pj1 , pj2 , . . . , pjk} as well as their number k may be different for another
seminorm qn on Ψ, in the left hand side of (11).

We are now in the position of proving the continuity of Fϕ.

Proposition 1. The functional Fϕ as defined in (9) is continuous.

To prove our claim, we just need to note that, due to the Schwarz inequality,

|〈ψ|Fϕ〉| ≤
∫ ∞

0
|〈ψ|λ〉| |〈λ|ϕ〉| dλ ≤ ||ψ|| ||ϕ|| , (12)

where we have used the fact that the norms of the function 〈λ|ϕ〉 and the vector ϕ are
equal. Then, use (10) with C ≡ ||ϕ|| and pi(ψ) := ||ψ||. Here, we need only one norm.
In addition, the correspondence ϕ 7−→ Fϕ is one to one. Thus, it establishes a one to one
mapping Φ 7−→ Φ×. This mapping is nothing else than the canonical injection from Φ into
Φ× and it is given by (7).
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Remark 2. Let us go back to (6). Due to the properties of Φ in relation to A, this expression means
that, for any pair ϕ, ψ ∈ Φ and for any n ∈ N0, the integral

〈ψ|An ϕ〉 =
∫ ∞

0
λn〈ψ|λ〉〈λ|ϕ〉 dλ (13)

converges absolutely. Mimicking the previous arguments, one may show that for each fixed ϕ ∈ Φ,
the functional Fϕ,n defined for all ψ ∈ Φ as

〈ψ|Fϕ,n〉 =
∫ ∞

0
λn〈ψ|λ〉〈λ|ϕ〉 dλ (14)

is linear and continuous on Φ and, therefore, is an element of Φ×. Therefore, the left hand side of
(6) may be viewed as a mapping from Φ to Φ×. For each n ∈ N, its mapping is ϕ 7−→ Fϕ,n.

It is important to note that (6) also implies that for any n ∈ N0 and all ϕ ∈ Φ, the
following integral converges: ∫ ∞

0
λn |〈ϕ|λ〉|2 dλ . (15)

On the topology on Φ×

Are the mappings given in the right hand side of (6) continuous? First of all, we have
to endow Φ× with a topology. For simplicity, let us use the weak topology. It is given by
the following family of seminorms: For each fixed ψ ∈ Φ, let us define the seminorm pψ on
Φ× as

pψ(F) := 〈ψ|F〉 , ∀ F ∈ Φ× . (16)

Then, for any ϕ ∈ Φ, we have

|pψ(An ϕ)| = |〈ψ|Fϕ,n〉| ≤
∫ ∞

0
λn |〈ψ|λ〉| |〈λ|ϕ〉| dλ

≤
(∫ ∞

0
λ2n |〈ψ|λ〉|2 dλ

)1/2(∫ ∞

0
|〈λ|ϕ〉|2 dλ

)1/2
= Cn ||ϕ|| , (17)

where the second inequality in (17) is the Schwarz inequality, Cn is the constant given by
the first parenthesis in the second row in (17) and the norm of ϕ is the Hilbert space norm.
As the Hilbert space norm is one of the seminorms on Φ and pϕ is an arbitrary seminorm
on Φ× with the weak topology, the continuity of the right hand side in (6) follows.

On the meaning of the brackets 〈λ|λ′〉
An interesting relation comes formally from the identity Iϕ = ϕ, where I is the identity

(7) and ϕ ∈ Φ, as follows:

ϕ =
∫ ∞

0
|λ〉〈λ|ϕ〉 dλ =

∫ ∞

0
|λ〉〈λ| dλ

∫ ∞

0
|λ′〉〈λ′|ϕ〉 dλ′

=
∫ ∞

0
dλ
∫ ∞

0
dλ′ |λ〉〈λ|λ′〉〈λ′|ϕ〉 , (18)

then one must have
〈λ|λ′〉 = δ(λ− λ′) , (19)

a relation widely used in the sequel. Note that 〈λ|λ′〉 is not a generalization of the scalar
product. Furthermore, the existence of a general relation of the type 〈F|G〉 for arbitrary
F, G ∈ Φ× is not known. A partial discussion on this kind of brackets goes beyond of the
scope of the present paper, but it can be seen in [52–54].

From all the above comments, it should be obvious that an object such as |λ〉〈λ|,
with λ ∈ [0, ∞), is a mapping |λ〉〈λ| : Φ 7−→ Φ×, such that for all ϕ ∈ Φ, |λ〉〈λ|(ϕ) =
(〈λ|ϕ〉)|λ〉 ∈ Φ×. Same for |λ〉〈λ′| with λ 6= λ′.
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Recalling that |λ〉 is a continuous antilinear functional on Φ and that 〈λ|ϕ〉 = 〈ϕ|λ〉∗,
it is pretty obvious that 〈λ| is a continuous linear functional on Φ that transforms any
ϕ ∈ Φ into the function 〈λ|ϕ〉 ∈ L2(R+). The spaces of continuous linear and antilinear
functionals are identical algebraically and topologically and have the same properties. We
use the space of antilinear functionals to preserve the Dirac notation.

Another interesting point is the relation between each ϕ ∈ Φ and the function 〈λ|ϕ〉 ∈
L2(R+), λ ∈ R+. Sometimes, it is more intuitive use the notation ϕ(λ) instead of 〈λ|ϕ〉,
although we shall use both in the sequel. The function in L2(R+) corresponding to the
vector Aϕ is

(Aϕ)(λ) = 〈λ|Aϕ〉 = 〈λ|
∫ ∞

0
λ′ |λ′〉〈λ′|ϕ〉 dλ′ =

∫ ∞

0
λ′ δ(λ− λ′) 〈λ′|ϕ〉 dλ′

= λ 〈λ|ϕ〉 = λ ϕ(λ) . (20)

A comment on the relation of an abstract RHS and a concrete realization of its on terms of
functions

The spectral theorem [58] guarantees that, under the conditions imposed on A, there
exists a unitary operator U : H 7−→ L2(R+) such that UAU−1 is the multiplication operator
on L2(R+). It is said that U diagonalizes the operator A. This is exactly what is shown in
(20). Thus, we must conclude that if U is the unitary operator that diagonalizes A, then,
Uϕ = 〈λ|ϕ〉 for all ϕ ∈ Φ.

This has an interesting consequence: We may represent the abstract Hilbert space
(1) into a RHS of functions, G ⊂ L2(R+) ⊂ G×, where G is the image of Φ by U. Along
the structure of vector space, we may also transport by U the topology from Φ to G, so
that U and U−1 are diffeomorphisms [56,59]. The extension of U to a diffeomorphism
U : Φ× 7−→ G× comes readily after the duality formula:

〈Uϕ|UF〉 = 〈ϕ|F〉 , ∀ ϕ ∈ Φ , ∀ F ∈ Φ× . (21)

It comes that the extension U : Φ× 7−→ G× is one to one and onto. It transports the
weak topology on Φ× to a topology on G× that coincides with the weak topology produced
by G [56]. We summarize this construction with the following diagram:

Φ ⊂ H ⊂ Φ×

U ↓ U ↓ U ↓

G ⊂ L2(R+) ⊂ G×

. (22)

This combinations of an abstract RHS and a realization of it by a RHS of functions (and
generalized functions in G×) is usual for many purposes [56]. It is clear from the present
discussion that λ ϕ(λ) ∈ G for all ϕ(λ) ∈ G.

3. The Model and Gamow States

To make this paper as self-contained as possible, we give next the structure of
the model with some details, no matter if they have been already published in many
places [60–63]. We need to introduce resonance phenomena within the context of non-
relativistic quantum mechanics. Therefore, we have a two Hamiltonian structure, {H0, H =
H0 + V}, where H0 is a non-perturbed Hamiltonian and H is the total Hamiltonian, while
V is the potential producing the resonance and other interesting quantum phenomena.
These Hamiltonians have the minimal properties valid for the discussion under our interest.
On a first approach, let us assume that H0 has an absolutely continuous non-degenerate
spectrum equal to the positive semi-axis of the real line, so that it admits the following
spectral decomposition:

H0 =
∫ ∞

0
E |E〉〈E| dE , (23)
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where |E〉, E ∈ R+, are the generalized eigenvectors of H0 with eigenvalue E, so that
(23) has the form of (6). Clearly, this assumption is not universal, although it may be
easily generalized for the study of some models such as the Lee-Friedrichs model and its
generalizations [64–67]. As we have seen in the precedent section, this implies that we
have constructed a RHS as in (1), such that H0Φ ⊂ Φ and H0 is continuous on Φ. This is
possible after the Gelfand–Maurin theorem [46,57].

An operator O is said to be compatible with H0 if it admits a spectral decomposition
of the following form:

O =
∫ ∞

0
dE OE |E〉〈E|+

∫ ∞

0
dE
∫ ∞

0
dE′OEE′ |E〉〈E′| , (24)

where OE is a function on the variable E, while OEE′ is a function on the variables E and E′.
These functions satisfy some regularity conditions to be discussed in the next section.

Let us assume that resonances are produced on a resonance scattering with a Hamilto-
nian pair {H0, H} [10,68,69] and that the Møller wave operators (The formal definition of
the Møller wave operators is the following: Let H0 be a “free” Hamiltonian and H = H0 +V
a “perturbed” or “total” Hamiltonian. First, let us assume that H0 has a purely absolutely
continuous spectrum. Then, for any ϕ ∈ H, we define

Ω±ϕ = lim
t→±∞

eiHt e−itH0 ϕ ,

where t denotes time and the limit is taken in the sense of the norm inH. If the spectrum
of H0 were not absolutely continuous, for instance if H0 had eigenvalues, let P be the
orthogonal projection to the absolutely continuous subspace of H0. Then, in the above
definition ∀ ϕ ∈ H should be replaced by ∀ ϕ ∈ PH), Ω±, exists and have nice properties
(asymptotic completeness, etc.) [69,70]. The operators Ω± are unitary mappings fromH
onto the absolutely continuous space of H. Nevertheless, and for the sake of simplicity, let
us avoid these technicalities and assume that H has also a simple absolutely continuous
spectrum, which is [0, ∞). In this case, Ω± are unitary operators onH and H = Ω± H0 Ω±.

Let us define the spaces Φ± := Ω± Φ. Since now Ω± are unitary, following the
ideas in the previous section, we can construct a new pair of RHS, according to the
following diagram

Φ ⊂ H ⊂ Φ×

Ω± ↓ Ω± ↓ Ω± ↓

Φ± ⊂ H ⊂ Φ×±

(25)

where the extension of Ω± to the duals, Φ×±, is defined via the duality formula

〈ϕ|F〉 = 〈Ω±ϕ|Ω±F〉 , (26)

for all ϕ ∈ Φ and F ∈ Φ×. Following this extension, we may define the “perturbed”
kets |E±〉 as Ω±|E〉 = |E±〉 and, equivalently, 〈E±| = 〈E|Ω†

±. Since the absolutely con-
tinuous spectrum of H0 is [0, ∞), the values of E in the latter relation covers the whole
positive semi-axis.

Thus, we see that these objects are well defined [59,71]. Then, we may use the following
operators that we define through their spectral decomposition:

O± := Ω±O Ω†
± =

∫ ∞

0
dE OE |E±〉〈E±|+

∫ ∞

0
dE
∫ ∞

0
dE′OEE′ |E±〉〈E′±| . (27)
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The operators O± act on Φ± and have the same topological properties than O, as
discussed in the next section. OE and OEE′ must have regularity conditions, so that if O
and R were operators of the form (27), we may define the following two products,

O±R± :=
∫ ∞

0
dE OE RE |E±〉〈E±|+

∫ ∞

0
dE
∫ ∞

0
dE′OEE′ REE′ |E±〉〈E′±| , (28)

where RE and REE′ are the functions that correspond to the operator R± as in (27) for
O±. This definition is quite natural provided that we use the convention 〈E±|E′±〉 =
〈E|Ω†

±Ω±|E′〉 = 〈E|E′〉 = δ(E− E′) [61].
Thus, we have defined a pair of independent algebrasA± of operators using the above

product. Note that the same is true for the “free algebra” A of the operators of the form
(24). In addition, we may introduce an involution into these algebras defined as follows: if
O± ∈ A±, then,

O± 7−→ O†
± :=

∫ ∞

0
dE O∗E |E±〉〈E±|+

∫ ∞

0
dE
∫ ∞

0
dE′O∗EE′ |E±〉〈E

′
±| . (29)

Then, the sets of operators A± can be endowed with the structure of involutive
algebras and the same is true for A. This finally depends on the properties of the functions
OE and OEE′ .

Operators with the property that O± = O†
± are called Hermitian and also observables.

It is customary to abridge the above notation by using |E±) := |E±〉〈E±| and |EE′±) :=
|E±〉〈E′±|, so that

O± =
∫ ∞

0
dE OE |E±) +

∫ ∞

0
dE
∫ ∞

0
dE′OEE′ |EE′±) . (30)

The algebras A± may possess respective identities, I±, which should have the form:

I± =
∫ ∞

0
dE Ω± |E〉〈E|Ω†

± =
∫ ∞

0
dE |E±〉〈E±| =

∫ ∞

0
dE |E±) . (31)

Observe that the existence of the identities on A and A± depends on the space of
test functions that we have chosen for functions OE. For instance, if OE belong to the
Schwartz space of infinitely differentiable functions having zero limit at infinite, then, A±
do not have identity. On the contrary, if the space of test functions contains continuous
bounded functions, these identities do exist. This latter space contains the Schwartz space
as a subspace. In any case, I± are the canonical injections I± : Φ± 7−→ Φ×±, no matter if
they belong to A± or not.

Note that the objects |E±) and |EE′±) introduced above in (30) or (31) are mappings
from Φ± into Φ×± and they should no be confused with bras. We restrict the use of this
notation to the situation for which it was designed and it is quite convenient to denote the
action of some kind of important linear mappings on the algebras A± as we shall see in the
sequel.

For reasons of convenience, as the space of test functions OE we may consider the space
of complex continuous bounded functions on the real line, while for the space including
the OEE′ functions we may use tensor products of analytic functions on the variables E and
E′. We shall discuss these subtleties and other issues concerning topologies and continuity
of functionals on Appendix A.

By functionals we understand here linear mappings ρ± : A± 7−→ C from each of the
algebras A± into the field of complex numbers C. We also may add a continuity condition
to ρ±. The action of a functional ρ± on O± ∈ A± is denoted as (ρ±|O±). Let us define the
following functionals (ω±| and (ωω′±|, for fixed values of ω, ω′ ∈ [0, ∞), over the algebras
A± as follows [61]:

(ω±|O±) := Oω , (ωω′±|O±) := Oωω′ . (32)
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Taking into account (30), this implies that

(E±|E′±) = δ(E− E′) , (EE′|ωω′) = δ(E−ω) δ(E′ −ω′) . (33)

The most general form of the functionals ρ± on the algebras A± should have the form

ρ± =
∫ ∞

0
dE ρE (E±|+

∫ ∞

0
dE
∫ ∞

0
dE′ ρEE′ (EE′±| , (34)

where ρE is a generalized function or distribution on the space of OE functions and ρEE′ a
generalized function or distribution on the space of the OEE′ functions. Then after (33), the
bracket (ρ±|O±) can be written as

(ρ±|O±) =
∫ ∞

0
dE ρE OE +

∫ ∞

0
dE
∫ ∞

0
dE′ ρEE′ OEE′ . (35)

Once we have defined the observables as the Hermitian elements of the algebras A±,
we may define the states as the functionals ρ± with the following properties: (i) positivity,
(ρ±|O†

±O±) ≥ 0, for all O± ∈ A±, and (ii) normalization, (ρ±|I±) = 1. Observe that
normalization requires the existence of units in both algebras.

Within this formalism, Antoniou et al. [60] classify the states into three different types:

• Pure states
The state ρ± is a pure state if there exists a function ψ(E) such that ρE ≡ |ψ(E)|2 and
ρEE′ ≡ ψ∗(E)ψ(E′). If this were the case, then, ρEE ≡ ρE.

• Mixtures
A state ρ± is a mixture if it is not a pure state, but yet ρEE ≡ ρE. This is the typical
situation that arises with quantum mixed states represented as trace class operators.

• Singular diagonal states
A state ρ± is singular diagonal if and only if ρE 6= ρEE. These states are quantum states
far from equilibrium [72,73]. It is worthy to mention that the origin of this formalism
comes from a paper that intended to accommodate these states within a standard
quantum formalism [60].

Gamow States

The next point is to define a functional for the Gamow vectors. As discussed in
many previous papers, for each resonance there are two Gamow vectors and, therefore,
we must have a couple of Gamow functionals for each resonance. These functionals have
already been defined in [61,62]. Each of these functionals correspond to each of the poles
of the S-matrix or the extended resolvent that determines one of the resonances. Previous
discussions suggest that one of the Gamow states should be a functional on the algebra
of in observables, A−, and the other on the algebra of out observables, A+. Each of these
algebras is the image of the other through the time operator T [61]. The respective resonance
poles lie at the points zR = ER − iΓ/2 and z∗R = ER + iΓ/2, respectively, with ER, Γ > 0.

In this situation, it is necessary to fix the spaces of test functions for OE and OEE′ ,
which we shall do in the next section. As we have remarked before, we need that the
spaces of the OE and the OEE′ functions contain bounded continuous functions and analytic
functions on a strip (or entire analytic functions), respectively. Once we have made this
choice, we may define the decaying Gamow functional, ρD [74] as

ρD :=
∫ ∞

0
dE δER (E+|+

∫ ∞

0
dE
∫ ∞

0
dE′ δzR ⊗ δz∗R

(EE′+| , (36)

where δER is the Dirac delta at the point ER. Its action on a function OE gives OER , which is
the value of OE at ER. The action of the functional δzR ⊗ δz∗R

on the function OEE′ is given
by OzR z∗R

, which is the value of the function at (zR, z∗R).
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The growing Gamow functional is defined as

ρG :=
∫ ∞

0
dE δER (E−|+

∫ ∞

0
dE
∫ ∞

0
dE′ δz∗R

⊗ δzR (EE′−| . (37)

Let us see why, in our opinion, this is the correct choice for these functionals. First of
all, ρG and ρD represent states on the algebras A− and A+, respectively. Take for instance
ρD and show that it fulfils the properties of states:

1. Positivity: It means that for any O+ ∈ A+, (ρD|O†
+ O+) ≥ 0. This property is indeed

satisfied. Taking into account (11) and (14), one has that

(ρD|O†
+ O+) = |OER |

2 + |OzR z∗R
|2 ≥ 0 . (38)

2. Normalization. It means that (ρD|I+) = 1. Proving this fact is trivial.
3. Continuity. Although this requirement is not essential, we may endowed the algebras

A± with locally convex topologies, so that this property is satisfied for ρD. See
Section 4.

The functional ρG on A− is also a state and the proof of this statement is similar to
what we did for ρD.

The functionals ρD and ρG have some additional properties. First of all, we need to
add to the space of test functions OE the space of polynomials, so that we may calculate the
mean value of the energy for the Gamow functionals. After (23), (27) and H = Ω± H0 Ω†

±,
we have that

H =
∫ ∞

0
dE E |E±) , (39)

so that the total Hamiltonian belongs to both algebras A±. See the construction of the
topologies on A± in Section 4. Then, after some simple algebra,

(ρD|H) = ER , (ρG|H) = ER . (40)

This result coincides with the result proposed in [36] and it is perhaps the most
reasonable by the reasons exposed in [36]. Note that (ρD|Hn) = (ρG|Hn) = En

R, for any
n ∈ N0. As customary, the averaged values of any observable O± on the state ρ± is given
as in (35) and these formulas must be also applied to the states ρD and ρG.

Concerning time evolution, observe that both ρD and ρG are the sum of two contri-
butions. Let us call regular to the first one and singular to the other, so that ρD = ρR + ρS,
where R and S stand for regular and singular, respectively. We define the time evolution for
functionals using the usual duality formula as:

(ρ±(t)|O±) := (ρ±|O±(t)) = (ρ±|e−itH O± e−itH) . (41)

Since,

e−itH =
∫ ∞

0
dE e−itE |E±) =

∫ ∞

0
dE e−itE |E±〉〈E±| , (42)

after using

|E±〉〈E±|E′±〉〈E′±| = δ(E− E′) |E±〉〈E′±| = δ(E− E′) |EE′±) (43)

and
|E±〉〈E′±|ω±〉〈ω′±| = δ(E′ −ω) |E±〉〈ω′±| = δ(E′ −ω) |Eω′±) , (44)

we obtain after some algebra,

e−itH O± eitH =
∫ ∞

0
dE OE |E±) +

∫ ∞

0
dE
∫ ∞

0
dE e−it(E−E′) OEE′ |EE′±) . (45)
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Thus, after (36) and (41),

(ρD(t)|O+) = OER + e−it(zR−z∗R) OzR z∗R
, (46)

and a similar expression for (ρG(t)|O−), so that,

ρD(t) = ρR(0) + e−tΓ ρS(0) ; ρG(t) = ρR(0) + etΓ ρS(0) , (47)

where we have used ρR and ρS to denote both regular and singular parts of ρD and ρG,
indistinctly. Observe that the regular part of the Gamow states does not evolve with time
and the singular part decays exponentially to the future for the decaying Gamow functional
ρD and to the past for the growing Gamow functional. With a proper choice of the analytic
extension of OEE′ , we can construct a picture for which the time evolution for ρD and ρG
makes sense for t > 0 only and t < 0 only, respectively (see next section).

In some precedent formalisms, the Gamow state is represented as a vector. This may
suggest that a Gamow state may be a pure state. However, unlike the pure states, the
Gamow vectors are not normalized. In addition, they represent unstable states and not
stable ones. The question whether Gamow states are pure or not was open until we have
introduced the precedent formalism. The form (36) and (37) of the Gamow states shows
that they are singular diagonal states and neither pure states nor mixtures. This opens the
door of further investigations, such as, for instance, if Gamow states have a well defined
entropy, which should not be zero. One possible solution was given in [43]. However, this
solution assumes a instantaneous picture of the Gamow state and not a kinematical one,
considering the time evolution of this entropy. This is still an open question that should be
investigated.

As a matter of fact, an article of the Brussels school [75] in 1979 opens the possibility
of defining an entropy operator, M, for unstable quantum systems. This entropy operator
should act on the space of states and the entropy of a state is then the average of M on this
state. A possible choice of M is a positive monotonic function of the time operator T, which
in this case, should be properly defined on this context.

4. Mathematical Details

We need to discuss the exact nature of the algebras of operators introduced in the
precedent section, and its topological properties.

To begin with, let us choose the space of functions OE in (24). In principle, we do
not need properties of differentiability for these functions, although this condition may be
added. Let us assume that they are continuous on [0, ∞). However, boundedness is not
a property they should have, as we may see from (23). Thus, OE ∈ C(0, ∞), where C(A)
means the set of continuous complex functions on the open set A. For each compact set
K ⊂ (0, ∞), we define the seminorm

pK(OE) := sup
E∈K
|OE| , ∀OE ∈ C(0, ∞) . (48)

With this choice for the family of seminorms on C(0, ∞), this space is a Frèchet (metriz-
able and complete) locally convex space [76]. In addition, C(0, ∞) is an algebra with unit,
I, which has the additional properties: (i) For all compact set K ⊂ (0, ∞), pK(I) = 1. (ii)
For OE, RE ∈ C(0, ∞), and all compact set K, pK(OE RE) ≤ pK(OE) pK(RE) . The proof is
trivial.

We may check that the Dirac delta δ(E−ω), with ω ∈ (0, ∞) fixed, defined as

〈δ(E−ω)|OE〉 :=
∫ ∞

0
δ(E−ω)OE dE = Oω , (49)
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is a continuous functional on C(0, ∞). The linearity is obvious. Let K any compact set with
ω ∈ K (It could even be K ≡ {ω}). We have

|〈δ(E−ω)|OE〉| = |Oω | ≤ pK(OE) , (50)

which proves the continuity.
In order to introduce the Gamow functionals, we need that that the function OEE′ be

analytically continuable for each variable. We propose the following construction:
Let us consider the space of Schwartz functions with compact support contained in R+,

S(R+). The functions in the space of Fourier transforms, F [S(R+)], have the following
properties:

(i) They are Schwartz functions with support on R [77].
(ii) They are entire analytic functions, which implies that their support is the whole R [78].
(iii) They are Hardy functions on the lower half plane [79] (see Appendix A).

Analogously, let us consider the space of Schwartz functions with compact support
contained in R− ≡ (−∞, 0], S(R−). Let us consider the space of Fourier transforms of these
functions, F [S(R−)]. Functions in F [S(R−)] have the same properties (i)–(iii), except that
they are Hardy functions on the upper half plane [79].

Finally, let us consider the space

OD := F [S(R+)]⊗F [S(R−)] . (51)

The space (51) is a locally convex space which is a subspace of the two dimensional
Schwartz space S(R2). There are several different sequences of seminorms (in fact norms)
on S(R2) so that two different sequences provide the same topology. Here, we take into
account that S(R2) ≈ S(R)⊗ S(R) algebraically and topologically. Take the finite sum
∑n OE,n RE′ ,n ∈ S(R)⊗ S(R) and define the seminorms [80]

Πm,q
r,s

(
∑
n

OE,n RE′ ,n

)
:= inf

[
∑
n

pr,s(OE,n) pm,q(RE′ ,n)

]
, (52)

where the infimum refers to all possibilities of writing the two variable function ∑n OE,n RE′ ,n
as a tensor product. Here, r, s, m, q ∈ N0, so that this family of seminorms depends on
four non-negative integer parameters. These seminorms are extended to the whole space
S(R)⊗ S(R) by continuity. As norms on S(R), we may take

pr,s(OE) := ||Er Ds OE|| , Ds :=
ds

dEs , r, s ∈ N0 , (53)

where the norm in (53) is the Hilbert space norm on L2(R).
We may give to OD the structure of algebra if we define the product as follows:

if OEE′ , REE′ ∈ OD, their product is given by the standard product between functions,
OEE′ REE′ . This product is obviously in OD. On OD we take the topology inherited from
S(R)⊗ S(R) and given by the family of seminorms (52).

Let us define the functionals δω ⊗ δω′ , ω, ω′ ∈ R+, and δzR ⊗ δz∗R
on each OEE′ ∈ OD as

〈δω ⊗ δω′ |OEE′〉 = Oω ω′ , 〈δzR ⊗ δz∗R
|OEE′〉 := OzR z∗R

. (54)

This functionals are obviously linear. In addition, they are continuous on OD with the
topology inhereted from S(R)⊗ S(R). Let us prove the continuity of δzR ⊗ δz∗R

. First of all,
let us take an element of OD of the form of the finite sum ∑n OE,n RE′ ,n, OE,n ∈ F [S(R+)]
and RE′ ,n ∈ F [S(R−)]. Thus,

〈δzR ⊗ δz∗R
|∑

n
OE,n RE′ ,n〉 = ∑

n
OzR ,n Rz∗R ,n . (55)



Mathematics 2022, 10, 4562 14 of 21

Then, using the Titchmarsh theorem [79], for any OE ∈ F [S(R+)] and for any RE′ ∈
F [S(R−)], we have

OzR = − 1
2πi

∫ ∞

−∞

OE
E− zR

dE , Rz∗R
=

1
2πi

∫ ∞

−∞

RE′

E′ − z∗R
dE′ . (56)

Taking the modulus in the first equation of (56), we have

|OzR | ≤
1

2π

∫ ∞

−∞

|OE|
|E− zR|

dE ≤
[∫ ∞

−∞
|OE|2 dE

]1/2[∫ ∞

−∞

dE
|E− zR|2

]1/2
= C ||OE|| . (57)

The second inequality in (57) is nothing else that the Schwarz inequality for L2(R), so
that the norm in the last term is just the Hilbert space norm. Consequently, (55) implies that∣∣∣∣∣∑n

OzR ,n Rz∗R ,n

∣∣∣∣∣ ≤ C2 ∑
n
||OE,n|| ||RE′ ,n|| . (58)

This identity must go for any span of ∑n OE,n RE′ ,n ∈ OD as a tensor product, so that∣∣∣∣∣∑n
OzR ,n Rz∗R ,n

∣∣∣∣∣ ≤ C2 Π0,0
0,0

(
∑
n

OzR ,n Rz∗R ,n

)
, (59)

which shows the continuity of δzR ⊗ δz∗R
. The proof of the continuity of δω ⊗ δω′ is even

simpler. If we now define

OG := F [S(R−)]⊗F [S(R+)] , (60)

we may show analogously that both δω ⊗ δω′ , ω, ω′ ∈ R+, and δz∗R
⊗ δzR are linear and

continuous on OG.
With all these ingredients, we may define the topologies on the algebras A and A±

and establish the continuity of ρ± on A±.
We define the algebra A+ as the algebra of all objects, O+, of the form (19), where

OEE′ ∈ OD. Analogously, the algebra A− is the algebra of the O− as in (30), such that
OEE′ ∈ OG (Note that after (27), we should have also two algebras of the type A. However,
this is not important for our purposes and we ignore this along this presentation). For any
O± ∈ A±, we define the following set of seminorms:

Pm,q
K,r,s(O±) = pK(OE) + Πm,q

r,s (OEE′) . (61)

Before showing that (36) and (37) are continuous functionals on A+ and A−, let us
consider some simple examples of linear continuous functionals on these algebras. Let us
start with (ω±| defined as

(ω±|O±) = Oω =⇒ |Oω | ≤ pK(O±) , (62)

where K is any compact set containing ω. Thus, (ω±| is trivially linear and is continuous
due to its linearity and the right hand side of (62). Note that the functionals (ω±| may also
be written as

(ω±| ≡
∫ ∞

0
δω (E±| dE , δω ≡ δ(E−ω) . (63)

Compare (63) with the first term in (36) and (37).
In order to discuss the next example, we want to recall that the topology on the

Schwartz space S(R) may be given by another sequence of seminorms different from (53).
We may choose instead of (53) the following: If OE ∈ S(R), define

qr,s(OE) := sup
E∈R
|Er DsOE| , r, s ∈ N0 . (64)
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Then, reconstruct (52) using this sequence of norms. We shall obtain the same topology
on S(R)⊗ S(R) ≈ S(R2). This is equivalent to use on each OEE′ ∈ S(R2) the family of
seminorms given by (Although the families (52) and (65) are different, we use the same
notation for both)

Πm,q
r,s (OEE′) := sup

E,E′∈R

∣∣∣∣Er E′s
∂m+q OEE′

∂Em ∂E′q

∣∣∣∣ . (65)

Now, let us define the functional (ωω′| on O± ∈ A± as

(ωω′|O±) := Oωω′ , ω, ω′ ∈ R+ . (66)

This mapping is obviously linear. In addition,

|Oωω′ | ≤ Π0,0
0,0(O±) , (67)

which shows the continuity.
Let us consider ρD as in (36). From (59), (61) and (62), we have that, for any O+ ∈ A+

(The real part of a resonance pole is positive, so that ER > 0),

(ρD|O+) = OER + OzR z∗R
=⇒ |(ρD|O+)| ≤ CP0,0

K,0,0(O+) , (68)

where C is a positive constant and we have used (52) with (53). The continuity of ρD on A+

has been proven. The proof of the continuity of ρG on A− is analogous.
Now, let us justify the choices (51) for OD and (60) for OG. Functions in OD are

tensor products of entire functions which are Hardy in the lower half plane times entire
functions which are Hardy on the upper half plane (see Appendix A). To fix ideas assume
that OEE′ = f (E)⊗ g(E′) ≡ f (E)g(E′), the generalizacion to other functions of the tensor
product should be obvious. Here, f (E) and g(E′), which depend on different variables,
admit analytic continuations to entire functions. While the continuation of f (E) is Hardy
on the lower half plane, the continuation of g(E′) is Hardy on the upper half plane.

Next, come back to the evolution Equation (45) for A+. Consider e−it(E−E′) f (E)g(E′),
which appears under the integral sign in (45). Does this function belongs to OD? Write
z = E− iy and z′ = E′ + iw, with y, w > 0. Then, z and z′ lie on the lower and upper half
planes, respectively. Thus,

e−it(z−z′) f (z)g(z′) = e−itE e−yt f (z) eitE′ e−wtg(z′) . (69)

Take t > 0. Since y, w > 0, (69) is bounded in modulus by | f (z)| |g(z′)|. By the
properties of Hardy functions on a half plane (see Appendix A), this means that e−itz f (z)
is Hardy on the lower half plane and that eitz′ g(z′) is Hardy on the upper half plane. This
happens only for t > 0 and is false for t < 0 [71]. In other words, we have chosen the space
OD in such a way that the time evolution for ρD(t) is defined only for t > 0. Analogously,
time evolution for ρG is defined only for t < 0. This provides a construction of the Gamow
functionals showing time asymmetry.

5. Discussion and Conclusions

The traditional picture of unstable quantum states in the basic non-relativistic quantum
mechanics is given by the Gamow vectors. Physically, these Gamow vectors give the purely
exponential part of a quantum decaying state. This makes sense, since deviations of this
exponential decay law are difficult to observe and take place for very short and very
long times only. From the mathematical point of view, they are eigenvectors of the total
Hamiltonian with complex eigenvalues. These eigenvalues are given by poles of the
scattering matrix in the energy representation. This point of view directly shows the
exponential time evolution of the Gamow states, but it has some important flaws [10,81].
In particular, Hamiltonians are represented by self-adjoint operators, which do not have
complex eigenvalues. This problem may be solve by extending the Hilbert space to the



Mathematics 2022, 10, 4562 16 of 21

dual space of a dense subspace, in Hilbert space, endowed with a finer topology than the
topology inherited by the Hilbert space metric. It is in this dual where the Gamow vectors
live. The total Hamiltonian as well as the evolution operator may be extended uniquely to
the dual so that this weird mathematical properties of Gamow vectors make sense outside
the Hilbert space.

Nevertheless, some other difficulties derived from using Gamow vectors to represent
quantum unstable states still remain. For instance, there is no clear way to define averages
of observables on Gamow vectors [34–36]. In addition, the representation of Gamow
states as Gamow vectors suggests that these states are pure. This somehow contradicts
intuition, since the decaying states should not have zero entropy. In any case, we should
recall that Gamow vectors are not Hilbert space vectors in the domain of the Hamiltonian.
Some attempts to define entropy for Gamow states have been realized and have given a
non-zero result.

Thus, it is needed a representation of Gamow states beyond Gamow vectors. One
possible solution of the above problems is the definition of Gamow states as functional
over some topological algebras. A model thereof has been proposed in the present review
article. It is shown that Gamow states are not pure states. We have defined rigorously
energy averages on Gamow states, which opens the door for averages of other relevant
observables. We leave the definition of the entropy for a future work. We believe that
this definition should be based in the notion of entropy operator as proposed in [75]. This
construction requieres some further technicalities, as we need to define the corresponding
Liouville image on the present context. In fact, one has to construct an operator M such that

[L, M] = −iD , D ≥ 0 , [M, D] = 0 , (70)

where L is the Liouvillian, defined on the tensor product of Hilbert spaces H ⊗ H as
L = H⊗ I− I⊗ H, I is the identity operator, and D is some positive operator. One possible
solution to (70) is M = f (T), where f (λ) is a non-negative monotonic function and T a
time operator satisfying [L, T] = −iI. Obviously, these considerations show the need for
some extension of the formalism described here.
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Appendix A. Hardy Functions on a Half Plane

Hardy functions on a half plane are complex analytic functions on an open half plane.
Here, we shall consider two types of Hardy functions: Those which are analytic on the upper
half plane, C+ := {z ∈ C , Im z > 0}, or the lower half plane, C− := {z ∈ C , Im z < 0},
where Im z stands for the imaginary part of the complex variable z = x + iy.

Let f+(z) be a complex analytic function on C+. We say that f+(x) is a Hardy function
on the upper half plane if if fulfils the following property:

sup
y>0

∫ ∞

−∞
| f+(x + iy)|2 dx < ∞ . (A1)

Analogously, if f−(z) is a complex analytic function on C−, we say that f−(z) is a
Hardy function on the lower half plane if

sup
y>0

∫ ∞

−∞
| f−(x− iy)|2 dx < ∞ . (A2)

Hardy functions have the following properties:

1. The set of Hardy functions either on the upper half or on the lower half plane is a
vector space over the field of complex numbers. Henceforth, we shall denote these
spaces asH+ andH−, respectively.

2. Let f+(z) ≡ f+(x + iy) be a Hardy function on the upper half plane. Then, for almost
all x ∈ R, with respect to the Lebesgue measure (a.e.), the limit

f+(x) := lim
y→0

f+(x + iy) , (A3)

exists. This function is called the boundary value of the Hardy function f+(z). In
addition, this function f+(x) is square integrable:∫ ∞

−∞
| f+(x)|2 dx < ∞ . (A4)

The same result is valid for f−(z) ≡ f−(x − iy). For any f±(z) ∈ H±, their limit
functions are a.e. unique.

3. Let f±(x) be the boundary value function of the Hardy function f±(z) ∈ H+. This
boundary value function can be used to obtain the values of f±(z), for all z ∈ C±, by
means of the Titchmarsh formula:

f±(z) = ±
1

2πi

∫ ∞

−∞

f±(x)
x− z

dx . (A5)

In summary, given f±(z) ∈ H±, we obtain its boundary value function, which is a
complex function defined a.e. on the real line. This function is a.e. unique. Conversely,
if we have the boundary value function of a function either inH+ or inH−, we can
recover all values of this function on its half plane. Thus, the relation between a Hardy
function and its boundary value function is one to one and onto, so that we may
somehow identify the boundary value function with its Hardy function. We shall
proceed with this identification in the sequel, unless otherwise stated.
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4. If f±(x) is the boundary value function of a Hardy function f±(z) ∈ H±, it is square
integarble, i.e., ∫ ∞

−∞
| f±(x)|2 dx < ∞ . (A6)

After the identification of the boundary value function with the original Hardy func-
tion, we may say that all Hardy functions on a half plane are square integrable, so that
H± ⊂ L2(R).

5. Now, the point is: Being given a square integrable function f (x) ∈ L2(R), how we may
determine whether this function is the boundary value function of a Hardy function either on
the upper or on the lower half planes? The answer is given by the Paley-Wienner theorem,
which states the following:
The square integrable function f±(x) is inH± if and only if its inverse Fourier trans-
form is in L2(R∓), where L2(R+) is the Hilbert space of square integrable Lebesgue
function on the half line R+. Similar definition for L2(R−). Moreover, if F represents
the Fourier transform operation, one may conclude that

F [L2(R∓)] ≡ H± . (A7)

6. The Fourier transform is a unitary mapping on L2(R). Since L2(R) = L2(R+) ⊕
L2(R−), then Equation (A7) and the properties of the Fourier transform imply that

L2(R) = H+ ⊕H− . (A8)

This means that any Lebesgue square integrable function may be decomposed into an
orthogonal sum of a Hardy function on the upper half plane plus a Hardy function
on the lower half plane.

7. The Fourier transform of a Schwartz function is also a Schwartz function. Therefore,
the Fourier transform of a Schwartz function supported on R+, which means zero
outside R+, is a Hardy function on the upper half plane for which its boundary value
function is a Schwartz function on the whole real line. Analogously, the Fourier
transform of a Schwartz function supported on R− is a Hardy function on the lower
half plane for which the boundary value function is a Schwartz function supported
on the whole R.

8. Another Paley-Wiener theorem [78] states that the Fourier transform of a Schwartz
function with compact support is entire analytic. Thus, the Fourier transforms of
Schwartz functions supported either on R+ or in R− are Hardy functions on the
corresponding half plane and entire analytic.

9. Let t > 0, f+(z) ∈ H+ and consider the function eitz f+(z). Since f+(z) is analytic on
the upper half plane, so is eitz f+(z). Let us prove that (A1) holds for t > 0, so that
eitz f+(z) is inH+, for t > 0. In fact,∫ ∞

−∞
|eitz f+(z)|2 dx =

∫ ∞

−∞
e−ty | f+(x + iy)|2 dx ≤

∫ ∞

−∞
| f+(x + iy)|2 dx , (A9)

and our claim has been proved for t > 0. However, for any t0 < 0, there always exists
a function g+(z) ∈ H+ such that eit0z g+(z) /∈ H+. Similar properties hold for t < 0
and f−(z) ∈ H−.

These are the most relevant properties of Hardy functions on a half plane for our
purposes. For other properties, see [71] or the general text [79].
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