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1. Introduction

Mathematical developments do not solely depend on internal dynamics. The motiva-
tional effects of problems in science and engineering on these development processes may
be fundamental. The attempts to solve such problems have triggered many new concepts
in mathematics. Whenever notions and tools are not sufficient/appropriate to solve a
given problem or do not yield the desired/fruitful results, we need to search for new ones
to proceed to the generalization of the existing one. However, when performing such a
generalization, it must satisfy the backward compatibility with the previously existing
methodology. Here, we present an important example.

The classical theory of a differential/difference equation involves maintaining a par-
allelism between the formulation, solution, and properties; this implies great similarity
and allows the establishment of equivalent rules [1]. These types of systems have uni-
form domains. However, some situations arise where we may have discrete or mixed
discrete/continuous irregular domains in which classic ARMA-type equations are not
suitable. To overcome such a discrepancy and allow obtaining similar results, Aulbach and
Hilger [2] introduced a framework that unifies and extends the continuous and discrete
existing methodologies: the “Calculus on Time Scales”.

A time scale, denoted by T, is defined as an arbitrary non-empty closed subset of
the real line R and can be classified as uniform or non-uniform (or, irregular). Usually,
uniform time scales are used [3,4], but non-uniform ones stand out in many applications,
as pointed out in [5,6]. To solve the differential–difference equations corresponding to
applications with underlying non-uniform time scales; it is obvious that the classic Laplace
and Z transforms are not suitable and must be redefined for such time scales. A first
generalization of the one-sided Laplace transform (LT) was proposed by Bohner and
Peterson [7–14]. A second approach to such a goal was pursued by Davis et al. [8,15],
where the domain of the proposed generalized LT was taken as the global time scale
(bilateral transforms). However, such papers deal with transforms that are not exactly
backward compatible, because they do not recover the Z transform when the time scale is
discrete uniform. Moreover, they do not introduce an inverse transform. To overcome these
difficulties, Ortigueira et al [4,6] proposed a different approach. They began by computing
the exponentials, eigenfunctions of the nabla (causal) and delta (anti-causal) derivatives,
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and, from them, defined an inverse Laplace transform that was backward-compatible with
the Bromwich integral for the classic Laplace transform (LT), as well as the Cauchy integral
for the Z transform (ZT). Using the properties of the referred exponentials, they obtained
nabla and delta bilateral LTs that were fully compatible with the classic LT and ZT.

In this work, following [6], we present unilateral nabla and delta Laplace transforms
on non-uniform time scales. Unlike the unilateral delta LT introduced by Bohner and
Peterson (see [16], page 118), both transforms will coincide with the Z transform if the time
scale is Z+

0 . Moreover, we deduce the properties enjoyed by classical one-sided LT and ZT
and present the fully compatible characteristics.

This new transform allows us to solve problems defined on irregular domains and
implement control systems when the sampling is not uniform. Moreover, it will permit the
introduction of fractional derivatives on irregular time scales by inverting the transform sα

and using the convolution theorem.
The study is organized as follows. Section 2 introduces basic definitions of time

scales, including graininess, jump operators, nabla and delta derivatives/anti-derivatives,
and corresponding nabla and delta exponentials. Section 3 presents unilateral nabla and
delta Laplace transforms on non-uniform time scales and their properties, and show the
referred compatibility. We present some examples. Finally, in the last section we present
the conclusions.

2. On-Time Scale Calculus
2.1. Basic Definitions

Let t ∈ T be the current time instance. Let ρ(t) and σ(t) be positive real-valued
functions representing the previous and next instances, respectively. With nth, the power of
the ρ(t) and σ(t), i.e., ρn(t) and σn(t), we refer to the nth previous and nth next instances
from the current one t, respectively, defined by the recursions (see Figure 1).

ρ0(t) := t, ρ1(t) := ρ(t), ρn(t) := ρ(ρn−1(t)) and σ0(t) := t, σ1(t) := σ(t), σn(t) := σ(σn−1(t))

where n ≥ 2. These functions are useful for specifying the steps needed to go from one
instance to another, allowing us to introduce the conceptual differences between two
instances and later the translation used in the convolution.

Figure 1. Scheme for a time scale.

These functions allow us to introduce the graininess functions ν(t) := t− ρ(t) and
µ(t) := σ(t)− t. The nth power, i.e., νn(t) or µn(t), expresses the value of the difference
between the current instance t and the nth previous one ρn(t), as well as the difference
between the current instance t and the nth following one σn(t), respectively. They can be
recursively generated according to:

µn(t) = µn−1(t) + µ(t + µn−1(t)), n = 1, 2, . . . (1)
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with µ0(t) := 0, and

νn(t) = νn−1(t) + ν(t− νn−1(t)), n = 1, 2, . . . (2)

where ν0(t) := 0. In the following, we can see an illustration of the recursions.

σ0(t) = t = t + µ0(t),

σ1(t) = σ(t) = t + µ(t) = t + µ1(t),

σ2(t) = σ(σ(t)) = σ(t) + µ(σ(t)) = t + µ1(t) + µ1(t) = t + µ2(t),

.

.

.

σn(t) = t + µn(t),

moreover, analogously, the relation ρn(t) = t− νn(t) can be obtained. At this stage, one
may wonder about the meaning of a difference, such as t− τ for t, τ ∈ T, and how to define
it, so that it makes sense. Let t > τ. This means that one can reach t by moving from the
instance τ into the future; otherwise, one can arrive at τ by moving from the instance t into
the past. In a more formal way, there exists N ∈ N, such that t = σN(τ) or τ = ρN(t). Set

νn(t) = ρn−1(t)− ρn(t) and µn(t) = σn(t)− σn−1(t)

for n ≥ 1. Then, one can write the difference t− τ in the following two ways:

t− τ = σN(τ)− τ = µN(τ) = µ(τ) + µ(τ + µ(τ)) + . . . =
N

∑
n=1

µn(τ)

or

t− τ = t− ρN(t) = νN(t) = ν(t) + ν(t− ν(t)) + . . . =
N

∑
n=1

νn(t).

In this study, the time scales that we deal with are assumed as a union of two sets, i.e.,
isolated points and closed intervals. As we will see in Section 2.4, with the isolated points
and boundary points of each interval, we construct a discrete time scale T = {tn : n ∈ Z}.
Each point T = {tn : n ∈ Z} is right dense, isolated, or left dense. For example, if tk is a
left (or right) dense point, then it represents all points tk−1 + h (or tk+1 − h), although we
have to insert a limited computation when computing any derivative or integral. With
this formulation, we can redefine direct and reverse graininess in a way that plays a vital
role in representing the integral function in the summation forms. The direct graininess
is given by νn = ν(tn) = tn − tn−1, n ∈ Z, and the reverse graininess is defined by
µn = µ(tn) = tn+1 − tn, n ∈ Z, by avoiding representing the reference instance t0. In the
following section, the nabla and delta exponentials will be formulated in terms of these
two types of graininess.

2.2. Nabla and Delta Derivatives

Let T be a given time scale in which will introduce two derivatives.

Definition 1. The nabla derivative is a causal operator defined by

f∇(t) =

{ f (t)− f (ρ(t))
ν(t) if ν(t) 6= 0

limh→0+
f (t)− f (t−h)

h if ν(t) = 0,
(3)

while the delta derivative is an anti-causal operator given by
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f ∆(t) =

{ f (σ(t))− f (t)
µ(t) if µ(t) 6= 0

limh→0+
f (t+h)− f (t)

h if µ(t) = 0.
(4)

If we consider the time scales T = {tn : n ∈ Z} specialized in the previous section,
consisting of the union of a numerable discrete set {tn : n ∈ Z} and a sequence of closed
intervals, then these above definitions assume slightly different forms

f∇(tn) =

{
f (tn)− f (tn−1)

νn
for any tn that is not left dense

limh→0+
f (tn)− f (tn−h)

h for any tn that is left dense,
(5)

where νn = tn − tn−1 and the delta derivative is given by

f ∆(tn) =

{ f (tn+1)− f (tn)
µn

for any tn that is not right dense

limh→0+
f (tn+h)− f (tn)

h for any tn that is right dense
(6)

where µn = tn+1 − tn.

Example 1. Consider a time scale defined by T, such that tn = n + r(n), n = 1, 2, . . . , L. The
sequence r(n), n = 1, 2, . . . , L, is randomly uniformly distributed in the interval (−0.5, 0.5).
With this sequence, we sampled a sinusoid to obtain a signal f (tn) = cos( 2π

T tn + φ), where φ is a
random initial phase, L = 250, and T = 50. In Figure 2, we depict the nabla derivative of f (tn) (to
make the visualization easier, we used an interpolation on the plot).

Figure 2. Nabla derivative of a sinusoidal signal.

The delta derivative gives a similar function.

2.3. The Nabla and Delta Anti-Derivatives

The relations (3)–(4) and (5)–(6) can be inverted to give the corresponding anti-
derivatives [6]. The inverses of nabla and delta derivatives of (3) and (4) are given by

f∇
−1
(t) =

∞

∑
n=0

νn+1(t) f (t− νn(t)), (7)

where νn(t) was introduced in (2), and

f ∆−1
(t) = −

∞

∑
n=0

µn+1(t) f (t + µn(t)), (8)
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where µn(t) was given in (1). Here, f∇
−1
(−∞) = f ∆−1

(+∞) = 0 is assumed.
These anti-derivatives allow us to introduce two definite nabla and delta integrals

over [a, b], respectively, by

∫ b

a
f (t)∇t and

∫ b

a
f (t)∆t.

If T consists of the isolated points, then there exists a j ∈ N, such that b = σj(a) =
a + µj(a) or a = ρj(b) = b− νj(b). By considering (7) we will write

∫ b

a
f (t)∇t =

j−1

∑
n=0

νn+1(b) f (b− νn(b)), (9)

The lower terminal point of the integral will be taken as a, even if the summation on the
right-hand side does not involve a multiplier with f (a) and involves f (σ(a)) in the last
multiplier. When we pass from the integral to the summation, we always keep this remark
in mind. If f∇

−1
is the nabla inverse of the function f , then the Equation (9) can be written

as follows ∫ b

a
f (t)∇t =

j−1

∑
n=0

νn+1(b) f (b− νn(b)) = f∇
−1
(b)− f∇

−1
(a), (10)

which expresses the nabla definite integral in a Barrow-like formula.
In the next section, we will define unilateral (right and left) ∇-LTs by splitting the

integral representing the bilateral LT at the reference point t0. Moreover, we will explain
the relationship between∇-LT and∇-ZT. Therefore, it will be more useful to formulate the
nabla integral on a discrete set

{
a = t0, t1, . . . , b = tj

}
as follows:

∫ b

a
f (t)∇t =

∫ tj

t0

f (t)∇t =
j−1

∑
n=0

νn+1 f (tn+1) =
j

∑
n=1

νn f (tn) (11)

where νn = tn − tn−1 for n = 1, . . . , j− 1. and the summation do not involve ν0 f (t0).
Analogously, from (8), we will write

∫ b

a
f (t)∆t =

j−1

∑
n=0

µn+1(a) f (a + µn(a)). (12)

The upper terminal point of the integral will be assumed as b even if the summation on
the right-hand side does not involve a multiplier with f (b). Nevertheless, the last sum in
this summation contains µj(a) f (ρ(b)) as a last multiplier. When we pass from the integral

to the summation, we always recall this note. If f ∆−1
is the delta inverse of the function f ,

then Equation (12) can be written as follows

∫ b

a
f (t)∆t =

j−1

∑
n=0

µn+1(a) f (a + µn(a)) = f ∆−1
(b)− f ∆−1

(a), (13)

that resembles again the classic Barrow formula.
For the reasons we explained above for the nabla case, the formulation (13) for the

discrete set
{

a = t0, t1, . . . , b = tj
}

can be given

∫ b

a
f (t)∆t =

j−1

∑
n=0

µ(tn) f (tn) =
j−1

∑
n=0

µn f (tn), (14)

where µn = µ(tn) = tn+1− tn for all n = 0, 1, . . . , j− 1. This sum already involves µ(t0) f (t0)
as a parcel. Moreover, it is known that [16]
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f (t)g(t) =
[

f∇(t)g(t) + f (ρ(t))g∇(t)
]∇−1

so that we can obtain the integration of the parts formula for the nabla derivative:

Theorem 1. Let f and g be ∇-differentiable functions, then

∫ b

a
f∇(t)g(t)∇t = f (b)g(b)− f (a)g(a)−

∫ b

a
f (ρ(t))g∇(t)∇t. (15)

is fulfilled.

Similarly, by using (13), one can obtain the integration of the parts rule for the delta
derivative

f (t)g(t) =
[

f ∆(t)g(t) + f (σ(t))g∆(t)
]∆−1

,

which leads us to:

Theorem 2. Let f and g be ∆-differentiable functions, then

∫ b

a
f ∆(t)g(t)∆t = f (b)g(b)− f (a)g(a)−

∫ b

a
f (σ(t))g∆(t)∆t (16)

is satisfied.

Relations (15) and (16) originate from the initial conditions in the nabla and delta
Laplace transforms, respectively.

2.4. The Nabla and Delta Unit Step Functions

We define the nabla and delta unit step functions, respectively, as follows [4]:

u∇(t, t0) =

{
1 if t = tn ≥ t0

0 if t = tn < t0,
(17)

and

u∆(t, t0) =

{
0 if t = tn > t0

1 if t = tn ≤ t0.
(18)

It is obvious that u∇(t, t0) = u∆(−t, t0). Moreover, the derivatives of these functions give
the nabla and delta impulse functions:

D∇[u∇(t, t0)] = δ∇(t, t0) =

{
1

v1(t0)
(= 1

v0
) if t = tn = t0

0 if t = tn 6= t0.
(19)

and

D∆[u∆(t, t0)] = δ∆(t, t0) =

{
− 1

µ1(t0)
(= − 1

µ0
) if t = tn = t0

0 if t = tn 6= t0.
(20)

If t ∈ hZ, then these two impulses coincide with the Kronecker impulses given by [4].
Moreover, if t ∈ R, is a non-isolated point, we have

δ∇(t, t0) = −δ∆(t, t0) = δ(t− t0) (21)

where δ represents the classical Dirac distribution.
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2.5. The Nabla and Delta General Exponentials

Consider a time scale as above. A recursive procedure allows us to obtain the eigen-
functions (exponentials) of nabla and delta derivatives [6].

2.5.1. The General Nabla Exponential

Let t > t0. Supposing f∇(t) = s f (t),

f (t)[1− sν(t)] = f (t− ν(t)),

is obtained. If we write t = t− ν(t) in the last equation, then we have

f (t− ν(t))[1− sν(t− ν(t))] = f (t− ν(t)− ν(t− ν(t)). (22)

Proceeding in the same way for n times and using the relations νn(t) = νn−1(t) −
ν
(
t− νn−1(t)

)
and ν(t) = ν1(t), ν(t− ν(t)) = ν2(t), . . . , ν(t− νn−1(t)) = νn(t), we have

f (t)
n

∏
k=1

[1− svk(t)] = f (t− vn(t)) = f (t0).

By using f (t0) = 1, νn−k+1 = µk(t0) and ∇tk = tk − tk−1 for k = 1, 2, . . . , n in the last
equation, we have the discrete and integral form of the nabla exponential

f (t) =
n

∏
k=1

[1− sµk(t0)]
−1 = e

−∑n
k=1

ln([1−sµk(t0)])
µk(t0)

∇tk = e
−

t∫
t0

ln(1−sµ(τ))
µ(τ)

∇τ

(23)

for t > t0.
Now let t < t0. By following the same way used for t > t0 but by starting from the

point t0, we have

f (t0)
n

∏
k=1

[1− svk(t0)] = f (t0 − vn(t0)) = f (tn), (24)

where f (t0) = 1. Applying the relation νn−k+1(t0) = ∆tn−k+1 for k = 1, 2, . . . , n, to the last
equation, for t < t0 we have

f (tn) =
n

∏
k=1

[1− sνn−k+1(t0)] = e
∑n

k=1
ln([1−sνn−k+1(t0)])

νn−k+1(t0)
∆tn−k+1

= e
∫ t0

t
ln(1−sv(τ))

v(τ) ∆τ . (25)

Consequently, from (23) and (24), we have

e∇(t, t0; s) =


∏n

k=1[1− sµk(t0)]
−1 if t > t0

1 if t = t0,

∏n
k=1[1− sνk(t0)] if t < t0

(26)

where it is assumed that µk 6= 0 and νk 6= 0 for some k.
Moreover, taking into consideration νn(t0) = µ−n = ν−n+1 and µn(t0) = νn = µn−1

for n ≥ 1, we have the equivalent representations of the above formulation

e∇(tn, t0; s) =


∏n

k=1[1− sνk]
−1 if tn > t0

1 if tn = t0,

∏−n−1
k=0 [1− sν−k] if tn < t0,

=


∏n−1

k=0 [1− sµk]
−1 if tn > t0

1 if tn = t0,

∏−n
k=1[1− sµ−k] if tn < t0.

(27)
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Furthermore, from (23) and (25), the generalized nabla exponential for any time scale
is as follows

e∇(t, t0; s) =


exp(−

t∫
t0

ln(1−sµ(τ))
µ(τ)

∇τ) if t > t0

1 if t = t0,

exp(
t0∫
t

ln(1−sν(τ))
ν(τ)

∆τ) if t < t0.

(28)

2.5.2. The General Delta Exponential

For t > t0, assuming f ∆(t) = s f (t), we have

f (t + µ(t)) = f (t)[1 + sµ(t)].

Set t = t0, then from the above equation we have

f (t0 + µ(t0)) = f (t0)[1 + sµ(t0)]. (29)

Let t0 = t0 + µ(t0). We have

f (t0 + µ(t0) + µ(t0 + µ(t0))) = f (t0 + µ(t0))[1 + sµ(t0 + µ(t0))].

Repeating the above relation n times and using that f (t0) = 1, we obtain

f (tn) = f (t0 + µn(t0)) = f (t0)
n

∏
k=1

[1 + sµk(t0)] =
n

∏
k=1

[1 + sµk(t0)],

where we used the relation µn(t0) = µn−1(t0) + µ(t0 + µn−1(t0)), and µ(t0 + µ(t0) =
µ2(t0), . . . , µ(t0 + µn−1(t0) = µn(t0). By using µk(t0) = ∇tk = tk − tk−1, the last equation
yields

f (tn) =
n

∏
k=1

[1 + sµk(t0)] = e
∑n

k=1
ln([1+sµk(t0)])

µk(t0)
µk(t0)

= e
∫ t

t0
ln(1+sµ(τ))

µ(τ)
∇τ (30)

for t > t0.
Now we assume that t < t0, i.e., t0 = t + µm(t). By following the same procedure

applied for the case t > t0, we have

f (t) =
m

∏
k=1

[1 + sµk(t)]
−1. (31)

Since µ1(t) = νm(t0), µ2(t) = νm−1(t0),. . . , µm(t) = ν1(t0), and νm−k+1(t0) = ∆tm−k+1,
from the last equation

f (t) =
m

∏
k=1

[1 + sνm−k+1(t0)]
−1 = e

−∑m
k=1

ln([1+sνm−k+1(t0)])
νm−k+1(t0)

∆tm−k+1
= e−

∫ t0
t

ln(1+sv(τ))
v(τ) ∆τ (32)

is obtained.
From (30) and (31), the delta exponential in the discrete form can be given as in [6]

e∆(t, t0; s) =


∏n

k=1[1 + sµk(t0)] if t > t0

1 if t = t0

∏n
k=1[1 + sνk(t0)]

−1 if t < t0.

(33)

where t = t0 + µn(t0), when t > t0 and t = t0 − νn(t0), when t < t0, and it is assumed that
µk 6= 0 and νk 6= 0 for some k.
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By using νn(t0) = µ−n = ν−n+1 and µn(t0) = νn = µn−1 for n ≥ 1, we have the
equivalent representations of the above formulation

e∆(tn, t0; s) =


∏n−1

k=0 [1 + sµk] if tn > t0

1 if tn = t0

∏−n
k=1[1 + sµ−k]

−1 if tn < t0,

=


∏n

k=1[1 + sνk] if tn > t0

1 if tn = t0

∏−n−1
k=0 [1 + sν−k]

−1 if tn < t0.

(34)

From (30) and (32), we have the integral representations for the general delta exponen-
tial as follows:

e∆(t, t0; s) =


exp(

∫ t
t0

ln(1+sµ(τ))
µ(τ)

∇τ) if t ≥ t0

1 if t = t0,

exp(−
∫ t0

t
ln(1+sν(τ))

ν(τ)
∆τ) if t < t0.

(35)

2.5.3. Properties of the Exponentials

The above-introduced exponentials enjoy some properties that will be useful in the
following section [6]. Here, we will consider those most interesting for our objectives. As it
is easy to verify, there is a relation between both exponentials

e∆(t, t0; s) = 1/e∇(t, t0;−s). (36)

Therefore, we do not need two exponentials. So, we will use the nabla exponential only
and remove the subscript ∇ whenever it is not needed (e(t, t0; s)).

In many situations, it is important to know how exponentials increase/decrease for
s ∈ C. As said, consider the nabla exponential case. We start by noting that each graininess
νk defines a Hilger circle centered at its reciprocal, passing through s = 0 and being located
in the right-hand half-complex plane. With µk, the situation is similar, but the Hilger circles
will be located in the left half complex plane. If we assume that hmax = max(νk), k ∈ Z,
hmin = min(νk), and k ∈ Z, then the circle centered at 1/hmin will be the outermost one
amongst all right Hilger circles while the circle centered at 1/hmax will be the innermost.
Since we have infinite graininess values in the time scale, the number of corresponding
circles is infinite. However, if the graininess is constant, then they reduce to one. Lastly,
in the case of zero graininess, we will talk about the imaginary axis instead of circles.
Considering all of these facts and the definition of the nabla exponentials e∇(t, t0; s), one
can observe the following:

• It is a real-valued function for any s ∈ R;
• It is a positive real-valued function for any s ∈ R, such that s < 1/hmax;
• oscillates for any s ∈ R, such that s > 1/hmin;
• It is a bounded function for s ∈ C in the innermost Hilger circle |1− shmax| = 1;
• It has an absolute value that increases as |s| increases outside the outermost Hilger

circle |1− shmin| = 1, going to infinite as |s| → ∞.
• Let T = hZ, h > 0. We make t0 = 0 and use ν(t) = µ(t) = h, t = nh, n ∈ Z, leading

to e(t, 0; s) = [1− sh]−n. Using z−1 for [1− sh], we obtain the current discrete-time
exponential, zn.

• Let T = R. Return to the above case and use h = t
n . As

lim
n→∞

(
1− st

n

)−n
= est,

we obtain e∇(t, 0) = est.

The main properties of the exponential read [6]

1. Interchanging the role of instances.

e(t0, t; s) = 1/e(t, t0; s).
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2. Scale changing.
Let a ∈ R+. Then, the equality

e(at, t0; s) = e(t, t0; as)

holds.

To prove this, we first assume that n > 0, i.e., t > 0. Since, νk = ν(tk) = tk − tk−1 for
k ∈ Z, we have ν(atk) = atk − atk−1 = a(tk − tk−1) = aν(tk), where atk ∈ aT. From
here, we have

e(at, t0; s) =
n

∏
k=1

[1− sν(atk)]
−1 =

n

∏
k=1

[1− asν(tk)]
−1 = e(t, t0; as),

where e(t, t0; s) = ∏n
k=1[1− sν(tk)]

−1 as in (27) with νk = ν(tk).
Let n < 0, i.e., t < 0. Since ν−k = ν(t−k) = t−k − t−k−1 for k ∈ N, we have ν(at−k) =
at−k − at−k−1 = a(t−k − t−k−1) = aν(t−k). Then, we have

e(at, t0; s) =
−n−1

∏
k=1

[1− sν(at−k)]
−1 =

−n−1

∏
k=1

[1− asν(t−k)]
−1 = e(t, t0; as),

where e(t, t0; s) = ∏−n−1
k=0 [1− sν−k] for t < 0 as in (27) with ν−k = ν(t−k).

3. Product of exponentials.
The general products of exponentials may not be exponentials in the known sense,
even if they are well-defined. However, the following relations are satisfied [6]:

(a) By using the first and second properties given just above, we have

e(t, t0; s)/e(τ, t0; s) = e(t, τ; s), t ≥ τ.

(b) Let tn > tm. Then, we obtain

e(tn, t0; s) = e(tm, t0; s)e(tn, tm;−s).

4. Shift Property.

Here, we deal with nonuniform time scales. Since tn− tm may not be an element of the
nonuniform time scale T, there is no guarantee of an existing mean for e(tn− tm, tj,±s)
with tj ∈ T Instead of using tn − tm to define the shift property, we use tn−m, which
is equal to tn − tm = t− τ when the time scales are uniform. Let n > m. From the
definition of the (nabla) exponential in (27) we have

e(tn−m, t0; s) =
n−m

∏
k=1

[1− sνk]
−1 =

∏n
k=1[1− sνk]

−1

∏n
k=n−m+1[1− sνk]

−1

=
e(tn, t0; s)

e(tn, tn−m; s)
= e(tn, t0; s)e(tn−m, tn; s) (37)

where we used property 1. For m > n, one can have the same equality in (37).

3. Laplace Transforms on Time Scales

The nabla and delta exponentials introduced in the last section allow us to define
with generality two Laplace transforms defined over any time scale. The nabla and delta
two-sided Laplace transforms were introduced and studied before in [6]. However, in
agreement with the considerations we conducted in the previous sub-section, we will revise
both and consider the corresponding one-sided transforms as well. However, we will pay
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attention to the ∇-Laplace transform (∇-LT) to distinguish it from the usual LT defined on
R [17].

3.1. Inverse and Bilateral ∇-Laplace Transform

In [6], Ortigueira et al. first presented the inverse nabla–Laplace transform before
defining the corresponding direction.

Definition 2. Let f (t) be defined on a given time scale T and assume it has a LT, F(s) = L f (t).
Then, f (t) can be synthesized through a continuous, infinite set of elemental exponentials with
differential amplitudes:

f (t) =
1

2πi

∮
C

F(s)
1

e(t− ν(t), t0;−s)
ds (38)

where the integration path C, is a simple-closed contour in a region of analyticity of the integrand
and encircles the poles of the delta exponential. Relation (38) is also called the synthesis equation of
the LT. For this reason, the direct transform is also called the analysis formula [18].

The coherence of (38) can be verified through some tests

• Let us take F∇(s) = 1 and calculate its inverse Laplace transform. By definition of
e∇(t, t0; s) in (27), one can see that the integrand is analytic when t > t0; it is in the
form of 1

P(s) (P is a polynomial of a degree greater than 1) when t < t0. So, its integral
over C for both cases is null. When t = t0, we have only one pole, and

f (t) =
1

2πi

∮
C

F∇(s)
1

e(t− ν(t), t0;−s)
ds =

1
2πi

∮
C

1
1 + sν1(t0)

ds =
1

ν1(t0)
=

1
v0

. (39)

So, the inverse Laplace transform of F∇(s) = 1 is equal to δ∇(tn, t0) where δ∇ is a
nabla impulse function given by (19). In view of (21), this result makes sense and is
compatible with its continuous counterpart obtained for a non-isolated point t ∈ R.

• Let F(s) = e(tk, t0;−s), k ∈ Z. Then

f (tk) =
1

2πi

∮
C

e(tk, t0;−s)
1

e(tn−1, t0;−s)
ds =

1
2πi

∮
C

e(tk, tn−1;−s)ds = δ∇(tk, tn) (40)

where the relationship between the nabla and delta exponentials [6]

e(t, t0; s)
1

e(τ, t0;−s)
= e(t, τ; s)

was used together with

1
2πi

∮
C

e(tk, tn−1;−s)ds =

{
0 if k 6= n
1
νn

if k = n.
(41)

• Consider a uniform time scale T = hZ, h ∈ R+. In this case, t = nh, nZ, ν(t) = h,
and t0 = 0 so that e(t− ν(t), t0;−s) = (1− sh)n. With

– z−1 = (1− sh), we obtain the inverse Z transform;
– Setting h = t/n and letting h→ 0 we arrive to the Bromwich integral inverse of

the usual continuous-time LT.

• Moreover, by ∇-differentiating on both sides of (38), we have L∇
{

f∇(t)
}
(s) =

sL∇{ f (ρ(t))}(s). This result will be confirmed later by direct transformation.
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Definition 3. Attending to the relation (40), the nabla–Laplace transform of a function f : T→ C
is defined by

F∇(s) = L∇{ f (t)}(s) =
∞

∑
n=−∞

νn f (tn)e(tn, t0;−s) (42)

for those values s ∈ C for which the corresponding series converges.
Considering the relation between ∇-integration and ∇-summation given in (11), the above

formulation can be formulated in terms of the integral, as follows:

L∇{ f (t)}(s) =
∫ +∞

−∞
f (t)e(t, t0;−s)∇t. (43)

Similar to the above procedure, we can test the coherence of the definition by:

• if f (t) = δ∇(tn, t0), then from (42) and (43)

L∇{δ∇(tn, t0)}(s) =
∫ +∞

−∞
δ∇(t, t0)e(t, t0;−s)∇t =

∞

∑
n=−∞

νnδ∇(tn, t0)e(tn, t0;−s) = 1

where we use δ∇(t0, t0) = 1/ν0. This reproduces the above result L−1
∇ {1} = δ∇(tn, t0).

Theorem 3 (Inverse ∇-Laplace transform). Let F∇(s) be the Laplace transform of f : T→ C
defined by (42) Then the formula in (38) represents the inverse ∇-Laplace transform.

Proof. Inserting the nabla–Laplace transform formulation of f (t) given by (42) into (38),
we have, attending to (40)

L−1
∇ {F∇(s)}(tn) =

1
2πi

∮
C

∞

∑
k=−∞

νk f (tk)e(tk, t0;−s)
1

e(tn−1, t0;−s)
ds

=
∞

∑
k=−∞

νk f (tk)
1

2πi

∮
C

e(tk, t0;−s)
1

e(tn−1, t0;−s)
ds

=
∞

∑
k=−∞

νk f (tk)
1

2πi

∮
C

e(tk, tn−1;−s)ds

=
∞

∑
k=−∞

νk f (tk)δ∇(tk, tn) = f (tn) (44)

for all n ∈ N, where we use the uniform convergence of the summation representing
nabla–Laplace transform.

• Consider a uniform time scale T = hZ, h ∈ R+. In this case, t = nh, nZ, ν(t) = h,
and t0 = 0 so that e(t− ν(t), 0;−s) = (1− sh)n. With

– z−1 = (1− sh) we obtain the usual Z transform:
– Setting h = t/n and letting h→ 0 we obtain the continuous-time bilateral LT.

3.2. The Unilateral ∇-Laplace Transform

Definition 4. We define unilateral (one-sided) ∇-Laplace transform by:

L∇{ f (t)}(s) =
∞

∑
n=−∞

u∇(±(tn − t0))νn f (tn)e(tn, t0;−s) (45)

where s ∈ C, t0 is the reference point used for defining the nabla exponential and u is the nabla unit
step function given by (17). The sign in the argument of u in the formulation (45) defines the left
(−) and right (+) transforms.
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To show the integral forms of the unilateral (one-sided)∇-Laplace transforms, we need
to consider the relationship between the ∇-integration and ∇-summation in Section 2.3.
According to the remark noted there, because the summation in (45) involves the multiplier
v0 f (t0) when n ≥ n0, the lower terminal point of the corresponding integral must be ρ(t0).
So, the integral form of the right unilateral ∇-Laplace transform is given by

L+∇{ f (t)}(s) =
∫ +∞

ρ(t0)
f (t)e(t, t0;−s)∇t. (46)

If t ∈ R, then ρ(t0)→ t−0 and the above formula turns into the following

L+{ f (t)}(s) =
∫ +∞

t−0
f (t)e(t, t0;−s)∇t. (47)

It means that t0 is fully involved. In this respect, the nabla situation is different from the
corresponding delta, as we will see later. It is very interesting to note that (47) agrees with
a modified Laplace transform used in the control [19].

It is obvious that the left unilateral ∇-Laplace transform is in the integral form of

L−∇{ f (t)}(s) =
∫ ρ(t0)

−∞
f (t)e(t, t0;−s)∇t. (48)

Theorem 4. Let f (t) be a bounded function of the exponential type, i.e.,
(i) There exists A ∈ R+ and a ∈ R, such that

| f (tn)| < A/e(tn, t0;−a) (n < n1 < 0)

when
∣∣1 + aν∗M

∣∣ < |1 + sνm|, where ν∗M is one of νk so that
∣∣1 + aν∗M

∣∣ = maxνk |1 + aνk|, νm =
mink∈1,2,...,n νk with n > 0, and

(ii) There exists B ∈ R+ and b ∈ R such that

| f (tn)| < B/e(tn, t0;−b) (n > n2 > 0)

when |1 + sνM| < |1 + bν∗m|, where ν∗m is one of ν−k so that |1 + bν∗m| = minν−k |1 + bν−k|,
νM = maxk∈{0,1,2,...,−n−1} ν−k with n < 0.

If s ∈ C is inside the intersection of the circles defined by |1 + sνM| < |1 + bν∗m| and
|1 + sνM| < |1 + bν∗m|, then the integral in (45) is convergent.

The set of values s ∈ C for which (45) exists and is finite is called the region of convergence
(ROC).

Proof. By considering n1 < 0 and n2 > 0, we split the summation corresponding to the
nabla–Laplace transform into three summations; using the assumptions on the function on
f , we have∣∣∣∣∣ +∞

∑
n=−∞

νn f (tn)e(t, t0,−s)

∣∣∣∣∣ ≤ V
n2

∑
n=n1+1

| f (tn)e(t, t0,−s)|+ AV
n1

∑
n=−∞

e(t, t0,−s)/e(t, t0,−a)

+ BV
+∞

∑
n=n2+1

e(t, t0,−s)/e(t, t0,−b) (49)

where V = supn∈N νn.
It is obvious that the first summation on the right-hand side of the inequality is finite.

The finiteness of the second summation can be obtained as follows
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n1

∑
n=−∞

e(t, t0,−s)/e(t, t0,−b) ≤
n1

∑
n=−∞

∏−n−1
k=0 |1 + sν−k|

∏−n−1
k=0 |1 + bν−k|

≤
n1

∑
n=−∞

∏−n−1
k=0 |1 + sνM|

∏−n−1
k=0 |1 + bν∗m|

≤
n1

∑
n=−∞

∣∣∣∣1 + sνM
1 + bν∗m

∣∣∣∣n < ∞ (50)

when |1 + sνM| < |1 + bν∗m|, where ν∗m and νM are as supposed in assumption (i).
For the third summation, we have

+∞

∑
n=n2+1

e(t, t0,−s)/e(t, t0,−a) ≤
+∞

∑
n=n2+1

∏n
k=1|1 + aνk|

∏n
k=1|1 + sνk|

≤
+∞

∑
n=n2+1

∏n
k=1
∣∣1 + aν∗M

∣∣
∏n

k=1|1 + sνm|

≤
+∞

∑
n=n2+1

∣∣∣∣1 + aν∗M
1 + sνm

∣∣∣∣n < ∞ (51)

when
∣∣1 + aν∗M

∣∣ < |1 + sνm|, where νM and νm are as supposed in assumption (ii).

Consequently, (50) and (51) give the convergence of the series defined in (45).

It is clear that the verifications of the two inequalities in this theorem are sufficient
conditions for the existence of the nabla bilateral LT.

Example 2. As an application of the LT just introduced, we computed the transform of the nabla
derivative obtained in Example 1, using N = 500 exponentials corresponding to equal values for
s. Such values were generated according to the following formula: s(k) = iωk = i π

N (k− 1), k =
1, 2, . . . N. In Figure 3, we depict the absolute value of the transform as a function of ωk.

Figure 3. Transforms of the signals used in Example 1.

It is interesting to note the ringing at low frequencies due to the truncation of the
signal and the similarity to the classic continuous-time case.

3.3. Backward Compatibility

We are going to show that one-sided∇-Laplace transforms given by (46) are backward
compatible. Assume first that t ≥ t0, to obtain the right transform that enjoys the following
properties:

• Let T = R+
0 and t0 = 0. Then, we have ρ(t0) = 0 and e(t, 0;−s) = e−st. From (46), we

obtain the modified classical one-sided LT [19]

L+∇{ f (t)}(s) =
∫ +∞

0−
e−st f (t)dt. (52)
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• Let T = Z+
0 , i.e t = n and t0 = 0. Then, we have e(n, 0;−s) = (1 + s)−n for n ∈ Z+

0 .
By changing them with corresponding terms in (45) and using the relation between
∇-integration and ∇-summation (11), we have

L+∇{ f (t)}(s) =
∫ +∞

ρ(0)
f (t)e(t, 0;−s)∇t =

∞

∑
n=0

f (n)z−n (53)

where the transformation 1 + s = z was used. The last summation in (53) is the
well-known Z transform [3].

Assume now that t < t0. Then, we have u∇(±(t− t0)) = u∇(t0 − t), which leads to
the left transform that verifies:

• Let T = R−0 and t0 = 0. Then, we have ρ(t0) = 0 and e(t, 0;−s) = e−st. By replacing
these with corresponding terms in (48), we obtain the classical one-sided left LT

L−∇{ f (t)}(s) =
∫ 0−

−∞
e−st f (t)dt.

• Let T = Z−, i.e., t = n and t0 = 0. Then, we have ρ(0) = −1 and e(n, 0;−s) =
(1 + s)−n. By applying these in (48), we have

L−∇{ f (t)}(s) =
∫ ρ(0)

−∞
f (t)e(t, t0;−s)∇t =

−1

∑
n=−∞

f (n)z−n

where the transformation 1 + s = z is used. The last summation is the left Z transform.

Remark 1. The left transforms are not very useful in applications. For this reason, we will stop
considering it, in the following.

3.4. Some Properties of the Unilateral ∇-Laplace Transform

The unilateral ∇-LT enjoys some interesting properties:

• Linearity
The linearity of ∇-LT is an obvious result of its definition (45).

• Transform of the ∇-derivative.
We suppose that lim

t→+∞
f (t)e(t, t0;−s) = 0 holds for a given function f : T → R. By

integrating the parts formula for the nabla derivative in (15) to the integral, we have:

L+∇
{

f∇(t)
}
(s) =

∫ +∞

ρ(t0)
f∇(t)e(t, t0;−s)∇t = − f (ρ(t0))e(ρ(t0), t0;−s) + s

∫ +∞

ρ(t0)
f (ρ(t))e(t, t0;−s)∇t

=− f (ρ(t0))e(ρ(t0), t0;−s) + sL+∇{ f (ρ(t))}(s). (54)

If T = R+
0 , then ρ(t) = t, and we have from (54)

L+
{

f ′(t)
}
(s) = − f (t−0 ) + sL+{ f (t)}(s).

which is the well-known result of the classical LT. It is important to mention that this
is a property of the LT, not of any other operator or system.

• The transform of the ∇-anti-derivative.

Let F(t) =
t∫

t0

f (τ)∇τ with lim
t→+∞

F(t)e(t, t0;−s) = 0. By the nabla derivative of ∇-

exponential (e(t, t0;−s))∇ = −s e(t, t0;−s) and the nabla derivative of the multiplica-
tion of two functions

(F(t)G(t))∇ = F∇(t)G(t) + F(ρ(t))G∇(t),
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we have

L+∇{F(ρ(t))}(s) =
∫ +∞

ρ(t0)
F(ρ(t))e(t, t0;−s)∇t

= −1
s

[
lim

t→+∞
F(t)e(t, t0;−s)− F(ρ(t0))e(ρ(t0), t0;−s))

]
+

1
s

∫ +∞

ρ(t0)
f (t)e(t, t0;−s)∇t

=
1
s

F(ρ(t0))e(ρ(t0), t0;−s)) +
1
s
L∇{ f (t)}(s). (55)

If t ∈ R, then this equality turns into the well-known relation

L+{F(t)}(s) = 1
s
L+{ f (t)}(s).

• Initial value.
Suppose that f (t) has ∇-LT. Using the property “Transform of the ∇-derivative”, we
have

lim
<(s)→∞

[
sL+∇{ f (ρ(t))}(s)− f (ρ(t0))e(ρ(t0), t0;−s)

]
= lim
<(s)→+∞

L+∇
{

f∇(t)
}
(s) = 0

since lim
<(s)→∞

L+∇
{

f∇(t)
}
(s) = 0 is satisfied for a function f whose nabla derivative

exists and of exponential type II. Hence,

lim
<(s)→+∞

sL+∇{ f (ρ(t))}(s) = f (ρ(t0))e(ρ(t0), t0;−s)

holds.
• Final value.

Let us suppose that f (t) has∇-LT. From the property “Transform of the∇-derivative”,
one can write

lim
s→0

sL+∇{ f (ρ(t))}(s) = lim
s→0

[
L+∇
{

f∇(t)
}
(s) + f (ρ(t0))e(ρ(t0), t0;−s)

]
= lim

s→0

∫ +∞

ρ(t0)
f∇(t)e(t, ρ(t0);−s)∇t + f (ρ(t0))

=
∫ +∞

ρ(t0)
f∇(t)∇t + f (ρ(t0)) = lim

t→+∞
f (t).

• Time scaling.
Let ρ(t0) = 0 and a > 0. By changing the variable at = τ and applying the property of
the scale changing in [6] for the nabla exponential in the definition of ∇-LT, we have

L+∇{ f (at)}(s) =
∫ +∞

0
f (at)e(t, t0;−s)∇t =

1
a

∫ +∞

0
f (τ)e(

τ

a
, t0;−s)∇τ

=
1
a

∫ +∞

0
f (τ)e(τ, t0;− s

a
)∇τ =

1
a
L+∇{ f (t)}( s

a
).

3.5. Inverse and Bilateral ∆-Laplace Transform

As such, in ∇-case, for revealing the definition of the ∆-Laplace transform in the
correct way, the inverse ∆-Laplace transform will be first introduced. As the inverse
Laplace transform of F∆(s) = 1 should equal the delta impulse given by (20), the formula
for the inverse Laplace transform is obtained from the following formula

f (tn) =
1

2πi

∮
C

F∆(s)e(t, t0; s)ds (56)
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where the integration path, C, is a simple closed contour in a region of analyticity of the
integrand and the poles of the (nabla) exponential.

The integrand of (56) is analytic for t > t0 and has n poles at s = + 1
µk(t0)

(k = 1, 2, . . . , n)
for t < t0 when we assume that F∆(s) = 1. For both cases, the integral is null. To obtain the
expected result, a pole for n = 0 (or t = t0) has to be introduced. For this, it is obvious that
the exponential existing in the integrand have to be translated to the future by µ(t). This
leads the formulation in (56) to convert into the following

f (t) = − 1
2πi

∮
C

F∆(s)e(t + µ(t), t0; s)ds, (57)

which is the definition of the inverse ∆-Laplace transform. In addition to this, for n = 0,

f (t) = − 1
2πi

∮
C

F∆(s)e(t + µ(t), t0; s)ds = − 1
2πi

∮
C

1
1− sµ1(t0)

=
1

µ1(t0)
=

1
µ0

.

So, the inverse ∆-Laplace transform of F∆(s) = 1 is equal to −δ∆(t, t0) given by (20) as ex-
pected. Furthermore, by the ∆-differentiating on both sides of (57), we haveL∆

{
f ∆(t)

}
(s) =

sL∆{ f (σ(t))}(s). This result will be reformulated by the one-sided delta direct transform
in Section 3.7.

Definition 5. The delta Laplace transform of a function f : T→ C is defined by

F∆(s) = L∆{ f (t)}(s) =
∞

∑
n=−∞

µn f (tn)[e(tn, t0; s)]−1 (58)

for those values s ∈ C for which the corresponding series converges.
The relationship between ∆-integral and ∆-summation given in Section 2.3 enable us to give

the formula in (58) in the integral form as follows

L∆{ f (t)}(s) =
∫ +∞

−∞
f (t)[e(t, t0; s)]−1∆t. (59)

Theorem 5 (Inverse ∆-Laplace transform). Let F∆(s) be the Laplace transform of f : T→ C
defined by (58). Then the formula in (57) represents the inverse ∆-Laplace transform.

Proof. Inserting the delta–Laplace transform expression of f (t) given by (58) into (57),
we have

L−1
∆ {F∆(s)}(tn) = −

1
2πi

∮
C

∞

∑
k=−∞

µk f (tk)
1

e(tk, t0; s)
e(tn+1, t0; s)ds

=
∞

∑
k=−∞

µk f (tk)

[
− 1

2πi

∮
C

1
e(tk, t0; s)

e(tn+1, t0; s)ds
]

=
∞

∑
k=−∞

µk f (tk)

[
− 1

2πi

∮
C

e(tn+1, tk;+s)ds
]

=
∞

∑
k=−∞

µk f (tk)δ∆(tk, tn) = f (tn) (60)

for all n ∈ N, where we use the uniform convergence of the summation representing the
delta Laplace transform, the relationship between nabla and delta exponentials given by [6]
as follows:

1
e(t, t0; s)

e(τ, t0;−s) = e(τ, t; s)
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and
1

2πi

∮
C

e(tn+1, tk;+s)ds =

{
0 if k 6= n
1

µn
if k = n.

(61)

3.6. The Unilateral ∆-Laplace Transform

Definition 6. We define the unilateral ∆-LT

L∆{ f (t)}(s) =
∞

∑
n=−∞

u∆(∓(tn − t0))µn f (tn)[e(tn, t0; s)]−1 (62)

where s ∈ C, t0 is the reference point used for defining the delta exponential and u∆ is the delta unit
step function given by (18). The sign of the argument of u in formulation (45) defines the left (−)
and right (+) transforms.

From the definition of the ∆-unit step function, the right unilateral Laplace transform
has the summation form of

L∆{ f (t)}(s) =
∞

∑
n=1

µn f (tn)[e(tn, t0; s)]−1 (63)

which does not involve µ0 f (t0). By considering the relationship between the ∆-integration
and ∆-summation in Section 2.3, the integral form of the unilateral right ∆-Laplace trans-
form is given by

L+∆ { f (t)}(s) =
∫ +∞

σ(t0)
f (t)[e(t, t0; s)]−1∆t. (64)

If t ∈ R, then σ(t0)→ t+0 and the above formula turns into the following

L+{ f (t)}(s) =
∫ +∞

t+0
f (t)[e(t, t0; s)]−1∆t. (65)

It means that t0 is not fully involved.
It is obvious that the unilateral left ∆-Laplace transform has the following integral

form

L−∆ { f (t)}(s) =
0

∑
n=−∞

µn f (tn)[e(tn, t0; s)]−1 =
∫ σ(t0)

−∞
f (t)[e(t, t0; s)]−1∆t. (66)

Now, let us discuss the existence and the region of convergence D∆( f ). The proof of
the following theorem will be omitted here since it can be proved by following Theorem 4.

Theorem 6. Let f (t) be a bounded function of the exponential type, i.e.,
(i) There exists A ∈ R+ and a ∈ R, such that

| f (tn)| < Ae(tn, t0; a) (n < n1 < 0)

when
∣∣1− aµ∗M

∣∣ < |1− sµm|, where µ∗M is one of µk, so that
∣∣1− aµ∗M

∣∣ = maxµ−k |1− aµ−k|,
µm = mink∈1,2,...,−n µ−k with n < 0, and

(ii) There exists B ∈ R+ and b ∈ R, such that

| f (tn)| < Be(tn, t0; b) (n > n2 > 0)

when |1− sµM| < |1− bµ∗m|, where µ∗m is one of µ−k, so that |1− bµ∗m| = minµk |1− bµk|,
µM = maxk∈{0,1,2,...,n−1} µk with n > 0.
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If s ∈ C is inside the intersection of the circles defined by
∣∣1− aµ∗M

∣∣ < |1− sµm| and
|1− sµM| < |1− bµ∗m|, then the integral in (62) is convergent.

The set of values s ∈ C for which (62) exists and is finite is called the region of convergence
(ROC).

Let us now prove that the one-sided ∆-LT defined by (62) ensures backward compati-
bility. At first, we suppose that t ≥ t0. Then, from (63) and (64), we determine the following
relations:

• Let T = R+
0 and t0 = 0. Then, we have σ(t0) = 0 and e(t, 0; s) = est. By interchanging

these with the corresponding terms in (64), we obtain the classical one-sided Laplace
transformation

L+∆ { f (t)}(s) =
∫ +∞

0+
e−st f (t)dt.

• Let T = Z+
0 and t0 = 0. Then, we have e(t, t0; s) = (1− s)−n. By considering these

in (63) and (64), we have

L+∆ { f (t)}(s) =
∫ +∞

σ(0)
f (t)[e(t, t0; s)]−1∆t =

∞

∑
n=1

f (n)(1− s)n =
∞

∑
n=1

f (n)z−n, (67)

where the transformation 1− s = z−1 is used. The summation in (67) is the well-
known right Z transform without the first term f (0). From this aspect, this result
differs from the nabla case.

At the moment, we assume t < t0. Then, we obtain the following relations:

• Let T = R− and t0 = 0. Then, we have σ(t0) = 0 and e(t, 0; s) = est. By applying these
to (66), it yields the classical one-sided left LT

L−∆ { f (t)}(s) =
∫ 0

−∞
e−st f (t)dt. (68)

• Let T = Z− and t0 = 0. Then, we have e(t, t0; s) = (1− s)−n. By changing these with
corresponding terms in (62) and considering the relation between ∆-integration and
∆-summation in (14) we have

L−∆ { f (t)}(s) =
∫ σ(0)

−∞
f (t)[e(t, t0; s)]−1∆t =

ρ(σ(0))

∑
n=−∞

f (n)(1− s)n =
0

∑
n=−∞

f (n)z−n,

where the transformation 1− s = z−1 was used. The last summation consists of the
sum of the well-known left Z transform and the term f (0).

3.7. Some Properties of the Unilateral ∆-Laplace Transformation

As we have done before, here, we only take into account the properties of L+∆ . We will
give some properties of the operator L+∆ in the following:

• Linearity.
The linearity of the ∆-Laplace transformation can be easily obtained from its integral
representation.

• Transform of the ∆-derivative.
Let lim

t→+∞
f (t)[e(t, t0; s)]−1 = 0 for a given function f : T→ R. By integrating the parts

formula for the delta derivative in (16) to (62), we have
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L+∆
{

f ∆(t)
}
(s) =

∫ +∞

σ(t0)
f ∆(t)[e(t, t0; s)]−1∆t

= lim
t→+∞

f (t)[e(t, t0; s)]−1 − f (σ(t0))[e(σ(t0), t0; s)]−1 −
∫ +∞

σ(t0)
f (σ(t))[e−1(t, t0; s)]∆∆t

= − f (σ(t0))[e(σ(t0), t0; s)]−1 + s
∫ +∞

σ(t0)
f (σ(t))[e(t, t0; s)]−1∆t

which yields

L+∆
{

f ∆(t)
}
(s) = − f (σ(t0))[e(σ(t0), t0; s)]−1 + sL+∆ { f (σ(t))}(s). (69)

It is remarkable that if T = R+
0 , then we have the well-known result of the classical LT

L+
{

f ′(t)
}
(s) = − f (t+0 ) + sL+{ f (t)}(s). (70)

• The transform of the ∆-anti-derivative.

Let F(t) =
t∫

t0

f (τ)∆τ with lim
t→+∞

F(t)[e(t, t0; s)]−1 = 0. By the delta derivative of

∆-exponential [e−1(t, t0; s)]∆ = −s[e(t, t0; s)]−1 and the delta derivative of the multi-
plication of two functions (F(t)G(t))∆ = F∆(t)G(t) + F(σ))G∆(t), we have

L∆{F(σ(t))}(s) =
∫ +∞

σ(t0)
F(σ(t))[e(t, t0; s)]−1∆t

= −1
s

[
lim

t→+∞
F(t)[e(t, t0; s)]−1 − F(σ(t0))[e(σ(t0), t0; s)]−1

]
+

1
s

∫ +∞

σ(t0)
f (t)[e(t, t0; s)]−1∆t

=
1
s

F(σ(t0))[e(σ(t0), t0; s)]−1 +
1
s
L∆{ f (t)}(s).

• Initial value.
Assume that f (t) has ∆-LT. Taking into account the property “Transform of the ∆-
derivative” in (69), we have

lim
<(s)→+∞

[
sL+∆ { f (σ(t))}(s) + f (σ(t0))[e(σ(t0), t0; s)]−1

]
= lim
<(s)→+∞

L+∆
{

f ∆(t)
}
(s) = 0

since lim
<(s)→+∞

L+∆
{

f ∆(t)
}
(s) = 0 is satisfied for a function f whose delta derivative

exists and is of exponential type II. Hence, we have

lim
<(s)→+∞

sL+∆ { f (ρ(t))}(s) = f (σ(t0))[e(σ(t0), t0; s)]−1.

• Final value.
Assume that f (t) has ∆-LT. From the property “Transform of the ∆-derivative” in (69)
we have

lim
s→0

sL+∆ { f (σ(t))}(s) = lim
s→0

[
L+∇
{

f ∆(t)
}
(s) + f (σ(t0))[e(σ(t0), t0; s)]−1

]
= lim

s→0

∫ +∞

σ(t0)
f ∆(τ)[e(τ, t0; s)]−1∆τ + f (σ(t0))

=
∫ +∞

σ(t0)
f ∆(τ)∆τ + f (σ(t0)) = lim

t→+∞
f (t).

• Time scaling.
Let t0 = 0 and a > 0. By changing the variable at = τ and using the property of the
scale changing for the nabla exponential in the definition of ∆-LT, we have
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L+∆ { f (at)}(s) =
∫ +∞

0
f (at)[e(t, t0; s)]−1∆t =

1
a

∫ +∞

0
f (τ)

[
e
(τ

a
, t0; s

)]−1
∆τ

=
1
a

∫ +∞

0
f (τ)

[
e(τ, t0;

s
a
)
]−1

∆τ =
1
a
L+∆ { f (t)}( s

a
).

4. Conclusions

We propose unilateral nabla and delta Laplace transforms on non-uniform time scales
by following the methodology introduced in [6]. We showed that both coincide with
the Z transform if the time scale is Z+

0 and with unilateral LT if the time scale is R+
0 .

Moreover, we obtained properties enjoyed by classical one-sided LT and ZT, showing the
fully compatible character.

Author Contributions: M.Ş. and M.D.O. contributed equally to this article and approved the final
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by national funds through the Foundation for Science
and Technology (FCT) within the scope of the CTS Research Unit—Center of Technology and Sys-
tems/UNINOVA/FCT/NOVA, under reference UIDB/00066/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ortigueira, M.D.; Magin, R.L. On the Equivalence between Integer-and Fractional Order-Models of Continuous-Time and

Discrete-Time ARMA Systems. Fractal Fract. 2022, 6, 242. [CrossRef]
2. Aulbach, B.; Hilger, S. A unified approach to continuous and discrete dynamics. In Qualitative Theory of Differential Equations;

Colloquia Mathematica Sociefatis János Bolyai; North-Holland Publishing: Amsterdam, The Netherlands, 1990; Volume 53,
pp. 37–56.

3. Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications; Prentice Hall: Hoboken, NJ,
USA, 2007.

4. Ortigueira, M.D.; Coito, F.J.; Trujillo, J.J. Discrete-time differential systems. Signal Process. 2015, 107, 198–217. [CrossRef]
5. Ortigueira, M.D. The comb signal and its Fourier transform. Signal Process. 2001, 81, 581–592. [CrossRef]
6. Ortigueira, M.D.; Torres, D.F.; Trujillo, J.J. Exponentials and Laplace transforms on nonuniform time scales. Commun. Nonlinear

Sci. Numer. Simul. 2016, 39, 252–270. [CrossRef]
7. Bohner, M.; Peterson, A. Laplace transform and Z-transform: Unification and extension. Methods Appl. Anal. 2002, 9, 151–158.

[CrossRef]
8. Davis, J.M.; Gravagne, I.A.; Jackson, B.J.; Marks II, R.J.; Ramos, A.A. The Laplace transform on time scales revisited. J. Math. Anal.

Appl. 2007, 332, 1291–1307. [CrossRef]
9. Ahrendt, C. The Laplace transform on time scales. Pan. Am. Math. J. 2009, 19, 1–36.
10. Bohner, M.; Guseinov, G.S. The Laplace transform on isolated time scales. Comput. Math. Appl. 2010, 60, 1536–1547. [CrossRef]
11. Davis, J.M.; Gravagne, I.A.; Marks, R.J. Convergence of unilateral Laplace transforms on time scales. Circuits Syst. Signal Process.

2010, 29, 971–997. [CrossRef]
12. Bastos, N.R.; Mozyrska, D.; Torres, D.F. Fractional derivatives and integrals on time scales via the inverse generalized Laplace

transform. arXiv 2010, arXiv:1012.1555.
13. Karpuz, B. On uniqueness of the Laplace transform on time scales. arXiv 2011, arXiv:1102.5590.
14. Rahmat, M.R.S. The (q, h)-Laplace transform on discrete time scales. Comput. Math. Appl. 2011, 62, 272–281. [CrossRef]
15. Davis, J.M.; Gravagne, I.A.; Marks, R.J. Bilateral Laplace transforms on time scales: Convergence, convolution, and the

characterization of stationary stochastic time series. Circuits Syst. Signal Process. 2010, 29, 1141–1165. [CrossRef]
16. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2001.
17. Ortigueira, M.D.; Machado, J.T. Revisiting the 1D and 2D Laplace transforms. Mathematics 2020, 8, 1330. [CrossRef]
18. Ortigueira, M.D.; Valério, D. Fractional Signals and Systems; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020.
19. Roberts, M. Signals and Systems: Analysis Using Transform Methods and MATLAB, 2nd ed.; McGraw-Hill: New York, NY, USA, 2003.

http://doi.org/10.3390/fractalfract6050242
http://dx.doi.org/10.1016/j.sigpro.2014.03.004
http://dx.doi.org/10.1016/S0165-1684(00)00233-4
http://dx.doi.org/10.1016/j.cnsns.2016.03.010
http://dx.doi.org/10.4310/MAA.2002.v9.n1.a6
http://dx.doi.org/10.1016/j.jmaa.2006.10.089
http://dx.doi.org/10.1016/j.camwa.2010.06.037
http://dx.doi.org/10.1007/s00034-010-9182-8
http://dx.doi.org/10.1016/j.camwa.2011.05.008
http://dx.doi.org/10.1007/s00034-010-9196-2
http://dx.doi.org/10.3390/math8081330

	Introduction
	On-Time Scale Calculus
	Basic Definitions
	Nabla and Delta Derivatives
	The Nabla and Delta Anti-Derivatives
	The Nabla and Delta Unit Step Functions
	The Nabla and Delta General Exponentials
	The General Nabla Exponential
	The General Delta Exponential
	Properties of the Exponentials


	Laplace Transforms on Time Scales
	Inverse and Bilateral -Laplace Transform
	The Unilateral -Laplace Transform
	Backward Compatibility
	Some Properties of the Unilateral -Laplace Transform
	Inverse and Bilateral -Laplace Transform
	The Unilateral -Laplace Transform
	Some Properties of the Unilateral -Laplace Transformation

	Conclusions
	References

