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Abstract: Recent studies have shown that it is possible to construct a probability measure from a
fractal structure defined on a space. On the other hand, a theory on cumulative distribution functions
from an order on a separable linearly ordered topological space has been developed. In this paper,
we show how to define a linear order on a space with a fractal structure, so that these two theories
can be used interchangeably in both topological contexts.

Keywords: probability; measure; fractal structure; cumulative distribution function; linearly ordered
topological space

MSC: 54E15; 60B11; 60B05

1. Introduction

Fractal structures were introduced in [1] in order to study non-Archimedean
quasimetrization, although they have a wide range of applications. Some of these ap-
plications can be found in [2] and include metrization, topological and fractal dimension,
filling curves, completeness, transitive quasi-uniformities and inverse limits of partially
ordered sets.

In recent studies, the authors proposed a way to construct probability measures on
spaces with a fractal structure by taking advantage of its recursive nature. For this topic,
we refer the reader to [3,4], although it is convenient to have a look at [5], which is about
the completion of a space with a fractal structure, a key element in this construction. The
idea is starting from a pre-measure defined on the elements of the fractal structure, or the
topological structures induced by it, and looking for conditions so that methods on the
construction of outer measures are used to build a probability measure on the original space
as an extension of the pre-measure. An alternative way to relate probability measures with
fractals can be found, for example, in [6], which deals with the calculation of the relative
multifractal Hausdorff and packing dimensions of measures in a probability space.

On the other hand, in [7–9], the authors developed a theory about the cumulative
distribution function of a probability measure on a linearly ordered topological space.
More precisely, in [7], it is shown that the cumulative distribution function of a probability
measure on a separable linearly ordered topological space satisfies some properties which
are similar to those that are well-known in the classical theory (when working on the real
line). Moreover, in that paper, a definition of the inverse of a cumulative distribution
function is given for the case in which the space is compact, which can be used to generate
samples of the distribution and to calculate integrals with respect to the measure. Next,
in [8], it is proved that each cumulative distribution function on a separable linearly
ordered topological space can be extended to the Dedekind–MacNeille completion of the
space, where it does make sense to define its pseudo-inverse, even if the base space is
not compact. Recall that, when working with probability measures on the reals, using a
cumulative distribution function is quite handy when trying to describe the probability
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measure. Moreover, it is well known that in the classical theory of probability measures
and cumulative distribution functions, there is a one-to-one relationship between these
two mathematical tools (see [10]). Indeed, in [9], the authors showed that this relationship
holds in the context of linearly ordered topological spaces, not only between a probability
measure and its cumulative distribution function, but also between a probability measure
and the pseudo-inverse of its cumulative distribution function. Cumulative distribution
functions have also been used, in the most recent literature, to generate fuzzy numbers, for
which we refer the reader to [11].

Now, once we know how to construct probability measures on a space with a fractal
structure and have studied the whole theory on cumulative distribution functions when
working on a separable linearly ordered topological space, the next step is trying to connect
both theories. For example, in [12], it was shown that a cumulative distribution function
can be constructed from the invariant Borel probability measure associated with the iterated
function system of a Cantor set; see also ([3], Def. 4.12) in order to know how to construct
a fractal structure on the attractor of an iterated function system. In Section 3, given a
space with a fractal structure (and, more generally, an ultrametric space), we can define
an order under some compatibility conditions such that the Borel σ-algebras of both
topologies (the one given by the ultrametric and the one given by the order) coincide. In
fact, that compatibility condition and the relationship between the topologies are given in
Section 3.1. Indeed, in Sections 3.2 and 3.3, we show two examples of linear orders that can
be constructed and study their properties. Once we have a linear order on a space with a
fractal structure, we show how a pre-measure and a cumulative distribution function can
be related, so we study two situations. The first is when a cumulative distribution function
of a probability measure is given. Then, it is shown how a pre-measure can be defined such
that the cumulative distribution function of the corresponding probability measure is the
original one (see Section 3.4). The second is when a pre-measure is given. Then, it is shown
how the cumulative distribution function of the probability measure constructed from the
pre-measure (following the procedure exposed in [3,4]) can be described in terms of the
pre-measure defined on the fractal structure (see Section 3.5). This relationship allows to
move between pre-measures and cumulative distribution functions, so researchers can use
the tool that best suits their needs.

2. Preliminaries
2.1. Fractal Structures

While it is true that fractal structures were introduced in [1] for a topological space, we
will work with its definition on a set instead of a topological space, as it has been previously
used in other works.

First, recall that a cover Γ2 is a strong refinement of another cover Γ1, written as
Γ2 ≺≺ Γ1, if Γ2 is a refinement of Γ1 (that is, each element of Γ2 is contained in some element
of Γ1), denoted by Γ2 ≺ Γ1, and for each B ∈ Γ1, it holds that B =

⋃{A ∈ Γ2 : A ⊆ B}. The
definition of a fractal structure is as follows.

Definition 1. A fractal structure on a set X is a countable family of coverings Γ = {Γn : n ∈ N}
such that Γn+1 ≺≺ Γn. The cover Γn is called the level n of the fractal structure.

A fractal structure induces a transitive base of a quasi-uniformity given by {UΓn : n ∈
N}, where UΓ = {(x, y) ∈ X× X : y 6∈ ⋃{A ∈ Γ : x 6∈ A}} for each cover Γ.

Now let Γ = {Γn : n ∈ N} be a fractal structure on a set X. For each n ∈ N, we define
Uxn = UΓn(x) = X\⋃x/∈A,A∈Γn A, U−1

xn = U−1
Γn

(x) =
⋂

x∈A,A∈Γn A and U∗xn = Uxn ∩U−1
xn .

Let d : X × X → R+
0 be a function on X, where R+

0 denotes, as usual, the set of
non-negative reals. Next, we include some properties of d for any x, y, z ∈ X in order to
characterize different types of distance functions.

1. d(x, x) = 0.
2. d(x, z) ≤ d(x, y) + d(y, z).
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3. d(x, y) = d(y, x).
4. d(x, y) = 0 implies that x = y.
5. d(x, y) = 0 = d(y, x) implies that x = y.
6. d(x, z) ≤ max{d(x, y), d(y, z)}.

Definition 2. From the previous conditions, it is possible to define different kinds of distance
functions as follows:

• One can say d is a metric on X if 1, 2, 3 and 4 are satisfied.
• One can say d is a pseudometric on X if 1, 2 and 3 are satisfied.
• One can say d is a quasi-metric on X if 1, 2 and 4 are satisfied.
• One can say d is a quasi-pseudometric on X if 1 and 2 are satisfied.
• One can say d is a T0-quasi-metric on X if 1, 2 and 5 are satisfied.
• One can say d is a dissimilarity on X if 1 and 2 are satisfied.

Moreover, if one of the previous distance functions satisfies 6, it will be called non-Archimedean.
A non-Archimedean metric is also called an ultrametric.

The non-Archimedean quasi-pseudometric dΓ induced by Γ is defined by (see [1])

dΓ(x, y) =



1
2n if y ∈ Uxn\Ux,n+1

1 if y /∈ Ux1

0 otherwise

We will denote it simply by d if there is no confusion on the fractal structure Γ.
First, note that B(x, 1

2n ) = Ux,n+1 and, also, that d satisfies the inequality d(x, z) ≤
max{d(x, y), d(y, z)} for each x, y, z ∈ X, which gives us that d is a non-Archimedean
quasi-pseudometric. In addition, we can consider the conjugate quasi-pseudometric,
d−1(x, y) = d(y, x), and the supremum pseudometric, d∗(x, y) = max{d(x, y), d(y, x)},
which is a non-Archimedean pseudometric (or ultrapseudometric).

2.2. Completion of a Fractal Structure

In [5], the authors showed how to construct the bicompletion of a space with a fractal
structure using a sequence of the inverse limit of posets. Let (X, Γ), suppose that X is T0
with respect to dΓ, and consider the collection Gn = {U∗xn : x ∈ X}, which is a partition of
X for each n ∈ N. Then, we can define the projection ρn : X → Gn by ρn(x) = U∗xn and the
bonding maps φn : Gn+1 → Gn given by φn(ρn+1(x)) = ρn(x). We will denote the inverse
limit by X̃ = lim←−Gn = {(g1, g2, . . .) ∈ ∏∞

n=1 Gn : φn(gn+1) = gn, ∀n ∈ N}. Now, we can

define an embedding from X into X̃ by ρ : X → X̃ defined by ρ(x) = (ρn(x))n∈N. Next,
we recall (see [5]) how to extend a fractal structure on X to a fractal structure on X̃. For
that purpose, we define Ã = {(ρn(xn))n∈N ∈ X̃ : xn ∈ A} and Γ̃ = {Γ̃n : n ∈ N}, where
Γ̃n = {Ã : A ∈ Γn}, and we have that Γ̃ is a fractal structure on X̃ (see ([5], Prop 4.3)).
We denote by d̃ = d

Γ̃
the non-Archimedean quasi-pseudometric induced by Γ̃ on X̃ and

define, for each n ∈ N, Ũxn = X̃\⋃x/∈Ã,Ã∈Γ̃n
Ã = UΓ̃n

(x), Ũ−1
xn = {y ∈ X : x ∈ Ũyn} and

Ũ∗xn = Ũxn ∩ Ũ−1
xn .

Moreover, in order to simplify the notations, we will make the identifications ρ(A) ≡ A
for A ⊆ X, ρ(x) ≡ x for x ∈ X, ρ(X) ≡ X, ρ(Uxn) = Uxn for x ∈ X and n ∈ N and so
on. The next proposition gathers some relationships between elements of X and their
extensions to X̃.

Proposition 1 ([5], Prop. 4.4).

1. Ã ∩ X = A for each A ∈ Γn and n ∈ N.
2. Ã = Clτ̃∗(A) for each A ∈ Γn and n ∈ N.
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3. Ũxn ∩ X = Uxn for each x ∈ X and n ∈ N.
4. Ũ−1

xn ∩ X = U−1
xn for each x ∈ X and n ∈ N.

5. Ũ∗xn ∩ X = U∗xn for each x ∈ X and n ∈ N.

Finally, it is proven that (X̃, d̃∗) is the completion of (X, d∗) (in [5], Prop 5.2). If we
take into account that a quasi-pseudometric d is said to be bicomplete if the pseudometric
d∗ is complete, we obtain, as an immediate consequence of the previous result that (X̃, d̃) is
the bicompletion of (X, d).

2.3. Linearly Ordered Topological Spaces

First, we recall the definition of a linear order and a linearly ordered topological space.

Definition 3 ([13], Chapter 1). A partially ordered set (P,≤) (that is, a set P with the binary
relation ≤ that is reflexive, antisymmetric and transitive) is totally ordered if every x, y ∈ P is
comparable, that is, x ≤ y or y ≤ x. In this case, the order is said to be total or linear.

For a further reference about partially ordered sets, see, for example, [14]. Moreover,
ref. [15] is a useful reference about ordered sets.

Definition 4 ([16], Section 1). A linearly ordered topological space is a triple (X, τ,≤), where
(X,≤) is a linearly ordered set and where τ is the topology of the order ≤.

The definition of the order topology is as follows.

Definition 5 ([17], Part II, 39). Let X be a set which is linearly ordered by <. We define the order
topology τ on X by taking the subbase {{x ∈ X : x < a} : a ∈ X} ∪ {{x ∈ X : x > a} : a ∈ X}.

Given a linear order ≤ on X, we define the next sets.

Definition 6. Let a, b ∈ X with a ≤ b. We define the set ]a, b] = {x ∈ X : a < x ≤ b}.
Analogously, we define ]a, b[, [a, b] and [a, b[. Moreover, (≤ a) is given by (≤ a) = {x ∈ X : x ≤
a}. (< a), (≥ a), and (> a) are defined similarly.

Definition 7. Let a ∈ X. We will also use ]a, ∞[ and [a, ∞[ to denote (> a) and (≥ a), respec-
tively. Similarly, ]−∞, a[ and ]−∞, a] will also denote (< a) and (≤ a), respectively.

Definition 5 suggests the next one.

Definition 8 ([7], Prop. 11). Given x ∈ X, it is said to be a left-isolated (respectively right-
isolated) point if (< x) = ∅ (respectively (> x) = ∅) or there exists z ∈ X such that ]z, x[= ∅
(respectively, there exists z ∈ X such that ]x, z[= ∅). Moreover, we will say that x ∈ X is isolated
if it is both right and left-isolated.

There exists an equivalence between the property of the second countable for τ and
the countability of the set of isolated points.

Proposition 2 ([7], Prop. 5). Let X be a linearly ordered topological space. X is second countable
with respect to the topology τ if and only if X is separable and the set of points which are right-isolated
or left-isolated is countable.

We also need to recall the definition of a convex set.

Definition 9 ([16], Section 1). A subset C ⊆ X is said to be convex in X if, whenever a, b ∈ C
with a ≤ b, {x ∈ X : a ≤ x ≤ b} is a subset of C.
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Proposition 3 ([7], Cor. 1). Let X be a separable linearly ordered topological space and A ⊆ X be
a convex subset. Then, it holds that:

1. If there exist both minimum and maximum of A, then A = [min A, max A].
2. If there does not exist the minimum of A but it does its maximum, then there exists a decreasing

sequence an ∈ A such that A =
⋃

n∈N]an, max A].
3. If there does not exist the maximum of A, but its minimum does exist, then there exists an

increasing sequence bn ∈ A such that A =
⋃

n∈N[min A, bn[.
4. If there does not exist the minimum of A nor its maximum, then there exists a decreasing

sequence an ∈ A and an increasing one bn ∈ A such that A =
⋃

n∈N]an, bn[.

Proposition 4 ([7], Prop. 6). Let x ∈ X. Then x is not left-isolated (respectively, right-isolated) if
and only if there exists a monotone sequence which left τ-converges (respectively, right τ-converges)
to x.

2.4. Cuts and the Dedekind–MacNeille Completion

First, we recall the definition of a complete lattice.

Definition 10 ([18], Def. 8.1, Section 8.1). Let L be a partially ordered set. Then, L is called a
lattice if and only if any two elements of L have a supremum and an infimum. L is called a complete
lattice if and only if any subset of L has a supremum and an infimum.

Definition 11 ([18], Defs. 2.16, 2.17). Let P be an ordered set and let A ⊆ P. Then:

1. l is called a lower bound of A if and only if we have l ≤ a for each a ∈ A.
2. u is called an upper bound of A if and only if we have u ≥ a for each a ∈ A.

Definition 12. Given an ordered set X and A ⊆ X, we denote by Al and Au, respectively, the set
of lower and upper bounds of A.

The Dedekind–MacNeille completion of X consists of all subsets A ⊆ X for which
(Au)l = A. Such subsets are called cuts. More formally, it can be defined as follows:

Definition 13 ([18], Def. 8.21 Section 8.3). Let P be a partially ordered set. We define the
Dedekind–MacNeille completion of P to be DM(P) = {A ⊆ P : A = (Au)l} ordered by inclusion;
that is, given A, B ∈ DM(X), it holds that A ≤ B if and only if A ⊆ B. It is also referred to as the
MacNeille completion or completion by cuts.

Theorem 1 ([18], Th. 8.23). Let P be an ordered set. Then, DM(P) is a complete lattice. Moreover,
the map φDM : P → DM(P), which is defined by φDM(p) = (≤ p), is an embedding that
preserves all suprema and infima that exist in P. Throughout what follows, we write φ := φDM for
simplicity.

See [19] for more reference about cuts and [13] for more about the Dedekind–MacNeille
completion.

3. Constructing a Linearly Ordered Topological Space from a Fractal Structure

In this part of the work, we will show that given a space, X, with a fractal structure,
we can define an order so that X becomes a separable linearly ordered topological space,
where it does make sense regarding the theory that has been described in [7–9]. For that
purpose, we will assume that Γ is a fractal structure on X, which is T0 with respect to the
induced quasi-pseudometric, d. The fact that X is T0 with respect to d implies that d∗ is a
metric (in fact, an ultrametric). In Section 3.1, we define a compatibility condition which the
order must satisfy, so that the Borel sigma-algebra of the order topology coincides with the
one given by the ultrametric generated by the fractal structure. Once we have defined the
conditions on the order and proven the properties of it, we give two examples of orders: the
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first one consists of giving a way to construct a linear order from a Polish ultrametric space,
that is, an ultrametric space which is complete and separable (note that the completion of a
space with a fractal structure can be seen as a Polish ultrametric space when the space is
T0), and the second one is a case in which the order is total and its topology is the same as
the one given by the ultrametric generated by the fractal structure (see Sections 3.2 and 3.3).
To end this section, we show that given a cumulative distribution function on a separable
linearly ordered topological space (constructed from a fractal structure), we can define a
pre-measure on the collection of balls given by the ultrametric (generated by the fractal
structure) so that the corresponding probability measure (constructed by following the
procedures on [3,4]) induces a cumulative distribution function that coincides with the
original function (see Section 3.4). Moreover, given a probability measure (defined from a
pre-measure) on a separable linearly ordered topological space (constructed from a fractal
structure on it), it is possible to define a cumulative distribution function whose probability
measure is the original one (see Section 3.5).

3.1. Defining an Order from an Ultrametric

In this subsection, we will assume that (X, d) is a separable ultrametric space. The
assumption of X being separable is essential since both theories we want to relate, the one
on probability measures from pre-measures on spaces with a fractal structure and the one
on cumulative distribution functions on linearly ordered topological spaces, require it. For
example, in [3,4], the collection of balls of the same radius is supposed to be countable
for each level of the fractal structure, which means that the ultrametric induced by the
fractal structure is separable. These countable families make sense when we talk about
the σ-additivity of the measure we define. On the other hand, the separability condition
in [7–9] lets us consider sequences in order to prove several results. Given x ∈ X and
n ∈ N, we will denote by Uxn = {y ∈ X : d(x, y) ≤ 1

2n } the closed ball, with respect to the
ultrametric d, centered at x with radius 1

2n . The collection of these balls will be denoted by
G =

⋃
n∈N Gn, where Gn = {Uxn : x ∈ X} for each n ∈ N. Moreover, τ will be the topology

of d.
Next, we collect some properties of an ultrametric space according to the notation we

have just introduced and ([20], Ex. 2.1.15):

Proposition 5. Let (X, d) be an ultrametric space. Then:

1. A ball Uxn has diameter at most 1
2n .

2. Every point of a ball is a center: that is, if y ∈ Uxn, then Uxn = Uyn for each x ∈ X and
each n ∈ N. Consequently, Gn is a partition of X; that is, it covers X and, given x, y ∈ X, it
follows that Uxn = Uyn or Uxn ∩Uyn = ∅.

3. Uxn is open and closed in τ for each x ∈ X and n ∈ N.

Note that, according to the previous properties, Gn+1 is a refinement of Gn for each
n ∈ N.

We first give a condition that the order must satisfy.

Definition 14. Let (X, d) be a separable ultrametric space. An order is said to be ball-compatible
or B-compatible if, given x ≤ z and n ∈ N, it holds that Uxn = Uzn or y ≤ t for each y ∈ Uxn and
each t ∈ Uzn.

Example 1. Let (X, d) be a separable ultrametric space such that d is Robinsonian. Recall,
from [21], that the fact that d is Robinsonian means that X can be equipped with a linear or-
der, ≤, such that max{d(x, y), d(y, z)} ≤ d(x, z) for each x, y, z ∈ X with x ≤ y ≤ z. Now, let
x, z ∈ X be such that x ≤ z and consider n ∈ N. Suppose that Uxn 6= Uzn and consider y ∈ Uxn
and t ∈ Uzn. Then, Uyn = Uxn and Uzn = Utn. Now, suppose that y > t and note that the
following cases may happen:
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• z ≥ y. Since d is Robinsonian, and y > t, it holds that max{d(t, y), d(y, z)} ≤ d(t, z), but
since d is an ultrametric, we also have that max{d(t, y), d(y, z)} ≥ d(t, z), and the equality
holds. Now, since d(t, z) ≤ 1

2n , then d(y, z) ≤ 1
2n and, consequently, Uyn = Uzn, which lets

us conclude that Uxn = Uzn, a contradiction.
• y ≥ z (y 6= t). Reasoning similarly to the previous case, and taking into account that x ≤ z,

we have that d(x, y) = max{d(x, z), d(z, y)}, and, since d(x, y) ≤ 1
2n , we conclude that

d(x, z) ≤ 1
2n , and, hence, Uxn = Uzn, a contradiction.

Definitely, in the case that Uxn 6= Uzn, we conclude that y ≤ t for each y ∈ Uxn and t ∈ Uzn.
Hence, the linear order introduced by a Robinsonian ultrametric is B-compatible.

From now on, we will assume that (X, d) is a separable ultrametric space and that ≤
is a B-compatible order.

Definition 15. Let A, B ⊆ X. We say that A < B if and only if a < b for each a ∈ A and each
b ∈ B.

Next, we introduce a definition of order on Gn.

Definition 16. Let x, y ∈ X and n ∈ N. We say that x ≤n y if and only if Uxn ≤ Uyn.
Analogously, we say that x <n y if and only if Uxn < Uyn.

From the previous definitions, the next result follows.

Proposition 6. Let x, y ∈ X then x ≤ z if and only if x ≤n z for each n ∈ N.

Proof. ⇒) It follows from Definition 16.
⇐) Let x, z ∈ X be such that x ≤n z for each n ∈ N. Suppose that x > z. Then z ≤n x

for each n ∈ N, which means that Uxn = Uzn for each n ∈ N. The last equality implies that
x = z, which is a contradiction with the fact that x > z. Hence, x ≤ z.

Corollary 1. Let x, y ∈ X. Then, x < z if and only if there exists n ∈ N such that x <n z.

Proof. ⇐) It follows from Proposition 6.
⇒) Suppose that x ≥n z for each n ∈ N. Then, by Proposition 6, we have that x ≥ z,

which is a contradiction with the fact that x < z. Hence, there exists n ∈ N such that
x <n z.

Remark 1. Let x, y ∈ X.

1. If x ≤n y for some n ∈ N, then x ≤k y for each k ≤ n.
2. If x <n y for some n ∈ N, then x <k y for each k ≥ n.

Indeed, the balls with respect to the ultrametric are convex according to the order, as
the next result shows.

Proposition 7. Uxn is convex for each x ∈ X and each n ∈ N.

Proof. Let x ∈ X, n ∈ N and a, b ∈ Uxn be such that a ≤ b, and let y ∈ X be such that
a ≤ y ≤ b. Then a ≤n y ≤n b, which means that Uan ≤ Uyn ≤ Ubn. Since Uan = Uxn = Ubn
due to the fact that a, b ∈ Uxn (see Proposition 5 (2)), we conclude that y ∈ Uxn, and,
consequently, Uxn is convex.

Now, we introduce some notations.

Definition 17. τo is the order topology on X given by ≤.
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Recall, from Definition 5, that the order topology is given by the subbase {(< a) : a ∈
X} ∪ {(> a) : a ∈ X}. Moreover, note that an open base of X with respect to τo is given by
{]a, b[: a < b, a, b ∈ (X ∪ {−∞, ∞})} (see Definition 7). We can prove that the elements in
the open base and the subbase are, indeed, open sets with respect to the topology of the
ultrametric.

Remark 2. Let a, b ∈ X with a < b; then, ]a, b[, (< b) and (> a) are open in τ.

Proof. Let a, b ∈ X with a < b, and let x ∈]a, b[. Then, there exists n ∈ N such that
a, b /∈ Uxn and a <n x <n b, which means that Uxn ⊆]a, b[. Since Uxn is an open set in τ
(see Proposition 5 (3)), it follows that ]a, b[ is a neighborhood of x with respect to τ. The
proofs for (< b) and (> a) are similar.

Moreover, the topology previously defined is related to the topology τ in the next
sense.

Proposition 8. One has τo ⊆ τ.

Proof. Remark 2 gives us that ]a, b[, (< b) and (> a) are open sets in τ. That means
that all the elements of the subbase that defined the order topology are contained in τ.
Consequently, τo ⊆ τ.

We obtain, as an immediate consequence, the following one.

Corollary 2. σ(τo) = σ(τ), where σ(τ) and σ(τo) are the Borel σ-algebras (generated by the open
sets of X) with respect to τ and τo, respectively.

Proof. ⊆) Indeed, this is true due to the fact that τo ⊆ τ (see the previous proposition)
means that σ(τo) ⊆ σ(τ).

⊇) Let G be an open set in τ. Since X is separable with respect to d, we can write
G =

⋃{Uxn : x ∈ G, Uxn ⊆ G, n ∈ N}, a countable union. Moreover, since Uxn is convex
for each x ∈ X and n ∈ N by Proposition 7, Uxn can be written as the countable union of
sets of the form [a, b], [a, b[, ]a, b[ or ]a, b] (see Definition 6). Indeed, recall, from Corollary 3
that each convex set can be expressed as the countable union of intervals. It is clear that
[a, b], ]a, b[∈ σ(τo), since they are, respectively, closed and open with respect to the order
topology. Now, note that ]a, b] and [a, b[ can be written as the intersection of an open
and a closed subset of X, so they both belong to σ(τo). Hence, given x ∈ X and n ∈ N,
Uxn ∈ σ(τo) and, consequently, G ∈ σ(τ), which finishes the proof.

Remark 3. A function F : X → [0, 1] is a cumulative distribution function with respect to τ if
and only if it is a cumulative distribution function with respect to τo.

Proof. Indeed, if F is a cumulative distribution function with respect to τ, then there exists
a probability measure µ on the Borel σ-algebra of X (with respect to τ) such that F = Fµ.
What is more, since σ(τ) = σ(τo) (by the previous corollary), F is a cumulative distribution
function with respect to τo.

3.2. Defining a Linearly Ordered Topological Space from a Polish Ultrametric Space

In this subsection, we define a linear order from a Polish ultrametric space, that is,
an ultrametric space which is complete and separable. For that purpose, we first need to
define an order on Gn. Note that Gn is countable because (X, d) is separable.

Definition 18. We can enumerate G1 = {g1, g2, . . .}. Since each element of G1 can be decomposed
into a countable number of elements of G2, we can write gi = gi1 ∪ gi2 ∪ . . . for each gi ∈ G1, and
define the lexicographic order on G2. Hence, we can enumerate G2 by considering, first, the elements
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which are contained in g1, then those which are contained in g2, . . .. Recursively we define an order
on Gn for each n ∈ N.

Given n ∈ N, this order induces an order on X given by x ≤n y if and only if Uxn ≤ Uyn.
From that order, we define an order on X given by x ≤ y if and only if x ≤n y for each n ∈ N.

Remark 4. ≤ is B-compatible.

Proof. Let x, z ∈ X be such that x ≤ z, and consider n ∈ N. By definition, it holds that
x ≤n z. Suppose that Uxn 6= Uzn, and let y ∈ Uxn and t ∈ Uzn. Let us prove that y ≤ t. It
follows that Uyn = Uxn and Utn = Uzn and, hence, y ≤n t (since x ≤n z). If there exists
m > n with t <m y, then it is clear that t <k y for each k ≥ m and t ≤k y for each k < m
because of the relationship between the order ≤k+1 and ≤k given by the lexicographic
order. It follows that t ≤ y, but then t ≤n y, and, hence, t =n y, so Uxn = Uyn = Utn = Uzn,
a contradiction. Therefore, y ≤m t for each m, and, hence, y ≤ t.

Example 2. Let X be the Cantor set. As a topological space, this set is homeomorphic to the product
of countably many copies of the space {0, 1}, where we consider the discrete topology on each copy.
Hence, this is the space of all sequences in two digits {(xn) : xn ∈ {0, 1}, for n ∈ N}.

Now, define the ultrametric

d(x, y) =


1

2n if xk = yk and xn+1 6= yn+1 for each k ≤ n

1 if x1 6= y1

Note that (X, d) is complete and separable, so it is a Polish ultrametric space. Now, according
to the previous definition, we can order the elements of Gn as follows:

G1 = {g0, g1}, where g0 = {0} × {0, 1} × {0, 1} × . . . and g1 = {1} × {0, 1} × {0, 1} ×
. . .

Now, we can write G2 = {g00, g01, g10, g11}, where g00 = {0} × {0} × {0, 1} × . . ., g01 =
{0} × {1} × {0, 1} × . . ., g10 = {1} × {0} × {0, 1} × . . ., g11 = {1} × {1} × {0, 1} × . . .

Proposition 9. (Gn,≤n) is a well-ordered set (that is, it is a linear ordered set and each subset has
a minimum).

Proof. Note that ≤n is a linear order on Gn for each n ∈ N, which follows from the fact
that the elements in Gn are enumerated according to the lexicographic order.

Let us prove that each nonempty subset of Gn has a minimum for each n.
It is clear, by construction, that any subset of G1 has a minimum, since we have started

by enumerating G1.
Reasoning by induction, we now suppose that there exists the minimum of each subset

of Gn. Next, we show that, given A ⊆ Gn+1 with A 6= ∅, there exists the minimum of A
in Gn+1. Indeed, let B = {Uxn : Ux,n+1 ∈ A}. By the induction hypothesis, we have the
existence of the minimum of B in Gn. Let x ∈ X be such that Uxn is the minimum of B in
Gn (note that, in particular, Ux,n+1 ∈ A). Let {xi : i ∈ I} ⊆ X, where I ⊆ N, be such that
Uxn =

⋃
i∈I Uxi ,n+1. By definition of the order on Gn+1, the set C = {Uxi ,n+1 : i ∈ I} is well

ordered in Gn+1. Moreover, C ∩ A 6= ∅ (since Ux,n+1 ∈ A ∩ C), and the minimum of C is
a lower bound of A (since, otherwise, Uxn is not the minimum of B). It follows that the
minimum of A ∩ C is the minimum of A.

Next, we recall a theorem which is useful to prove the next results.

Theorem 2 ([22], Th. 4.3.9). A metric space X is complete if and only if for every decreasing
sequence of nonempty closed subsets of X, (Fn), with Fn+1 ⊆ Fn for each n ∈ N, and diam(Fn)→
0, there is a point x ∈ X such that x ∈ ⋂n∈N Fn.
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Proposition 10. Let (xn) be a sequence of points of X such that xn+1 ∈ Uxnn. Then, there exists
x ∈ X such that

⋂
n∈N Uxnn = {x} and Uxnn = Uxn.

Proof. Let (xn) be a sequence of points of X such that xn+1 ∈ Uxnn for each n ∈ N. Then
Uxn+1,n+1 ⊆ Uxnn for each n ∈ N. Since, by Proposition 5 (1), diam(Uxnn) ≤ 1

2n → 0,
then, by Theorem 2, there exists x ∈ ⋂n∈N Uxnn. Hence, Uxn = Uxnn. Suppose that there
exists y ∈ X such that y ∈ ⋂n∈N Uxnn. Then d(x, y) ≤ 1

2n → 0, which means that y = x.
Consequently, {x} = ⋂

n∈N Uxnn.

Corollary 3. Let x ∈ X. Then {x} = ⋂
n∈N Uxn.

Proof. It immediately follows from the previous proposition.

Lemma 1. Let A ⊆ X. Then:

1. A has an infimum.
2. A has a supremum or sup A = ∞. We say that sup A = ∞ if for each x ∈ X, there exists

y ∈ A such that y > x (that is, A does not have an upper bound).

Proof. 1. By Proposition 9, there exists the minimum of each subset of Gn with the order
≤n, so let Mn = min{Uan : a ∈ A}, where the minimum is considered in (Gn,≤n).
Note that Mn+1 ⊆ Mn for each n ∈ N, so it follows, by Proposition 10, that there
exists m ∈ X such that {m} =

⋂
n∈N Mn and Umn = Mn for each n ∈ N. Since

Mn = min{Uan : a ∈ A} in Gn, it holds that Mn ≤n Uan for each a ∈ A, which gives
us that m ≤n a for each a ∈ A and each n ∈ N or, equivalently, m ≤ a for each a ∈ A;
that is, m is a lower bound of A. Suppose that there exists b ∈ X such that m < b ≤ a
for each a ∈ A; then, there exists n ∈ N such that m <n b ≤n a for each a ∈ A, but this
is a contradiction with the definition of Mn. Consequently, m is the infimum of A.

2. Let A ⊆ X with A 6= ∅. Consider the set Y = {y ∈ X : y ≥ x, ∀x ∈ A}. By the
previous item, we have that there exists the infimum of Y or Y = ∅. Hence, we
distinguish two cases:

(a) Suppose that Y = ∅; then, sup A = ∞.
(b) Now, suppose that Y 6= ∅, and let m = inf Y. Then, a standard argument can

be used to prove that m is the supremum of A.

The next result immediately follows from the previous lemma.

Remark 5. Let X be a linearly ordered topological space with respect to the order given in
Definition 18. Then, the Dedekind–MacNeille completion of X satisfies:

1. DM(X) = φ(X) ∪ {X} if sup X = ∞. Note that, indeed, DM(X) is the one-point
compactification of φ(X).

2. DM(X) = φ(X) (or, equivalently, (X, τo) is compact) if sup X 6= ∞.

Proposition 11. (X,≤) is a totally ordered set with a bottom. If d is totally bounded, then it also
has a top.

Proof. Note that X is totally ordered under ≤, which follows from Remark 1 and the fact
that ≤n is a total order on Gn for each n ∈ N.

Given n ∈ N, let Mn be the minimum of Gn. By Proposition 10, there exists a ∈ X such
that a =

⋂
n∈N Mn. It easily follows that a is the bottom of X.

Finally, note that d is totally bounded if and only if Gn is finite for each n ∈ N. In this
case, we can define Mn as the maximum of Gn for each n ∈ N. By Proposition 10, there
exists b ∈ X such that b =

⋂
n∈N Mn. It easily follows that b is the top of X.

Proposition 12. Let x ∈ X. Then Uxn = [a, b|, where a = min Uxn, b = sup Uxn, and | means
[ or ].
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Proof. Note that there always exists the minimum of Uxn for each x ∈ X and n ∈ N by
Proposition 9. Indeed, that proposition lets us claim that there exists the minimum of Uxn in
Gm for each m ∈ N. Let Mm be the minimum of Uxn in Gm. Then, by Proposition 10, there
exists m ∈ X such that m =

⋂
m≥n Mm. Note that m is the minimum of Uxn with respect to

the order ≤. Moreover, Lemma 1 gives us the existence of the supremum of Uxn for each
x ∈ X and n ∈ N. We define a = min Uxn and b = sup Uxn (note that b can be infinite), and
now we show that [a, b[⊆ Uxn ⊆ [a, b]:

• On the one hand, let y ∈ [a, b[ be such that y /∈ Uxn. Then, y 6=n x, so the following
hold:

1. Suppose that y <n x. In this case, y is a lower bound of Uxn, which implies that
y ≤ inf Uxn = a. Since y 6= a (since y 6=n x and a =n x), it holds that y < a,
which is a contradiction with the fact that y ∈ [a, b[.

2. Suppose that y >n x. In this case, y is an upper bound of Uxn, which implies that
y ≥ sup Uxn = b, which is a contradiction with the fact that y ∈ [a, b[.

Therefore, we have that [a, b[⊆ Uxn.
• On the other hand, it is clear that Uxn ⊆ [a, b].

We conclude that Uxn = [a, b|.

Lemma 2. Let x ∈ X.

1. If x is a non-left-isolated point such that x = min Uxm for some m ∈ N, then there exists
n ≥ m such that Uxn does not have an immediately previous element in Gn.

2. If x = max Uxn for some n ∈ N, then x is right-isolated.

Proof. Let x ∈ X.

1. Suppose that, for each n ≥ m, there exists the element immediately before Uxn. Let
Uxnn be the set immediately before Uxn for each n ≥ m, and consider xi = xm for
i ≤ m. Then, by Proposition 10, there exists z ∈ X such that {z} = ⋂

n∈N Uxnn ∈ X
and Uzn = Uxnn. Note that z < x. What is more, ]z, x[= ∅. Indeed, if there exists
y ∈ X such that z < y < x, then there exists n ≥ m such that Uzn <n Uyn <n Uxn,
which is a contradiction with the fact that Uzn = Uxnn is the element immediately
before Uxn in Gn. Consequently, x is left-isolated.

2. Let x = max Uxn for some n ∈ N, and suppose that x is not right-isolated. Then
]x, z[ 6= ∅ for each z ∈ X with z > x. Let y be the minimum of the element immediately
after Uxn in Gn. It holds that ]x, y[ 6= ∅, but this is not possible, since x = max Uxn and
y is the minimum of the element immediately after Uxn.

Proposition 13. If (xn) is right τo-convergent to x, then xn
τ→ x.

Proof. Let x ∈ X and (xn) be a sequence of points of X such that xn
τo→ x with x ≤ xn. We

distinguish two cases depending on whether x is the supremum of Uxn or not:

1. Suppose that there exists n ∈ N such that x = sup Uxn. It follows that x = max Uxn.
By Lemma 2 (2), we have that x is right-isolated. Now, let b be the minimum of the
element immediately after Uxn in Gn. It holds that ]x, b[= ∅. Therefore, there exists
n0 ∈ N such that xm = x for each m ≥ n0. Consequently, xn

τ→ x.
2. Suppose that x 6= sup Uxn for each n ∈ N, and let bn = sup Uxn. Then, x < bn for each

n ∈ N. Now, let n ∈ N. Since xn
τo→ x, there exists n0 ∈ N such that x < xm < bn for

each m ≥ n0, which means that xm ∈ Uxn for each m ≥ n0 and, consequently, xn
τ→ x.

Corollary 4. (xn) is a sequence that right τo-converges to x if and only if (xn) is right τ-convergent
to x.
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Proof. It immediately follows from the previous proposition and the fact that τo ⊆ τ (see
Proposition 8).

Proposition 14. Let f : X → [0, 1] be a monotonically non-decreasing function. Then f is right
τ-continuous if and only if f is right τo-continuous.

Proof. It immediately follows from Corollary 4.

Recall from [7] that, given the cumulative distribution function of a probability
measure on a separable linearly ordered topological space, X, it is monotonically non-
decreasing, sup F(X) = 1, inf F(X) = 0 if there does not exist the minimum of X, and it is
also right τo-continuous. What is more, under some assumptions given in [9], a function
satisfying these properties is the cumulative distribution function of a certain probability
measure. Hence, the previous proposition allows us to consider, indistinctly, the topology
of the order or the one given by the ultrametric in order to have the right continuity of a
cumulative distribution function.

3.3. Herrlich’s Construction

In this subsection, we see how to define another order from an ultrametric. Refs. [23,24]
are good references for this topic. Before defining the order, we give a concept that will be
essential in the construction made next.

Definition 19. A total order on X is discrete if all points of X are isolated.

Let (X, d) be a separable ultrametric space. Since d is separable, Gn is countable for
each n ∈ N. G1 can be discretely ordered. Indeed, if G1 is finite, then we are finished. If G1
is not finite, let ≺ be the usual order over Z = {− 1

n : n ∈ N} ∪ { 1
n : n ∈ N}. The fact that

G1 is countable lets us define a bijection f : G1 → Z. Moreover, Uxn1 1 ≤1 Uxn2 1 if and only
if f (Uxn1 1) � f (Uxn2 1). Thus, we have shown that G1 is discretely ordered. Since G1 can be
decomposed into a countable number of elements in G2, we can write gi = gi1 ∪ gi2 ∪ . . .
for each gi ∈ G1. What is more, we can give a discrete order for the elements of G2 which
are contained in gi by taking advantage of the order on Z. Indeed, we can define the
lexicographic order on G2. Roughly speaking, according to that order, an element gij is less
than gik if, following the enumeration, gij ≤2 gik. Recursively we define a discrete order on
Gn for each n ∈ N.

The next step is defining a linear order on X such that τo = τ. For this purpose, given
x ∈ X, we first consider a point a ∈ Uxn that, once we have constructed the order, is the
minimum of Uxn. Since Uxn can be decomposed into a countable union of elements in
Gn+1, we order those elements such that a belongs to the first element of them. For the rest
of elements in the subdivision, we choose a point that, after constructing the order, will
be the minimum of the element where we have considered it. Analogously, we proceed to
define the maximum of Uxn. We proceed recursively to define the order ≤ in X.

Remark 6. ≤ is B-compatible.

Proof. The proof is similar to the one described in Remark 4.

Proposition 15. (X,≤) is a totally ordered set with a bottom and a top.

Proof. Indeed, it is clear that (X,≤) is totally ordered if we take into account the previous
construction. Moreover, the minimum of the first element in G1 is the minimum of X with
the order. The maximum of the last element in G1 is the maximum of X.

Proposition 16. Let x ∈ X. Then Uxn = [a, b], where a = min Uxn and b = max Uxn.

Proof. It immediately follows from the way we have defined the order on X.



Mathematics 2022, 10, 4518 13 of 17

Corollary 5. Let x ∈ X and n ∈ N. If a, b ∈ X are such that [a, b] = Uxn, then a is left-isolated,
and b is right-isolated.

Proof. Let x ∈ X and n ∈ N, and consider Uyn and Uzn as the previous and the follow-
ing elements to Uxn. By Proposition 16, we can write Uyn = [a1, b1] and Uzn = [a2, b2].
Consequently, ]b1, a[= ∅ and ]b, a2[= ∅, which imply that a is left-isolated and b is right-
isolated.

Proposition 17. τo = τ.

Proof. According to Proposition 8, we have that τo ⊆ τ. Now, given x ∈ X and n ∈ N,
suppose that Uyn and Uzn are, respectively, the previous and the following elements to
Uxn. By Proposition 16, we can write Uyn = [a1, b1] and Uxn = [a, b] and Uzn = [a2, b2].
Consequently, Uxn =]b1, a2[, which gives us that τ ⊆ τo.

3.4. Defining a Probability Measure from a Cumulative Distribution Function

Let Γ be a fractal structure on X which is T0 with respect to the induced quasi-
pseudometric, d, and for which Gn is countable for each n ∈ N. Denote by d∗ the ultrametric
induced by the fractal structure and consider a B-compatible order in d∗. For example,
Sections 3.2 and 3.3 can be used to construct such an order. With the aim of using the order
of Section 3.2, the ultrametric is required to be complete, so the order must be defined on
the completion X̃ of X, from the (complete) ultrametric d̃∗ induced by the fractal structure.
Then we restrict the order from X̃ to X. If we are working with the order of Section 3.3, we
can define the order both from d∗ on X or from d̃∗ on X̃ (which is usually more convenient).
Note that, since the order is B-compatible, it is equivalent to define the order on X̃ and
to define it on G̃n = {Ũ∗xn : x ∈ X} for each n ∈ N, which is equivalent to define it on
Gn = {U∗xn : x ∈ X} for each n ∈ N. It follows that for x, y ∈ X, x ≤ y if and only if
U∗xn ≤n U∗yn for each n ∈ N. Once we have defined the order, we can consider a probability
measure and its cumulative distribution function, F, on the linearly ordered topological
space. The goal of this subsection is to define a pre-measure from F, such that it can
be extended, by following the procedures in [3,4], to a probability measure such that its
cumulative distribution function is F.

Definition 20. Let Γ be a fractal structure on X, µ a probability measure on X and F : X → [0, 1]
its cumulative distribution function defined with respect to the order defined from d∗ (following
the procedures in the previous subsections). Let us define the pre-measure ωF : G → [0, 1] by
ωF(U∗xn) = sup F(U∗xn)− inf F−(U∗xn).

Remark 7. Note that if the order is defined by using the order of Section 3.3, and a = min U∗xn
and b = max U∗xn, then ωF(U∗xn) = F(b)− F−(a).

The following results follows from the convexity of U∗xn (Proposition 7) and Proposition 3
(4).

Lemma 3. Let x ∈ X and n ∈ N. Then, there exists am, bm ∈ U∗xn such that am+1 ≤ am and
bm ≤ bm+1 for each m ∈ N and U∗xn =

⋃
m∈N[am, bm].

Proposition 18. Let x ∈ X and n ∈ N. Then, ωF(U∗xn) = µ(U∗xn).

Proof. Let (am) and (bm) be as in Lemma 3. Note that, by Lemma 3, U∗xn =
⋃

m∈N[am, bm],
and hence, by the continuity of the measure µ from below, it follows that F(bm)− F−(am) =
µ([am, bm])→ µ(U∗xn).

On the other hand, note that sup F(U∗xn) = supm F(bm) = limm F(bm) and inf F−(U∗xn) =
infm F−(am) = limm F−(am), so ωF(U∗xn) = sup F(U∗xn) − inf F−(U∗xn) = limm(F(bm) −
F−(am)) = µ(U∗xn).
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From the previous proposition and [4] (Prop. 3.40), we obtain the following.

Corollary 6. The probability measure µωF , defined by the pre-measure ωF, agrees with µ on the
Borel σ-algebra of X.

We can apply this theory to the classical theory of cumulative distribution functions as
shown in the next example.

Example 3. On R, consider the natural fractal structure Γ = {Γn : n ∈ N}, where Γn =
{[ k

2n , k+1
2n ] : k ∈ Z} for each n ∈ N. Let d∗ be the ultrametric induced by Γ on R. Note that

the usual order is B-compatible with d∗, so we will use it in this example. Let F : R → [0, 1] be
a classical cumulative distribution function. Note that if x ∈ { k

2n : k ∈ Z}, then U∗xn = {x},
so ωF(U∗xn) = F(x) − F−(x). In the other case, U∗xn =] k

2n , k+1
2n [ for some k ∈ Z and, in this

case, ωF(U∗xn) = F−( k+1
2n )− F( k

2n ). By the previous corollary, it holds that F is the cumulative
distribution function of the probability measure defined from the pre-measure ωF.

Next, we show an example of order defined by taking into account Herrlich’s con-
struction (Section 3.3).

Example 4. Consider the natural fractal structure on R. Thus, we define Γ = {Γn : n ∈ N},
where Γn =

{[
k

2n−1 , k+1
2n−1

]
: k ∈ Z

}
for each n ∈ N.

Note that U∗x1 = {x} for each x ∈ Z and U∗x1 = ]bxc, bxc+ 1[ for each x ∈ R \ Z, where
bxc is the floor function; that is, the largest integer not greater than x.

Now, we define the bijection f : G1 → Z = {− 1
n : n ∈ N} ∪ { 1

n : n ∈ N} such that

f (U∗x1) =


− 1

2x+1 if x ∈ N∪ {0}
− 1

2(bxc+1) if x ∈ [0, ∞[\N
− 1

2x if x ∈ Z−
− 1

2bxc+1 if x ∈]−∞, 0[\Z

The previous bijection assigns the elements in Z to each U∗x1, as Figure 1 shows.

1
3

 
1
2

 1 1 
1
3

 
1
4

 
1
2

 
1
4

 ......
{0} ]0,1[ {1}]  1,0[{  1}{  2} ]1,2[]  2,  1[

Figure 1. Bijection between G1 and Z.

Now, if we consider the usual order on Z, it induces an order on G1. Moreover, observe that each
gi ∈ G1 is decomposed into a finite number of elements in G2. For example, note that U∗x1 = U∗x2 for

each x ∈ Z, while U∗x1 gives us the collection
{]
bxc

2 , bxc+ 1
2

[
,
{
bxc+ 1

2

}
,
]
bxc+ 1

2 , bxc+1
2

[}
in

G2 otherwise. Since that collection is finite, it is discretely ordered with the usual order, and, hence,
G2 is ordered with the lexicographic order as explained previously. Therefore, if we list the elements
of each Gn according to the order, we have that:

G1 = {{0}, ]0, 1[, {1}, . . . , {−1}, ]− 1, 0[}

G2 =

{
{0},

]
0,

1
2

[
,
{

1
2

}
,
]

1
2

, 1
[

, {1}, . . . , {−1},
]
−1,−1

2

[
,
{
−1

2

}
,
]
−1

2
, 0
[}

...
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From that order, we can define a linear order on the completion of the space, R̃, following
Section 3.3, whose topology we denote by τo. For that, we have to adequately choose the minimum
and maximum of each Ũ∗xn. For example, for ]0, 1[, the minimum is the point (]0, 1

2n−1 [) ∈ R̃, and
the maximum is the point (]1− 1

2n−1 , 1[) ∈ R̃; this is similarly true in the other cases. Note that

0 ∈ U∗0n and
(]
− 1

2n−1 , 0
[)

n∈N
are, respectively, the minimum and the maximum of R̃.

According to Proposition 17, it follows that τo = τd̃∗ in R̃. What is more, we can restrict
the topology given by the ultrametric in the completion of the original space, and it holds that that
restriction gives us the topology of the ultrametric in R. Indeed, it is true due to [5] (Prop. 4.4.10).
Figure 2 shows the linear order induced on R by the order we have defined on Gn for each n ∈ N.

0

Figure 2. Linear order induced by the fractal structure Γ in R.

Note that 0 is the minimum of X with respect to the order and that points which are located
on the left of this point in R are greater than those which are on the right (if we consider the usual
order).

In fact, note that since the order is B-compatible, we can forget about the definition of the order
on the completion R̃, since we can define it just from the orders given in each Gn, as explained at the
beginning of this subsection.

Once we have defined the order according to Herrlich’s construction and the natural fractal
structure on R, we consider the cumulative distribution function of a probability measure defined on
R with respect to the usual order. Let us denote that cumulative distribution function by F. Then,
the cumulative distribution function given by the new order that we have defined on R (from the
fractal structure), which we can denote by Fo, is defined by

Fo(x) =
{

F(x)− F−(0) if 0 ≤ x < ∞
F(x) + 1− F−(0) if −∞ < x ≤ 0

3.5. Defining a Cumulative Distribution Function from a Probability Measure

Now, we study the inverse relationship. If we have defined a probability measure
(from a pre-measure satisfying the mass distribution conditions, which can be seen in
([3], Section 3)) on a space with a fractal structure, how can we describe the cumulative
distribution function of that probability measure?

Let Γ be a fractal structure on X, and define an order as in the previous subsection.
Let ω : G → [0, 1] be a pre-measure satisfying the mass distribution conditions such that it
induces a probability measure µ on X, as described in [3,4]. The goal of this subsection is to
give a description of the cumulative distribution function of the probability measure µ in
terms of the pre-measure ω.

Given n ∈ N, let us define Fn : X → [0, 1]. Given x ∈ X, then Fn(x) is defined as
Fn(x) = ∑y≤x ω(U∗yn), where the sum is on elements of Gn, so ω(U∗yn) only appears once
for each element U∗yn ∈ Gn, not for each point y ∈ X.

Finally, F : X → [0, 1] is defined by F(x) = limn→∞ Fn(x) for each x ∈ X.

Proposition 19. F is the cumulative distribution function of the probability measure µ.

Proof. Let Fµ be the cumulative distribution function of the probability measure µ. Next,
we prove that Fµ = F.

Let x ∈ X.
Claim. (≤ x) =

⋂
n∈N

⋃
y≤x U∗yn, where the union is on elements of Gn.

It is obvious that (≤ x) ⊆ ⋂n∈N
⋃

y≤x U∗yn.
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On the other hand, let z ∈ ⋂n∈N
⋃

y≤x U∗yn. Given n ∈ N, it follows that z ∈ ⋃y≤x U∗yn,
so there exists y ≤ x such that z ∈ U∗yn. Then U∗zn = U∗yn ≤n U∗xn, and hence z ≤n x. It
follows that z ≤n x for each n ∈ N and, hence, z ≤ x, so z ∈ (≤ x). Therefore, the claim is
proved.

From the claim and the continuity of the measure from above, it follows that Fµ(x) =
µ(≤ x) = limn→∞ µ(

⋃
y≤x U∗yn). Now, given n ∈ N, note that

⋃
y≤x U∗yn is a union of

mutually disjointed sets, and, hence, µ(
⋃

y≤x U∗yn) = ∑y≤x µ(U∗yn) = ∑y≤x ω(U∗yn) =
Fn(x).

Therefore, Fµ(x) = limn→∞ µ(
⋃

y≤x U∗yn) = limn→∞ Fn(x) = F(x).

Next, we give an example of the order in Section 3.2.

Example 5. Let X = NN with the fractal structure given by Γ = {Γn : n ∈ N}, where Γn =
{{m1} × · · · × {mn} × N× N× · · · : (m1, . . . mn) ∈ Nn}. Let x = (x1, x2, . . .) ∈ X. Then
U∗xn = {x1} × · · · × {xn} ×N× · · · for each n ∈ N. Note that d∗ is complete. The order given
in Section 3.2 is defined as follows: in Gn, define the lexicographic order, that is, U∗xn ≤n U∗yn if
and only if x1 < y1 or (x1 = y1 and x2 < y2) or . . . or (x1 = y1, x2 = y2, . . . xn−1 = yn−1 and
xn ≤ yn). Then, the order is defined by x ≤ y if and only if x ≤n y for each n ∈ N.

Consider on X the pre-measure ω : G → [0, 1] defined as follows: in G1, the mass is distributed
by ω(U∗x1) =

1
2x1 for each x = (x1, x2, . . .) ∈ X. Note that the sum of the pre-measure of all the

elements of G1 is 1. In G2, given U∗x1 ∈ G1, note that U∗x1 =
⋃{U∗y2 : y1 = x1, y2 ∈ N}. Then we

distribute the mass of U∗x1 (which is 1
2x1 ) in a similar way: ω(U∗x2) =

1
2x1 2x2 . In general, we can

define ω(U∗xn) =
1

2x1 2x2 ...2xn for each x = (x1, x2, . . .) ∈ X and each n ∈ N.
Since d∗ is complete, then ω defines a probability measure µ on the Borel σ-algebra of (X, d∗).

The cumulative distribution function of µ is given in Proposition 19 as follows.
Given x = (x1, x2, . . .) ∈ X, note that F1(x) = ∑x1

i=1
1
2i = 1− 1

2x1 , F2(x) = (1− 1
2x1−1 ) +

1
2x1 (1− 1

2x2 ) = 1− 1
2x1 − 1

2x1+x2
, and, in general, Fn(x) = (1− 1

2x1−1 ) +
1

2x1 (1− 1
2x2−1 ) + · · ·+

1
2x1+···+xn−1

(1− 1
2xn ) = 1− 1

2x1 − 1
2x1+x2

− · · · − 1
2x1+x2+···+xn .

Then, F(x) = limn→∞ Fn(x) = 1−∑∞
i=1

1
2x1+x2+···+xi

.

4. Conclusions

This paper serves as a meeting point between the theory on generating probability
measures from fractal structures and the one on cumulative distribution functions on
separable linearly ordered topological spaces, both developed previously by the authors.
First of all, we see how to define a linear order from a space with a fractal structure under a
compatibility condition which lets us ensure that the Borel σ-algebra of the order topology
meets the one generated by the topology of the ultrametric induced by the fractal structure.
From this connection, we show two examples of linear orders: one that starts from a Polish
ultrametric space (note that the completion of a space with a fractal structure is a Polish
ultrametric space when working with the ultrametric on the completion and under the
assumptions made of the space being T0 and the collection of balls being countable) and
another one which is, indeed, a total order with a bottom and a top for which both topologies
coincide. Finally, the previous theory and examples let us prove that we can relate the
concepts of pre-measure, probability measure and cumulative distribution function as
follows. On the one hand, from a cumulative distribution function on a linearly ordered
topological space (constructed from a fractal structure), we can define a pre-measure from
the collection of balls given by the ultrametric induced by the fractal structure such that its
extension is the probability measure whose cumulative distribution function is the original
function. On the other hand, given a probability measure on a linearly ordered topological
space (which has been constructed from a fractal structure), its cumulative distribution
function can be described from a pre-measure defined on the collection of balls given by the
ultrametric induced by the fractal structure. This work lets researchers work in the ideal
context under their interest when having to treat with these elements of measure theory.



Mathematics 2022, 10, 4518 17 of 17

Indeed, for authors it is possible to look for applications of both theories by choosing the
best context (linearly ordered topological space or fractal structures) in future works.
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