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Abstract: Transient wave processes in viscoelastic structures built from functionally graded material
(FGM) still remain almost unexplored. In this article, the problem of the propagation of nonstation-
ary longitudinal waves in an infinite viscoelastic layer of a FGM with plane–parallel boundaries
is considered. The physical and mechanical parameters of the FGM depend continuously on the
transverse coordinate, while the wave process propagates along the same coordinate. The viscoelastic
properties of the material are taken into account employing the linear integral Boltzmann–Volterra
relations. The viscoelastic layer of the FGM is replaced by a piecewise-homogeneous layer con-
sisting of a large number of sub-layers (a package of homogeneous layers), thus approximating
the continuous inhomogeneity of the FGM. A solution of a non-stationary dynamic problem for a
piecewise-homogeneous layer is constructed and, using a specific example, the convergence of the
results with an increase in the number of sub-layers in the approximating piecewise-homogeneous
layer is shown. Furthermore, the problem of the propagation of nonstationary longitudinal waves in
the cross section of an infinitely long viscoelastic hollow FGM cylinder, whose material properties
continuously change along the radius, is also considered. The cylinder composed of the FGM is
replaced by a piecewise-homogeneous one, consisting of a large number of coaxial layers, for which
the solution of the non-stationary dynamic problem is constructed. For both the layer and the cylinder
composed of a viscoelastic FGM, the results of calculating the characteristic parameters of the wave
processes for the various initial data are presented. The influence of the viscosity and inhomogeneity
of the material on the dynamic processes is demonstrated.

Keywords: functionally graded materials; wave processes; viscoelasticity; dynamics of layered
bodies; inhomogeneous layer; inhomogeneous cylinder

MSC: 74D05

1. Introduction

Materials with spatial heterogeneity are widely used in various fields of modern
industry and are the subject of research in many areas of science. This explains the growing
interest in the study of functionally graded materials (FGM) with a continuous dependence
of physical and mechanical properties on spatial coordinates and, in particular, in the study
of wave processes in such materials.

Publications devoted to the study of the dynamic behavior of continuously inhomo-
geneous elastic solids using analytical and numerical–analytical methods first appeared
several decades ago [1–5]. At that time, in the study of non-stationary wave processes
in such solids, analytical methods using integral transforms of various types [1–3], and
numerical–analytical methods were developed to solve problems of the propagation of
harmonic elastic waves [4,5]. Modern advances in the field under consideration are detailed,
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for example, in the review papers [6–8]. In addition, a review of studies of vibrations in
thin-walled structural elements made of FGM is contained in [9,10].

Among the methods used to study wave processes in FGM, matrix methods of various
types based on the reduction of the equations of dynamics to a system of first order
differential equations are widespread. With their help, a number of studies of stationary
wave processes in inhomogeneous elastic waveguides were carried out [11,12]. In [13,14],
the dispersion of Lamb waves in elastic FG plates was studied using the power series
method. The “orthogonal polynomial approach” [15,16] also finds wide application in
dynamic problems for FGM. In addition, along with the conventional finite element method,
the Semi-Analytical Finite Element Method (SAFE) has been used [17,18].

When studying harmonic oscillations, as well as harmonic waves in FG waveguides, a
common approach is the approximation of the continuously inhomogeneous material such
as the FGM, by a layered structure with continuity conditions at the interfaces between the
layers. This approach is expressed in various modifications of the transfer matrix method,
which was used to study stationary wave processes in elastic FG half-spaces, layers, and
plates [19,20], as well as piezoelectroelastic FG films and cylinders [21,22].

The vibration behavior of FGMs also exhibits notable temperature and moisture de-
pendence as demonstrated in [23]. This dependence has been studied regarding stationary
wave propagation in FG porous sandwich plates [24] by a higher-order shear deformation
theory (HSDT). This theory was applied to analyze the stationary wave propagation in
porous plates resting on a viscoelastic foundation [25] and it was applied in conjunction
with nonlocal elasticity theory to dynamics of FG nanoplates [26].

In recent years, progress has been made in the field of studying the problems of the
diffraction of sound harmonic waves on solids with continuously inhomogeneous elas-
tic [27] and thermoelastic [28] coatings using the spline collocation method in combination
with analytical methods. The above-mentioned works [27,28] also contain a brief review of
publications on this topic.

It is to be noted that the vast majority of publications on FGM dynamics are devoted
to stationary wave processes (harmonic oscillations and waves), and mainly within the
framework of linear elasticity, thermoelasticity, and piezoelectroelasticity. However, one
should not ignore the fact that the study of non-stationary waves in FGM, which started in
the last century [1–3], continues in the last decades and has its important place in research
related to FGM dynamics [29–31].

It is also important to note that there are much fewer publications on the dynamics of
viscoelastic FGM. Stationary waves have been studied within the framework of the Kelvin–
Voigt viscoelastic model [32,33] and the Kelvin–Voigt fractional model [34]. Harmonic
oscillations are considered using the standard viscoelastic body model in [35]. The listed
works contain references to other publications on the dynamics of viscoelastic FGM, but
their number is relatively small. Transient wave processes in viscoelastic structures from
FGM, however, still remain practically unexplored. In the available literature, to the best of
our knowledge, there are no publications on this topic (with a few exceptions, such as [36]
and several other publications by the first author of the present work).

In this regard, the aim of the present work is to investigate the unsteady dynamics of
some canonical solids (e.g., a layer and a hollow cylinder) consisting of viscoelastic FGM. It
should be emphasized that the problem concerns transient wave processes. This implies the
development of methods used in stationary dynamic problems leading to their application
to non-stationary problems. The solid composed of a FGM is replaced by a piecewise-
homogeneous body consisting of a large number of homogeneous components (e.g., layers),
whereby at the component interfaces the displacement and stress vectors are considered
continuous, and the physical and mechanical properties of the layers approximate the
continuously varied material properties of the FGM. The advantage of this method is
the ability to use the already constructed solutions of non-stationary dynamic problems
for piecewise-homogeneous (layered) solids. However, its applicability in the study of
transient wave processes, even for solids with smooth boundaries and continuity of the
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external loads, is not obvious. This is because, on the one hand, with a sufficiently large
number of homogeneous layers approximating the FGM, the properties of adjacent layers
will differ little, but on the other hand, the contact interfaces of the layers will be a source
of additional disturbances. Due to the difficulty of providing a rigorous mathematical
justification of the proposed approach, in this paper we restrict ourselves to confirming
its validity for specific examples by performing the appropriate calculations. It is to be
noted that, in the study of transient wave processes in FGM solids, this approach was
already successfully applied in the case of linear elasticity [37]. For viscoelastic FGMs, some
results have been obtained in the framework of the linear Boltzmann–Volterra model with
a two-parameter exponential kernel (i.e., for standard linear solids) [36].

In this paper, we present the results for singular viscoelastic kernels within the frame-
work of the same Boltzmann–Volterra model. Furthermore, for a viscoelastic piecewise-
homogeneous layer with parallel constituent homogeneous layers (homogeneous layer
bundle), the solution of the unsteady dynamic problem is constructed in a form convenient
for obtaining quantitative results. The nature of transient wave processes in a layer of
viscoelastic FGM, as well as in a hollow cylinder of viscoelastic FGM, is studied for the
selected material properties and constitutive functions.

The results of the present study can be used to a different extent to model the prop-
agation of non-stationary disturbances in viscoelastic coatings on rigid substrates and in
tubes produced, for example, by additive manufacturing, or in tubes produced by coiling.
Furthermore, the results obtained here can be used to verify numerical algorithms and the
performance of engineering software packages. Another useful and important outcome is
that this study has confirmed the possibility of using the method to approximate the contin-
uous inhomogeneity of FGM by a set of homogeneous layers, particularly in nonstationary
dynamic elastic and viscoelastic problems.

2. Formulation of the Dynamics Problem for an Inhomogeneous Viscoelastic Layer

Let us consider the problem of the propagation of nonstationary longitudinal waves
in a viscoelastic infinite layer of thickness L with parallel boundaries, whose material
properties continuously depend on the transverse coordinate X. The viscoelastic properties
will be taken into account within the framework of the linear Boltzmann–Volterra model.

The layer is initially at rest, one of its boundaries (X = 0) is fixed, and on the other
(X = L), starting at time t = 0, a uniformly distributed normal load P(t) is applied. Thus,
the wave process propagates in the direction of the material properties variation. Let us
introduce the following dimensionless quantities:

x = X/L, τ = t/t0, u(x, τ) = uX(X, t)/L,

σ1(x, τ) = σX(X, t)/[2G0(x)], P0 f (τ) = P(t)/[2G0(1)],

γs(x, τ) = t0Ts(X, t), γv(x, τ) = t0Tv(X, t),

where uX(X, t), σX(X, t) are the displacement and the stress, t0 = L/c(1), c(x) =√
2w(x)G0(x)/ρ(x) is the velocity of the longitudinal elastic wave; w(x) = [1− ν0(x)]/

[1− 2ν0(x)], G0(x), ν0(x) are the instantaneous values of the shear modulus and Poisson’s
ratio, Ts(X, t), Tv(X, t) are the shear and bulk relaxation kernels, ρ(x) denotes density, P0
is a dimensionless constant. In Figure 1a are shown the loading conditions.
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The mathematical formulation of the problem in dimensionless form includes the
equation of dynamics:

∂σ1(x, τ)

∂ x
+ { d

d x
ln[

G0(x)
G0(1)

]}σ1(x, τ) = w(x)
c2(1)
c2(x)

∂2u(x, τ)

∂τ2 , 0 ≤ x ≤ 1, (1)

the boundary conditions:

u(0, τ) = 0, σ1(1, τ) = −P0 f (τ), τ > 0 (2)

and the initial conditions:

u(x, 0) = 0,
∂

∂τ
u(x, 0) = 0, 0 ≤ x ≤ 1, (3)

where

σ1(x, τ) = w(x)(1− d̂1)
∂ u(x,τ)

∂ x , d̂1ξ(τ) =
τ∫
0

d1(x, τ − χ)ξ(χ) dχ,

d1(x, τ) = 1
3[1−ν0(x)]{[1 + ν0(x)]γv(x, τ) + 2 [1− 2ν0(x)]γs(x, τ)}

(4)

Consider a similar problem with the same boundary conditions for a piecewise-
homogeneous layer of the same thickness L, consisting of N homogeneous layers: Xn−1 ≤
X ≤ Xn, (n = 1, 2, . . . , N; X0 = 0; XN = L; N >> 1) with continuity conditions for
displacement and stresses vectors at the contact X = Xm between the layers (m = 1,
2, . . . , N − 1). Let us designate by G(n)

0 , ν
(n)
0 , ρn, cn, T(n)

v (t), T(n)
s (t) the instantaneous

values of the shear modulus and Poisson’s ratio, as well as the density, the velocity of
the longitudinal elastic waves, the kernels of the bulk and shear relaxation for the nth
layer, and by u(n)

X (X, t), σ
(n)
X (X, t) the displacement and the stress in the nth layer. We

approximate the functions characterizing the properties of the material of the original
functionally graded layer using the relations (n = 1, 2, . . . , N):

G(n)
0 = G0(xn), ν

(n)
0 = ν0(xn), ρn = ρ(xn),

γ
(n)
v (τ) = γv(xn, τ), γ

(n)
s (τ) = γs(xn, τ).

Here xn = Xn/L, τ = t /t0, t0 = L/c(1) = L/cN as cn = c(xn). In this way, γ
(n)
v (τ) =

t0T(n)
v (t), γ

(n)
s (τ) = t0T(n)

s (t),P0 f (τ) = P(t)/(2G(N)
0 ). In addition, we introduce the

dimensionless quantities u(n)(x, τ) = u(n)
X (X, t)/L, σ

(n)
1 (x, τ) = σ

(n)
X (X, t)/(2G(n)

0 ), αn =

cN/cn, wn = w(xn) = (1− ν
(n)
0 )/(1− 2ν

(n)
0 ). The problem setup is shown schematically

in Figure 1b. Note that the thickness and number of layers has to be chosen in the way to
obtain reasonably good approximation of the FGM properties.

The formulation of the problem in dimensionless form for a piecewise-homogeneous
layer includes the equations:

(1− d̂(n)1 )
∂2

∂ x2 u(n)(x, τ)− α2
n

∂2

∂τ2 u(n)(x, τ) = 0, xn−1 ≤ x ≤ xn, x0 = 0, xN = 1, (5)

with boundary conditions:

u(1)(0, τ) = 0, σ
(N)
1 (1, τ) = −P0 f (τ) (6)

initial conditions:
u(n)(x, 0) = 0,

∂

∂τ
u(n)(x, 0) = 0 (7)

and the conditions at the interfaces between layers:

u(m)(xm, τ) = u(m+1)(xm, τ), G(m)
0 σ

(m)
1 (xm, τ) = G(m+1)

0 σ
(m+1)
1 (xm, τ) (8)
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herewith,

σ
(n)
1 (x, τ) = wn(1− d̂(n)1 ) ∂ u(n)(x,τ)

∂ x , d̂(n)1 ξ(τ) =
τ∫
0

d(n)1 (τ − χ)ξ(χ) dχ,

d(n)1 (τ) = 1
3(1−ν

(n)
0 )

[(1 + ν
(n)
0 )γ

(n)
v (τ) + 2(1− 2ν

(n)
0 )γ

(n)
s (τ)]

(9)

We assume that all hereditary kernels satisfy the condition of limited creep.

3. Solution Method for a Piecewise-Homogeneous Layer

The integral Laplace transform is applied to Equations (5), (6), (8), (9), denoting
the images of u(n)(x, τ), σ

(n)
1 (x, τ), f (τ), d(n)1 (τ) as U(n)(x, s), S(n)

1 (x, s), F(s), D(n)
1 (s)

(s—complex variable), respectively. The solution in the images domain reads:

U(n)(x, s) = P0F(s)pn
βN Z(s) [ξ

(n)
1 sh(yn) + ξ

(n)
2 ch(yn)], yn = xαnβn, n = 1, 2, . . . , N,

S(n)
1 (x, s) = P0F(s)

βN Z(s) pnqnαnβn[ξ
(n)
1 ch(yn) + ξ

(n)
2 sh(yn)]

(10)

where

βn = s/
√

1− D(n)
1 (s), qn = wn(1− D(n)

1 ), n = 1, 2, . . . N,

Z(s) = qN [ξ
(N)
1 ch(βN) + ξ

(N)
2 sh(βN)]

pN ≡ 1, pm = −pm+1qm+1, (m ≤ N − 1)(
ξ
(1)
1

ξ
(1)
2

)
=

(
1
0

)
,

(
ξ
(m+1)
1

ξ
(m+1)
2

)
=

(
η
(m)
11 η

(m)
12

η
(m)
21 η

(m)
22

)(
ξ
(m)
1

ξ
(m)
2

)
, m = 1, 2, . . . , N − 1

The expressions for the matrix elements η
(m)
ij are in the form:

η
(m)
11 = qm+1sh(b(m)

1 )sh(b(m)
2 )− qmδ(m)ch(b(m)

1 )ch(b(m)
2 ),

η
(m)
12 = qm+1ch(b(m)

1 )sh(b(m)
2 )− qmδ(m)sh(b(m)

1 )ch(b(m)
2 ),

η
(m)
21 = qmδ(m)ch(b(m)

1 )sh(b(m)
2 )− qm+1sh(b(m)

1 )ch(b(m)
2 ),

η
(m)
22 = qmδ(m)sh(b(m)

1 )sh(b(m)
2 )− qm+1ch(b(m)

1 )ch(b(m)
2 ),

where

δ(m) =
G(m)

0 αmβm

G(m+1)
0 αm+1βm+1

, b(m)
1 = xmαmβm, b(m)

2 = xmαm+1βm+1, m = 1, 2, . . . , N − 1.

Let us consider the case where f (τ) = h(τ) is the Heaviside function and F(s) = 1/s.
Let the relaxation kernels γ

(n)
v (τ), γ

(n)
s (τ) belong to the class of functions expressed as:

K

∑
k=1

ak exp(−bkτ),
K

∑
k=1

ak/bk < 1, ak > 0, bk > 0 (k = 1, 2, . . . K), (11)

The constants ak, bk and K are specific for each particular kernel. The images of
the relaxation kernels have no branch points in the complex plane. Then the solutions
U(n), S(n)

1 in images (10) also have no branch points, in spite of the fact that the functions
βn have branch points. This follows from the general theorem [38] and can also be seen
by expanding the hyperbolic functions included in the expressions (10) into power series.
Note that the roots of the equations 1− D(n)

1 = 0 are the limit points of the set of poles of

the functions U(n), S(n)
1 . We will consider the case when all these roots are real and simple.
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Then, after asymptotic studies of images U(n), S(n)
1 in the vicinity of the infinitely distant

point, as well as in the vicinity of the finite limit points of the set of their poles, the originals
u(n), σ

(n)
1 are represented in the form of a series of residues at the corresponding poles:

u(n)(x, τ) = u(n)
0 (x) + ∑

k
Res
s=sk
s 6=0

[U(n)(x, s)esτ ], u(n)
0 (x) = Res

s=0

[
U(n)(x, s)esτ ],

σ
(n)
1 (x, τ) = −G(N)

0

G(n)
0

P0 + ∑
k

Res
s=sk
s 6=0

[S(n)
1 (x, s)esτ ]

(12)

where

u(n)
0 (x) = −P0

p(0)n

ξ
(0)(N)
1 q(0)N

[ξ
(0)(n)
1 x + ξ

(0)(n)
2 ], xn−1 ≤ x ≤ xn, x0 = 0, xN = 1,

q(0)n = wn[1− D(n)(0)], n = 1, 2, . . . , N

p(0)N ≡ 1, p(0)m = −p(0)m+1 q(0)m+1, m = 1, 2, . . . , N − 1

(
ξ
(0)(1)
1

ξ
(0)(1)
2

)
=

(
1
0

)
,

(
ξ
(0)(m+1)
1

ξ
(0)(m+1)
2

)
=

 − G(m)
0

G(m+1)
0

q(0)m 0

(
G(m)

0

G(m+1)
0

q(0)m − q(0)m+1)xm −q(0)m+1


(

ξ
(0)(m)
1

ξ
(0)(m)
2

)
.

Finding the poles of the functions U(n), S(n)
1 , i.e., zeros of the function Z(s), can be

conducted in the same way as described in [39] for the case of the similar problem of a
layered viscoelastic cylinder.

For relaxation kernels of a general form, the solution in originals is given in the form:

u(n)(x, τ) = 1
2 u(n)

0 (x) + 1
π

∞∫
0

Re[U(n)(x, iω)eiω τ ]dω

σ
(n)
1 (x, τ) = − G(N)

0

2G(n)
0

P0 +
1
π

∞∫
0

Re[S(n)
1 (x, iω)eiω τ ]dω, n = 1, 2, . . . , N

(13)

It is important to emphasize that if all homogeneous layers are linear elastic, then
formulas (13) cannot be used, since in this case the imaginary axis contains the poles of the
functions U(n), S(n)

1 . For other external load functions, the solution is built on the basis of
expressions (12) or (13) using the well-known convolution operation (Duhamel integral).

4. Numerical Results for a FG Viscoelastic Layer

Using the numerical implementation of the constructed solution for a piecewise-
homogeneous layer, studies of wave processes with various input data were carried out.
When approximating the continuously varied material properties of a functionally graded
layer by a certain number of homogeneous layers, the convergence of the results with
an increase in the number of these layers is verified under the condition lim

τ→0
f (τ) = 0.

Figure 2 illustrates such convergence in the case when the external load is a “smoothed step
function” f (τ) = (1− e−50τ)h(τ) with the following values of the material parameters and
dependence on x:

ν0 ≡ 0.3, ρ(x)/ρ(0) ≡ 1, G0(x)/G0(0) = e−2x, γv ≡ 0, γs = γs(τ) = 0.1e−0.3ττ−0.2.

Note that for the chosen f (τ) function, P(t) tends to 2G0(1)P0 when t→ ∞ . The
curves in Figure 2 show at point x = 0 for the different number of sub-layers: N = 20, 40, 80,
(curves 1, 2 and 3, respectively) the variation with the time of the relative stress κ defined as
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κ(x, τ) = G0(x)σ1(x, τ)/[G0(1)P0] = σX(X, t)/[2G0(1)P0]

For each N, the layers’ thickness is taken to be equal to 1/N. With the further increase
in N (N > 80), there is no significant change in the results. Note, the negative stresses
are compressive (P0 > 0). Similar convergence is observed for the displacement and
the velocity.
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Along with the demonstrated convergence of the computational process with increas-
ing the number of layers of the approximate representation of the FGM properties, the
reliability of the estimated parameters of the unsteady wave process in structures made of
FGM was also confirmed by additional verification. First, for the layer composed of FGM,
at a given value of x, it is analytically determined without using the proposed method of
multilayer approximation the dimensionless arrival time τFGM

f (x) to the point x of the first
wave front counted from the boundary where the load is applied. Representing the velocity
of the longitudinal elastic wave as c(x) = c(1)ϕ(x), where ϕ(x) is dimensionless, we get

τFGM
f (x) =

1∫
x

dζ
ϕ(ζ)

. Then τFGM
f was compared with τ

(N)
f (x), obtained by formulas (12) or

(13) for the corresponding piecewise homogeneous layer of N homogeneous sublayers. For
various types of FGM continuous inhomogeneity and for all selected values of x, the value
of τ

(N)
f (x) has been found to tend to τFGM

f (x) with increasing N. For example, for the above

considered FGM layer τFGM
f (0) = 0.632 (rounding to the third decimal place). Approxi-

mating the FGM of the layer by multiple homogeneous layers (corresponding to Figure 2)
we get τ

(20)
f (0) = 0.648, τ

(40)
f (0) = 0.640, τ

(80)
f (0) = 0.636. Moreover, τFGM

f (0.5) = 0.393

while τ
(20)
f (0.5) = 0.403, τ

(40)
f (0.5) = 0.398, τ

(80)
f (0.5) = 0.396. Validation was similarly

performed by comparing the arrival times at the selected points on the first wave fronts
reflected from the boundaries and the comparison shows the same accuracy. In addition,
it may be noted that the results obtained using formulas (12) or (13) for the special case
N = 1 (homogeneous viscoelastic layer) were compared in our previous work [40] with the
results obtained by finite element modeling in the ABAQUS environment, and a very good
agreement between these results was demonstrated in [40].

The results presented below for the various inhomogeneous materials were obtained
with the number of the homogeneous layers discretizing the FGM layer equal to 80. Here
again f (τ) = (1− e−50τ)h(τ). In the problem under consideration, among the various
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characteristics of the wave process, of greatest interest is the variation in time of the relative
stress at the fixed boundary κ(0,τ). In Figure 3 κ(0,τ) is shown by curve 1 calculated for the
following material parameters and constitutive functions:

ν0 ≡ 0.3, ρ(x)/ρ(0) = G0(x)/G0(0) = e−2x,γv ≡ 0, γs = γs(τ) = 0.1e−0.3ττ−0.2.

Thus, the density and the instantaneous shear modulus decrease exponentially in the direc-
tion from the fixed boundary to the boundary where the load is applied, but the velocity of
the longitudinal elastic waves does not depend on x. Curve 2 was obtained with the same
input data, but for the case of a linear elastic material (γv ≡ γs ≡ 0). Curve 3 is obtained for
the case of the homogeneous viscoelastic material for which ρ(x)/ρ(0) = G0(x)/G0(0) ≡ 1.
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It can be seen from Figures 2 and 3 that heterogeneity in the properties of the materials
of the type considered here leads at certain times to the occurrence at the fixed boundary of
the significant tensile stresses.

Figure 4 shows the same curve 1 of Figure 3 compared with curve 2, which is ob-
tained when the density and instantaneous shear modulus vary linearly, ρ(x)/ρ(0) =
G0(x)/G0(0) = 1+(e−2− 1)x, over the same range as in the case of their exponential variation:
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Note that both for the first and the second fronts, which arrived to the fixed boundary
from the loaded surface, the relative stresses with exponential and linear dependence of
the material properties on the coordinate differ insignificantly.

In Figure 5, curve 1 corresponds to the input data with exponentially increasing density
and shear modulus from the fixed boundary to the loaded surface:

ν0 ≡ 0.3, ρ(x)/ρ(0) = G0(x)/G0(0) = e2x, γv ≡ 0, γs = γs(τ) = 0.1e−0.3ττ−0.2
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Curve 2 is obtained for γv ≡ γs ≡ 0 (linear elastic material).
It can be seen that with this type of inhomogeneity, the tensile stresses at the fixed

boundary for the elastic material are far from being as large as those shown in Figure 3. For
the viscoelastic material, they are not significant at all.

Figures 3–5 demonstrate the influence of the viscoelastic properties of the material
on the wave process. It can be seen that the viscosity is practically not manifested for a
relatively short time from the moment when the first disturbance front arrives from the
boundary, where the load is applied, to the observation point. Further on, in contrast to
the elastic FGM, in the viscoelastic FGM, the wave process gradually decays. Note that for
the chosen external load, the relative stress κ(x, τ) tends to minus unity over time at all
points of the layer. This follows from the analysis of the solution of the problem, and is also
confirmed by the corresponding calculations.

Thus, the proposed approach, based on a hybrid numerical–analytical solution strategy,
is suitable for applications over an arbitrary range of time intervals and does not require
the viscosity to be small. This makes it possible for the first time to simulate a transient
wave process in a viscoelastic FGM layer with a singular relaxation kernel.

5. Formulation of the Dynamics Problem for an Inhomogeneous Viscoelastic Cylinder

Let us consider the problem of non-stationary wave propagation in the cross section
of a viscoelastic infinitely long hollow cylinder, whose material parameters depend contin-
uously on the radial coordinate R (R, θ—polar coordinates in the cross-section plane, R0 ≤
R ≤ Rmax. The cylinder is initially at rest, its outer surface R = Rmax is free, and the inner
surface (R = R0), starting at time t = 0, is subject to a radial load Q(t), which is constant
along the generatrix of the cylinder. Thus, the wave process propagates in the direction of
the variation of the material properties. The dimensionless quantities used to formulate the
dynamic problem here are:
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r = R/Rmax, r0 = R0/Rmax, τ = t/t0, q0 f (τ) = Q(t)/[2G0(r0)],
u(r, τ) = uR(R, t)/Rmax, σr(r, τ) = PR(R, t)/[2G0(r)],

σθ(r, τ) = Pθ(R, t)/[2G0(r)], γs(r, τ) = t0Ts(R, t), γv(r, τ) = t0Tv(R, t),

where t0 = Rmax/c(1); uR(R, t), PR(R, t), Pθ(R, t) are the radial displacement, the radial and
the circumferential stresses, respectively; q0 is a dimensionless constant, Ts(R, t), Tv(R, t) are
the viscoelastic kernels. The functions c(r), w(r), G0(r), ν0(r), ρ(r) have the same meaning
as in the problem in the previous section. Figure 6a shows the loading conditions as a
function of the dimensionless time.
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The mathematical formulation of the problem in the dimensionless form includes the
dynamics equation in polar coordinates:

∂σr(r, τ)

∂ r
+ { d

d r
ln[

G0(r)
G0(r0)

]}σr(r, τ) +
σr(r, τ)− σθ(r, τ)

r
= w(r)

c2(1)
c2(r)

∂2u(r, τ)

∂τ2 (14)

with boundary conditions:

σr(r0, τ) = −q0 f (τ), σr(1, τ) = 0, τ > 0 (15)

initial conditions:
u(r, 0) = 0,

∂ u
∂τ

(r, 0) = 0 (16)

where

σr(r, τ) = w(r)(1− d̂1)
∂ u(r, τ)

∂ r
+ (w(r)− 1)(1− d̂2)

u(r, τ)

r
(17)

σθ(r, τ) = w(r)(1− d̂1)
u(r, τ)

r
+ (w(r)− 1)(1− d̂2)

∂ u(r, τ)

∂ r
(18)

d̂jξ(τ) =

τ∫
0

dj(r, τ − χ)ξ(χ) dχ, j = 1, 2 (19)

d1(r, τ) =
1

3 [1− ν0(r)]
{[1 + ν0(r)]γv(r, τ) + 2[1− 2ν0(r)]γs(r, τ)} (20)

d2(r, τ) =
1

3ν0(r)
{[1 + ν0(r)]γv(r, τ)− [1− 2ν0(r)]γs(r, τ)} (21)

Consider the problem with the same boundary conditions for a piecewise-homogeneous
cylinder with the same inner and outer radii R0 and Rmax, consisting of N homogeneous
coaxial layers: Rn−1 ≤ R ≤ Rn, n = 1, 2, . . . , N; RN = Rmax; N >> 1, with continuity
conditions for the displacement and stresses vectors at the layer interfaces. For each nth
layer, the displacement and stresses are designated by u(n)

R (R, t), P(n)
R (R, t), P(n)

θ (R, t); the

material parameters and functions G(n)
0 , ν

(n)
0 , wn, ρn, cn, αn, T(n)

v (t), T(n)
s (t) have the same
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meaning as in the problem for the piecewise-homogeneous layer. Using the piecewise-
homogeneous hollow cylinder, we approximate the material properties of the functionally
graded material using the relations (n = 1, 2, . . . , N):

G(n)
0 = G0(rn), ν

(n)
0 = ν0(rn), ρn = ρ(rn), γ

(n)
v (τ) = γv(rn, τ), γ

(n)
s (τ) = γs(rn, τ).

Here rn = Rn/RN , τ = t/t0, t0 = Rmax/c(1) = RN/cN , as cn = c(rn). Thus,
γ
(n)
v (τ) = t0T(n)

v (t), γ
(n)
s (τ) = t0T(n)

s (t), q0 f (τ) = Q(t)/(2G(1)
0 ). Let us introduce

the dimensionless quantities u(n)(r, τ) = u(n)
R (R, t)/RN , σ

(n)
r (r, τ) = P(n)

R (R, t)/(2G(n)
0 ),

σ
(n)
θ (r, τ) = P(n)

θ (R, t)/(2G(n)
0 ), where r = R/RN , r0 = R0/RN . The corresponding ar-

rangement is depicted in Figure 6b).
The formulation of the problem for the layered cylinder consists of the dynamic

equations:

(1− d̂(n)1 )
∂

∂ r
[
∂ u(n)(r, τ)

∂ r
+

u(n)(r, τ)

r
]− a2

n
∂2u(n)(r, τ)

∂τ2 = 0, n = 1, 2, . . . N (22)

with the boundary conditions:

σ
(1)
r (r0, τ) = −q0 f (τ), σ

(N)
r (1, τ) = 0,τ > 0 (23)

the conditions at the interfaces between the layers (m = 1, 2, . . . , N − 1):

u(m)(rm, τ) = u(m+1)(rm, τ), G(m)
0 σ

(m)
r (rm, τ) = G(m+1)

0 σ
(m+1)
r (rm, τ) (24)

and the initial conditions:

u(n)(r, 0) = 0,
∂u(n)

∂τ
(r, 0) = 0 (25)

where

σ
(n)
r (r, τ) = wn(1− d̂(n)1 )

∂ u(n)(r, τ)

∂ r
+ (wn − 1)(1− d̂(n)2 )

u(n)(r, τ)

r
(26)

σ
(n)
θ (r, τ) = wn(1− d̂(n)1 )

u(n)(r, τ)

r
+ (wn − 1)(1− d̂(n)2 )

∂ u(n)(r, τ)

∂ r
(27)

d̂(n)j ξ(τ) =

τ∫
0

d(n)j (τ − χ)ξ(χ) dχ, j = 1, 2, (28)

d(n)1 (τ) =
1

3(1− ν
(n)
0 )

[(1 + ν
(n)
0 )γ

(n)
v (τ) + 2(1− 2ν

(n)
0 )γ

(n)
s (τ)] (29)

d(n)2 (τ) =
1

3ν
(n)
0

[(1 + ν
(n)
0 )γ

(n)
v (τ)− (1− 2ν

(n)
0 )γ

(n)
s (τ)], n = 1, 2, . . . N (30)

It is assumed that γ
(n)
s , γ

(n)
v satisfy the conditions of limited creep.

The solution of the problem is constructed using the integral Laplace transform with
respect to time, followed by inversion, just as it was performed for the case of the piecewise-
homogeneous layer. A rather bulky solution of the problem in Equations (22)–(30) is
presented in its most convenient form in [39]. In our case, the process of constructing
originals for different types of relaxation kernels is similar to that described for the layer
composed of the piecewise-homogeneous layers. We only note that for the regular kernels
of the form (11), the solution in the originals for the displacement and stresses is obtained in
the form of a series in residues similar to (12). For kernels of a more general form, formulas
similar to (13) can be used.
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6. Numerical Results for a FGM Viscoelastic Cylinder

Using the numerical implementation of the solution of the unsteady dynamic problem
for a multilayer cylinder, the wave processes for a FG cylinder with different initial data
can be investigated. In the approximation by the homogeneous layers of the continu-
ously varied material properties and different types of inhomogeneity, the convergence
of the results with an increase in the number of approximating layers under the condition
lim
τ→0

f (τ) = 0 is verified. In particular, for the examples of continuous inhomogeneity given

below, it turned out to be quite sufficient to limit the number of layers to 80 (as in the
problem considered previously, the layers are equally thick). Note that when investigating
the change in the nature of the wave process in the cylinder with increasing the number
of sub-layers, the circumferential stress jumps

∣∣∣σ(m)
θ (rm, τ)− σ

(m+1)
θ (rm, τ)

∣∣∣ at the contact
between the adjacent layers tend uniformly to zero with respect to time.

As in the previous case of a layer composed of FGM, in the problem for an infinite
hollow cylinder of FGM, along with the study of the convergence of the calculation process
with increasing in the number of sublayers, the validity of the results is also confirmed by a
verification study similar to that described in the previous Section 4. Additionally, for the
particular case of N = 1 (homogeneous viscoelastic infinite hollow cylinder), the results ob-
tained here using the integral Laplace transform and subsequent inversion were compared
with the results obtained using finite element modeling in ABAQUS environment, and a
very good agreement between these results was demonstrated in [41].

In the next figures, the results obtained for the case when f (τ) = (1− e−50τ)h(τ),
r0 = 0.5 with the following FGM parameters:

ν0 ≡ 0.3; ρ(r)/ρ(r0) = G0(r)/G0(r0) = e3(r0−r); γv(τ) ≡ 0; γs = γs(τ) = 0.2e−0.3ττ−0.4.

Thus, only the density and the instantaneous shear modulus are dependent on the coor-
dinate. They decrease exponentially starting from the loaded boundary to the free one.
However, the velocity of longitudinal elastic waves does not depend on r. Note that in the
studied case, the external load Q(t) tends to 2G0(r0)q0 for t→ ∞ . As mentioned previously,
the negative stresses are compressive (q0 > 0). All presented results for the FGM were
obtained with N = 80.

In order to make a comparison, the selected characteristics of the wave process were
also calculated for a cylinder consisting of only two homogeneous layers (N = 2) with the
same f (τ) and r0, and the following input data:

r1 = 0.75; ν
(1)
0 = ν

(2)
0 = 0.3; G(2)

0 /G(1)
0 = ρ2/ρ1 = e3(r0−1) = e−1.5;

γ
(1)
v ≡ γ

(2)
v ≡ 0; γ

(1)
s = γ

(2)
s = 0.2e−0.3ττ−0.4.

The dynamic process characteristics in the two-layer cylinder with a discontinuous
change in the properties of the material of the sub-layers at the boundary r1 = 0.75 were
compared to those in a FGM cylinder with a monotonic continuous change in the properties
in the range from the largest value corresponding to the properties of the first layer of a
two-layer cylinder to the smallest value corresponding to the properties of the second layer.
Thus, the following equalities were satisfied:

G(2)
0 /G(1)

0 = ρ2/ρ1 = G0(1)/G0(r0) = ρ(1)/ρ(r0).

As is well known, one of the advantages of FGM compared to traditional layered
homogeneous materials is the ability to avoid stress discontinuities in structural elements
that can lead to delamination. In this regard, it is important to compare the dynamic
processes in the FGM and the two-layer composite for some specific locations.
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In Figure 7, curve 1 is the variation with the time of the relative circumferential stress
κθ defined as

κθ(r, τ) = G0(r)σθ(r, τ)/[G0(r0)q0] = Pθ(Rmaxr, t0τ)/[2G0(r0)q0]

at point r = 0.75 of the FGM cylinder. The same figure shows graphs of the variation with
the time of the relative circumferential stress for the two-layer cylinder (N = 2):

κ
(n)
θ (r, τ) = G(n)

0 σ
(n)
θ (r, τ)/(G(1)

0 q0) = P(n)
θ (RNr, t0τ)/(2G(1)

0 q0), n = 1, 2,

at the contact interface r = 0.75 in the first, stiffer layer (n = 1, curve 2a) and in the second
(n = 2, curve 2b). Curve 3 shows the time variation of the relative stress κ

(1)
θ at point r = 0.75

for the homogeneous cylinder (N = 1) with the same f (τ), r0, ν
(1)
0 , γ

(1)
v , γ

(1)
s .
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In Figure 8 are presented similar results for the case of the linear elastic materials (all
relaxation kernels are zero). At the same time, all other input data for each of the curves
are absolutely the same as for the corresponding curves in Figure 7.
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Curves 2a and 2b in Figures 7 and 8 demonstrate a significant discontinuity in the
circumferential stresses at the interface of the homogeneous components in the case of a
two-layer material.

In all the subsequent figures, only three graphs are presented, since for the relative
circumferential stress they correspond to the internal (r = 0.75), or external (r = 1) boundaries
of the cylinder section. The relative radial stress is continuous at the interface between
the layers (r = 0.75). In each of Figures 9–14, the curves 1, 2, 3 correspond to the results
for the FGM, the two-layer composite and the homogeneous material, respectively. The
variation in time of the relative circumferential stress at r = 0.5 in the case of the viscoelastic
materials is shown in Figure 9, and in the case of the elastic materials in Figure 10. Similar
curves at r = 1 are shown in Figure 11 (for the viscoelastic materials) and in Figure 12 (for
the elastic materials).
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Note that on the free boundary r = 1 the time histories of the circumferential stress in
the case of the FGM and a two-layer material are very similar.

In Figures 13 and 14 are presented the time histories of the relative radial stress for the
FGM,

κr(r, τ) = G0(r)σr(r, τ)/[G0(r0)q0] = PR(Rmaxr, t0τ)/[2G0(r0)q0],

as well as for the two-layer composite (N = 2), and the homogeneous material (N = 1):

κ
(n)
r (r, τ) = G(n)

0 σ
(n)
r (r, τ)/(G(1)

0 q0) = P(n)
R (RNr, t0τ)/(2G(1)

0 q0), n = 1, N

at r = 0.75. Figure 13 is for the viscoelastic materials and Figure 14—for the elastic ones.
The presented results in Figures 9–14 demonstrate the influence on the considered

nonstationary wave process of both the inhomogeneity of the material and its viscoelastic
properties.

As for the case of a layer composed of FGM (Section 4), in the case of a hollow cylinder
of the FGM, the viscosity practically does not have time to manifest itself within the
relatively short times after the moment the first perturbation front arrives at the considered
observation point. However, in contrast to the elastic FGM, in the viscoelastic FGM, the
wave process gradually decays. For the external load, used in this study, the relative stresses
κr(r, τ) and κθ(r, τ) tend to the corresponding values in the solution of the static elastic
problem, where the elastic characteristics of the FGM (approximated by the same systems
of layers) are the long-term moduli corresponding to the considered relaxation kernels.
This is confirmed by the calculations and agrees with the theoretical results in [38] related
to the piecewise-homogeneous bodies. Thus, the proposed approach made it possible for
the first time to model the transient wave process in a cylinder made of viscoelastic FGM
with a singular relaxation kernel.

7. Conclusions

The results obtained show the possibility of using solutions of non-stationary dynamic
problems for the corresponding piecewise-homogeneous (layered) solids in the problems
of transient wave processes in functionally graded elastic and viscoelastic materials. We
emphasize that here we focus on confirming the validity of applying the method of ap-
proximating the FGM by a layered structure, namely in nonstationary dynamic problems,
despite the fact that the interfaces between the homogeneous layers are sources of addi-
tional perturbations. For the two problems considered here—an inhomogeneous infinite
layer and an inhomogeneous infinite hollow cylinder—the convergence of the computed
wave process characteristics to the dynamic FGM solution is confirmed as the number of
layers used to approximate the varied material characteristics of the FGM increases.
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To study wave processes in a layer of viscoelastic FGM, a solution to the problem
of propagation of nonstationary waves in a piecewise-homogeneous linear viscoelastic
layer (packet of homogeneous viscoelastic layers) is constructed. This solution is valid
over the entire time range; it does not require the assumption of low viscosity and is
convenient for numerical implementation. To study wave processes in a FGM hollow
cylinder, we used the previously constructed solution of a non-stationary dynamic problem
for a piecewise-homogeneous (multilayer) viscoelastic cylinder.

Based on the solutions of non-stationary dynamic problems for packages of parallel
and coaxial cylindrical homogeneous viscoelastic layers, it is possible to study the transient
wave processes in a layer and a hollow cylinder made of FGM and to demonstrate the
influence of the viscosity and the inhomogeneity of the material on the dynamic response
of such structures.
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