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1. Preliminaries and Introduction

In this section, we introduce q-numbers and the theorems involved. Moreover, the
present paper contains an introduction to sigmoid numbers and polynomials and their
importance to the aim of this paper. The theorems and definitions used here provide
important context related to this paper.

Let n, q ∈ R with q 6= 1. The first q-number, discovered by Jackson, is

[n]q =
1− qn

1− q
,

and note here that limq→1[n]q = n. Specifically, for k ∈ Z, [k]q is called the q-integer;
see [1,2]. Following the introduction of q-numbers, many mathematicians have attempted
and published various studies working on q-numbers in various fields, such as q-discrete
distribution, q-differential equations, q-series, q-calculus, and more; see [2–10].

The following equation [
m
r

]
q
=

[m]q!
[m− r]q![r]q!

,

represents the q-Gaussian binomial coefficients, where m and r are non-negative integers;
see [2,4,7]. Here, note that if m < r, then the value of the q-Gaussian binomials coefficients
is 0 Moreover, note that [n]q! = [n]q[n− 1]q · · · [2]q[1]q and [0]q! = 1. Thus, for r = 0, the
value is 1.

Definition 1. q-exponential functions are defined by

(i) eq(z) =
∞

∑
n=0

zn

[n]q!
, 0 < |q| < 1, |z| < 1

|1− q| ,

(ii) Eq(z) =
∞

∑
n=0

q(
n
2)

zn

[n]q!
, 0 < |q| < 1, z ∈ C.
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Note that limq→1 eq(z) = ez. The above two kinds of q-exponential functions have
different properties from general exponential functions. The following theorem is a repre-
sentative property of the q-exponential function; see [2,6,11].

Theorem 1. From Definition 1, note that

(i) eq(x)eq(y) = eq(x + y), if yx = qxy.

(ii) eq(x)Eq(−x) = 1.

(iii) eq−1(x) = Eq(x).

Definition 2. The q-derivative of a function f regarding x is defined as

Dq,x f (x) := Dq f (x) =
f (x)− f (qx)
(1− q)x

, for x 6= 0,

and Dq f (0) = f ′(0).

It is clear that Dqxn = [n]qxn−1, and it is easy to prove that f is differentiable at zero.
We can find several formulas for q-derivatives from Definition 2.

Theorem 2. From Definition 2, we have the following formulae:

(i) Dq( f (x)g(x)) = q(x)Dq f (x) + f (qx)Dqg(x) = f (x)Dqg(x) + g(qx)Dq f (x).

(ii) Dq

(
f (x)
g(x)

)
=

g(qx)Dq f (x)− f (qx)Dqg(x)
g(x)g(qx)

=
g(x)Dq f (x)− f (x)Dqg(x)

g(x)g(qx)
.

(iii) For arbitrary constants a and b, Dq(a f (x) + bg(x)) = aDq f (x) + bDqg(x).

(iv) Where u = u(x) = αxβ with α, β bring constants,

Dq f (u(x)) = (Dqβ f )(u(x))Dqu(x).

Based on the above concept, we now introduce the motivation behind this paper.
When expanding the well-known Bernoulli differential equation as a q-Bernoulli differen-
tial equation, it is necessary to determine the form that the q-Bernoulli differential equation
appears in as well as its solution. The Bernoulli differential equation is a particular dif-
ferential equation that converts nonlinear equations into linear equations. A Bernoulli
differential equation has the form

dy
dx

+ p(x)y− g(x)ym = 0, (1)

where m is any real number and p(x) and g(x) are continuous functions on the interval.
The above equation is clear if m = 0 or m = 1; if not, it is unclear. By substituting u = y1−m,
the Bernoulli differential equation can be reduced to a linear differential equation. It is
possible to organize a linear equation du

dx + (1−m)p(x)u = (1−m)g(x) with respect to u.
This Bernoulli differential equation can be applied to various problems based on nonlinear
differential equations, equations concerning populations presented as logistic equations or
Verhulst equations, physics, and more; see [12].

If m = 0 in (1), then the generating function of the sigmoid polynomials becomes the
solution of the Bernoulli differential equation. The equation is as follows.

d
dx
Sn−1(x) +

S0(−1) + x
S1(−1)

Sn−1(x)− 1
S1(−1)

Sn(x) = 0, (2)

where Sn(x) represents the sigmoid polynomials.
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Definition 3. The sigmiod polynomials are defined as

∞

∑
n=0
Sn(x)

tn

n!
=

1
1 + e−t etx.

For x = 0 in Definition 3, we call Sn the sigmoid numbers or sigmoid function;
see [13–17].

Extending the above concept, we consider the Bernoulli differential equation of the
first order combined with q-numbers. Then, we consider Dqy + p(x)y− g(x)ym = 0. For
m = 0, the generating function of the sigmoid polynomials becomes the solution of the
Bernoulli differential equation of the first order, which is as follows.

D(1)
q,xSn−1,q(x) +

(
qS0,q(−1)
S1,q(−1)

+
q2x

S1,q(−1)

)
Sn−1,q(x)− q−n+2

S1,q(−1)
Sn,q(qx) = 0,

where Sn,q(x) represents the q-sigmoid polynomials.

Definition 4. Let 0 < q < 1. Then, we define the q-sigmiod polynomials as

∞

∑
n=0
Sn,q(x)

tn

[n]q!
=

1
eq(−t) + 1

eq(tx).

From Definition 4, we have

∞

∑
n=0
Sn,q(0)

tn

[n]q!
=

1
eq(−t) + 1

=
∞

∑
n=0
Sn,q

tn

[n]q!
,

where we call Sn,q the q-sigmoid numbers. We note that the q-sigmoid numbers are the
same as the sigmoid function when q approaches 1; see [9,18].

Sigmoid polynomials are used as an activation function in deep learning, and are
being studied in various forms; see [9,13–20]. The sigmoid function has the form of an
Apell polynomial, and the related Apell polynomials have been a research topic for a long
time; see [21–24].

The following theorem describes several basic properties of q-sigmoid polynomials.

Theorem 3. Let x ∈ C. Then, the following hold:

(i)
n

∑
k=0

[
n
k

]
q
(−1)n−kSk,q(x) + Sn,q(x) = xn.

(ii)
n

∑
k=0

[
n
k

]
q
(−1)kq(

k
2)+(n−k

2 )Sn−k,q−1(x) + q(
n
2)Sn,q−1(x) = q(

n
2)xn.

(iii) DqSn,q(x) = [n]qSn−1,q(x).

(iv) Sn,q(x) =
n

∑
k=0

[
n
k

]
q
q(

k
2)Sk,q−1(−1)xn−k.

Finding the properties of q-differential equations of higher order combined with
q-sigmoid polynomials in various ways is the main topic of this paper. In Section 2, we find
the forms of several q-differential equations of higher order which are related to q-sigmoid
polynomials and obtain their symmetric properties, as well as relations of q-differential
equations of higher order, differential equations, etc. In Section 3, we observe several
properties based on the structure of the approximation roots of the q-sigmoid polynomials.
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2. Various q-Differential Equations of Higher Order Forms Related to
q-Sigmoid Polynomials

This section shows that the solution of a q-differential equation of higher order is
the q-sigmoid polynomials. These q-differential equations of higher order have various
forms. In addition, we confirm the form of the q-differential equation of higher order with
symmetric properties.

Theorem 4. For 0 < q < 1, the q-sigmoid polynomials represent a solution of the q-differential
equation of higher order shown below:

(−1)n

[n]q!
D(n)

q,x Sn,q(x) +
(−1)n−1

[n− 1]q!
D(n−1)

q,x Sn,q(x) +
(−1)n−2

[n− 2]q!
D(n−2)

q,x Sn,q(x) + · · ·

− 1
[3]q!

D(3)
q,xSn,q(x) +

1
[2]q!

D(2)
q,xSn,q(x)− D(1)

q,xSn,q(x) + xn = 0.

Proof. For eq(−t) 6= 1, the generating function of q-sigmoid polynomials can be trans-
formed as

∞

∑
n=0
Sn,q(x)

tn

[n]q!

(
1 +

∞

∑
n=0

(−1)n tn

[n]q!

)
=

∞

∑
n=0

xn tn

[n]q!
. (3)

Using the Cauchy product in the left-hand side of Equation (3), we have

∞

∑
n=0
Sn,q(x)

tn

[n]q!

(
1 +

∞

∑
n=0

(−1)n tn

[n]q!

)

=
∞

∑
n=0

(
Sn,q(x)−

n

∑
k=0

[
n
k

]
q
(−1)kSn−k,q(x)

)
tn

[n]q!
.

(4)

From Equations (3) and (4), we obtain

Sn,q(x)−
n

∑
k=0

[
n
k

]
q
(−1)kSn−k,q(x) = xn. (5)

By applying the q-derivative in the generating function of the q-sigmoid polynomials,
we derive

Sn−k,q(x) =
[n− k]q!
[n]q!

D(k)
q,xSn,q(x). (6)

Substituting D(k)
q,xSn,q(x) of (6) in the left-hand side of (5), we have

Sn,q(x)− xn =
n

∑
k=0

(−1)k

[k]q!
Dq,x(k)Sn,q(x). (7)

From Equation (7), we find the required result.

Corollary 1. Setting q→ 1 in Theorem 4, it holds that

(−1)n

n!
dn

dxn Sn(x) +
(−1)n−1

(n− 1)!
dn−1

dxn−1Sn(x) +
(−1)n−2

(n− 2)!
dn−2

dxn−2Sn(x) + · · ·

− 1
3!

d3

dx3Sn(x) +
1
2!

d2

dx2Sn(x)− d
dx
Sn(x) + xn = 0.

where Sn(x) represents the sigmoid polynomials.
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Theorem 5. For 0 < q < 1, the q-sigmoid polynomials Sn,q(x) satisfy the q-differential equation
of higher order presented below:

Sn−1,q(−1)
qn[n− 1]q!

D(n−1)
q,x Sn−1,q(x) +

Sn−2,q(−1)
qn−1[n− 2]q!

D(n−2)
q,x Sn−1,q(x)

+
Sn−3,q(−1)

qn−2[n− 3]q!
D(n−3)

q,x Sn−1,q(x) + · · ·+
S2,q(−1)

q3[2]q!
D(2)

q,xSn−1,q(x) +
S1,q(−1)

q2 D(1)
q,xSn−1,q(x)

+

(S0,q(−1)
q

+ x
)
Sn−1,q(x)− q−nSn,q(qx) = 0.

Proof. By substituting qx instead of x, we can consider the q-derivative in q-sigmoid
polynomials. Then, we have the following equation:

Dq,t

∞

∑
n=0
Sn,q(qx)

tn

[n]q!

= eq(qtx)
(

eq(−t)
(1 + eq(−t))(1 + eq(−qt))

)
+

qx
1 + eq(−qt)

eq(qtx)

=
∞

∑
n=0

qnSn,q(x)
tn

[n]q!

(
eq(−t)

1 + eq(−t)
+ qx

)
.

(8)

Using q-sigmoid polynomials in Equation (8), we obtain

Dq,t

∞

∑
n=0
Sn,q(qx)

tn

[n]q!

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
qn−kSk,q(−1)Sn−k,q(x) + qn+1xSn,q(x)

)
tn

[n]q!
.

(9)

To simplify the calculations, we multiply t in the above Equation (9) as

tDq,t

∞

∑
n=0
Sn,q(qx)

tn

[n]q!

=
∞

∑
n=0

[n]q

(
n−1

∑
k=0

[
n− 1

k

]
q
qn−k−1Sk,q(−1)Sn−k−1,q(x) + qnxSn−1,q(x)

)
tn

[n]q!
.

(10)

On the other hand, we can find the below equation using the generating function of the
q-sigmoid polynomials.

tDq,t

∞

∑
n=0
Sn,q(qx)

tn

[n]q!
=

∞

∑
n=0

[n]qSn,q(qx)
tn

[n]q!
. (11)

By comparing Equations (10) and (11), we derive

n−1

∑
k=0

[
n− 1

k

]
q
q−(k+1)Sk,q(−1)Sn−k−1,q(x) = q−nSn,q(qx)− xSn−1,q(x). (12)

Applying Equation (6) in the left-hand side of (12), we have

n−1

∑
k=0

[
n− 1

k

]
q
q−(k+1)Sk,q(−1)Sn−k−1,q(x) =

n−1

∑
k=0

Sk,q(−1)

qk+1[k]q!
D(k)

q,xSn−1,q(x). (13)
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Substituting the right-hand side of Equation (13) into the left-hand side of Equation (12),
we have

n−1

∑
k=0

Sk,q(−1)

qk+1[k]q!
D(k)

q,xSn−1,q(x) = q−nSn,q(qx)− xSn−1,q(x), (14)

which provides the result of Theorem 5.

Corollary 2. Setting q→ 1 in Theorem 5, the following holds:

Sn−1(−1)
(n− 1)!

dn−1

dxn−1Sn−1(x) +
Sn−2(−1)
(n− 2)!

dn−2

dxn−2Sn−1(x)

+
Sn−3(−1)
(n− 3)!

dn−3

dxn−3Sn−1(x) + · · ·+ S2(−1)
2!

d2

dx2Sn−1(x) + S1(−1)
d

dx
Sn−1(x)

+ (S0(−1) + x)Sn−1(x)− Sn(x) = 0,

where Sn(x) represents the sigmoid polynomials.

Corollary 3. In Theorem 5, we have

d
dt
Sn(x) =

n

∑
k=0

(
n
k

)
Sk(−1)Sn−k(x) + xSn(x),

where Sn(x) is the sigmoid polynomials.

Theorem 6. For 0 < q < 1, the q-sigmoid polynomials Sn,q(x) satisfy the following q-differential
equation of higher order:

n−1

∑
l=0

[
n− 1

l

]
q

(−1)n−l−1Sl,q

qn[n− 1]q!
D(n−1)

q,x Sn−1,q(x) +
n−2

∑
l=0

[
n− 2

l

]
q

(−1)n−l−2Sl,q

qn−1[n− 2]q!
D(n−2)

q,x Sn−1,q(x)

+ · · ·+
2

∑
l=0

[
2
l

]
q

(−1)2−lSl,q

q3[2]q!
D(2)

q,xSn−1,q(x) +
1

∑
l=0

[
1
l

]
q

(−1)1−lSl,q

q2 D(1)
q,xSn−1,q(x)

+ (q−1S0,q − x)Sn−1,q(x) + q−nSn,q(qx) = 0.

Proof. We can find an expression in which the coefficients of a q-differential equation of
higher order consist of q-sigmoid numbers. From Equation (8), we obtain the other form as

tDq,tSn,q(qx)

= [n]qqnxSn−1,q(x) + [n]q
n−1

∑
k=0

k

∑
l=0

[
n− 1

k

]
q

[
k
l

]
q
(−1)k−lqn−k−1Sl,qSn−k−1,q(x).

(15)

Combining the right-hand side of Equation (15) with the right-hand side of Equation (12),
we obtain the following equation:

n−1

∑
k=0

k

∑
l=0

[
n− 1

k

]
q

[
k
l

]
q
(−1)k−lq−(k+1)Sl,qSn−k−1,q(x) = xSn−1,q(x)− q−nSn,q(qx). (16)

Applying Equation (6) to Equation (16), the right-hand side of (17) can be obtained as fol-
lows:

n−1

∑
k=0

k

∑
l=0

[
n− 1

k

]
q

[
k
l

]
q
(−1)k−lq−(k+1)Sl,qSn−k−1,q(x)

=
n−1

∑
k=0

k

∑
l=0

[
k
l

]
q

(−1)k−lSl,q

qk+1[k]q!
D(k)

q,xSn−1,q(x).

(17)
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From Equation (17), we conclude the proof for Theorem 6.

Corollary 4. Let q→ 1 in Theorem 6. Then, it holds that

n−1

∑
l=0

(
n− 1

l

)
(−1)n−l−1Sl
(n− 1)!

dn−1

dxn−1Sn−1(x) +
n−2

∑
l=0

(
n− 2

l

)
(−1)n−l−2Sl
(n− 2)!

dn−2

dxn−2Sn−1(x)

+ · · ·+
2

∑
l=0

(
2
l

)
(−1)2−lSl

2!
d2

dx2Sn−1(x) +
1

∑
l=0

(
1
l

)
(−1)1−lSl

d
dx
Sn−1(x)

+ (q−1S0 − x)Sn−1(x) + Sn(x) = 0,

where Sn represents the q-sigmoid numbers and Sn(x) the q-sigmoid polynomials.

Theorem 7. For 0 < q < 1, the q-sigmoid polynomials represent a solution of the q-differential
equation of higher order shown below:

qn−1Sn−1,q(−1)
[n− 1]q!

D(n−1)
q,x Sn−1,q(q−1x) +

qn−1Sn−2,q(−1)
[n− 2]q!

D(n−2)
q,x Sn−1,q(q−1x)

+ · · ·+
qn−1S2,q(−1)

[2]q!
D(2)

q,xSn−1,q(q−1x) + qn−1S1,q(−1)D(1)
q,xSn−1,q(q−1x)

+ (x + S0,q(−1))qn−1Sn−1,q(q−1x)− Sn,q(x) = 0.

Proof. To find the other q-differential equation of higher order, we can substitute qt instead
of t into the q-sigmoid polynomials. From the generating function of thr q-sigmoid polyno-
mials,
we have

tDq,t

∞

∑
n=0

qnSn,q(x)
tn

[n]q!
=

∞

∑
n=0

[n]qqnSn,q(x)
tn

[n]q!
, (18)

and

tDq,t

∞

∑
n=0

qnSn,q(x)
tn

[n]q!

=
∞

∑
n=0

[n]q

(
n−1

∑
k=0

[
n− 1

k

]
q
q2n−k−1Sk,q(−1)Sn−k−1,q(q

−1x) + q2n−1xSn−1,q(q−1x)

)
tn

[n]q!
.

(19)

From Equations (18) and (19), we obtain

n−1

∑
k=0

[
n− 1

k

]
q
qn−k−1Sk,q(−1)Sn−k−1,q(q−1x) = Sn,q(x)− qn−1xSn−1,q(q−1x). (20)

By using the q-derivative, we can find a relation between Sn−k,q(q−1x) and D(k)
q,xSn,q(q−1x),

such as

Sn−k−1,q(q−1x) =
qk[n− k− 1]q!

[n− 1]q!
D(k)

q,xSn−1,q(q−1x). (21)

Substituting Equation (21) into Equation (20), we obtain the following:

n−1

∑
k=0

qn−1Sk,q(−1)
[k]q!

D(k)
q,xSn−1,q(q−1x) = Sn,q(x)− qn−1xSn−1,q(q−1x), (22)

and Equation (22) completes the proof of the theorem.
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Corollary 5. Let q→ 1 in Theorem 7. Then, it holds that

Sn−1(−1)
(n− 1)!

dn−1

dxn−1Sn−1(x) +
Sn−2(−1)
(n− 2)!

dn−2

dxn−2Sn−1(x) + · · ·+ S2(−1)
2!

d2

dx2Sn−1(x)

+ S1(−1)
d

dx
Sn−1(x) + (S0(−1) + x)Sn−1(x) + Sn(x) = 0,

where Sn(x) represents the q-sigmoid polynomials.

Theorem 8. For 0 < q < 1, a solution of the following q-differential equation of higher order

n−1

∑
k=0

[
n− 1

k

]
q

(−1)kqn−1Sn−k−1,q

[n− 1]q!
D(n−1)

q,x Sn−1,q(q−1x)

+
n−2

∑
k=0

[
n− 2

k

]
q

(−1)kqn−2Sn−k−2,q

[n− 2]q!
D(n−2)

q,x Sn−1,q(q−1x) + · · ·

+
2

∑
k=0

[
2
k

]
q

(−1)kq2S2−k,q

[2]q!
D(2)

q,xSn−1,q(q−1x) +
1

∑
k=0

[
1
k

]
q
(−1)kqS1−k,qD(1)

q,xSn−1,q(q−1x)

+ (x + S0,q)Sn−1,q(q−1x)− Sn,q(x) = 0

is represented by the q-sigmoid polynomials.

Proof. From the generating function of the q-sigmoid polynomials, we obtain

Dq,t

∞

∑
n=0

qnSn,q(x)
tn

[n]q!

= eq(qtx)
(

qeq(−qt)− q(1− qt)eq(−qt)
(1− qt)(1− q2t)

)
+

qxeq(−q2t)
1− q2t

eq(qtx)

=
∞

∑
n=0

q2n+1Sn,q(q−1x)
tn

[n]q!

(
Eq(q2t)

∞

∑
n=0

qnSn,q
tn

[n]q!
− Eq(q2t)eq(−qt) + qx

)

=
∞

∑
n=0

(
n

∑
l=0

l

∑
k=0

[
n
l

]
q

[
l
k

]
q

(
(−1)k+1q(

l−k
2 )+l−k + q(

k
2)+kSl−k,q

)
q2n−l+1Sn−l,q(q

−1x)

)
tn

[n]q!

+
∞

∑
n=0

q2n+1xSn,q(q−1x)
tn

[n]q!
.

(23)

In Equation (23), we can obtain the desired result by following a procedure similar to the process
used for the proof of Theorem 8.

Corollary 6. Let q→ 1 in Theorem 8. Then, it holds that

n−1

∑
k=0

(
n− 1

k

)
(−1)kSn−k−1

(n− 1)!
dn−1

dxn−1Sn−1(x) +
n−2

∑
k=0

(
n− 2

k

)
(−1)kSn−k−2

(n− 2)!
dn−2

dxn−2Sn−1(x)

+ · · ·+
2

∑
k=0

(
2
k

)
(−1)kS2−k

2!
d2

dx2Sn−1(x) +
1

∑
k=0

(
1
k

)
(−1)kS1−k

d
dx
Sn−1,q(q−1x)

+ (x + S0)Sn−1(x)− Sn,q(x) = 0,

where Sn represents the q-sigmoid numbers and Sn(x) the q-sigmoid polynomials.
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Theorem 9. For a 6= 0, b 6= 0, and 0 < q < 1, we obtain

bnanSn,q

[n]q!
D(n)

q,x Sn,q(b−1x) +
bnan−1Sn−1,q

[n− 1]q!
D(n−1)

q,x Sn,q(b−1x) + · · ·

+
bna2S2,q

[2]q!
D(2)

q,xSn,q(b−1x) + bnaS1,qD(1)
q,xSn,q(b−1x) + bnS0,qSn,q(b−1x)

=
anbnSn,q

[n]q!
D(n)

q,x Sn,q(a−1x) +
anbn−1Sn−1,q

[n− 1]q!
D(n−1)

q,x Sn,q(a−1x) + · · ·

+
anb2S2,q

[2]q!
D(2)

q,xSn,q(a−1x) + anbS1,qD(1)
q,xSn,q(a−1x) + anS0,qSn,q(a−1x).

Proof. In order to find a symmetric property of the q-differential equation of higher order
for the q-sigmoid polynomials, we consider form A as follows:

A :=
eq(tx)

(1 + eq(−at))(1 + eq(−bt))
.

Using form A, we can have

A =
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
akbn−kSk,qSn−k,q(b−1x)

)
tn

[n]q!
, (24)

and

A =
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
bkan−kSk,qSn−k,q(a−1x)

)
tn

[n]q!
. (25)

Comparing the coefficients of both sides in Equations (24) and (25), we have

n

∑
k=0

[
n
k

]
q
akbn−kSk,qDn−k,q(b−1x) =

n

∑
k=0

[
n
k

]
q
bkan−kSk,qDn−k,q(a−1x). (26)

Replacing Equation (21) with Equation (26), we find

bn
n

∑
k=0

akSk,q

[k]q!
D(k)

q,xSn−k,q(b−1x) = an
n

∑
k=0

bkSk,q

[k]q!
D(k)

q,xSn−k,q(a−1x). (27)

From (27), we finish the proof of Theorem 9.

Corollary 7. Setting a = 1 in Theorem 9, we have

bnSn,q

[n]q!
D(n)

q,x Sn,q(b−1x) +
bnSn−1,q

[n− 1]q!
D(n−1)

q,x Sn,q(b−1x) + · · ·

+
bnS2,q

[2]q!
D(2)

q,xSn,q(b−1x) + bnS1,qD(1)
q,xSn,q(b−1x) + bnS0,qSn,q(b−1x)

=
bnSn,q

[n]q!
D(n)

q,x Sn,q(x) +
bn−1Sn−1,q

[n− 1]q!
D(n−1)

q,x Sn,q(x) + · · ·

+
b2S2,q

[2]q!
D(2)

q,xDn,q(x) + bS1,qD(1)
q,xSn,q(x) + S0,qSn,q(x).
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Corollary 8. Consider q→ 1 in Theorem 9. Then, the following holds:

bnanSn

n!
dn

dxn Sn(b−1x) +
bnan−1Sn−1

(n− 1)!
dn−1

dxn−1Sn(b−1x) + · · ·

+
bna2S2

2!
d2

dx2Sn(b−1x) + bnaS1
d

dx
Sn(b−1x) + bnS0Sn(b−1x)

=
anbnSn

n!
dn

dxn Sn(a−1x) +
anbn−1Sn−1

(n− 1)!
dn−1

dxn−1Sn(a−1x) + · · ·

+
anb2S2

2!
d2

dx2Sn(a−1x) + anbS1
d

dx
Sn(a−1x) + anS0Sn(a−1x).

Theorem 10. For a 6= 0, b 6= 0, and 0 < q < 1, we investigate

bnanSn,q(a−1x)
[n]q!

D(n)
q,y Sn,q(b−1y) +

bnan−1Sn−1,q(a−1x)
[n− 1]q!

D(n−1)
q,y Sn,q(b−1y) + · · ·

+ bnaS1,q(a−1x)D(1)
q,ySn,q(b−1y) + bnS0,q(a−1x)Sn,q(b−1y)

=
anbnSn,q(b−1x)

[n]q!
D(n)

q,y Sn,q(a−1y) +
anbn−1Sn−1,q(b−1x)

[n− 1]q!
D(n−1)

q,y Sn,q(a−1y) + · · ·

+ anbS1,q(b−1x)D(1)
q,ySn,q(a−1y) + anS0,q(b−1x)Sn,q(a−1y).

Proof. In order to find a symmetric property of q-differential equations of higher order for
the q-sigmoid polynomials, we suppose that form B is

B :=
eq(tx)eq(ty)

(1 + eq(−at))(1 + eq(−bt))
.

Using form B in the same way as the proof of Theorem 9 we can finish the proof of
the theorem.

Corollary 9. Setting a = 1 in Theorem 10, we have

bnSn,q(x)
[n]q!

D(n)
q,y Sn,q(b−1y) +

bnSn−1,q(x)
[n− 1]q!

D(n−1)
q,y Sn,q(b−1y) + · · ·

+ bnS1,q(x)D(1)
q,ySn,q(b−1y) + bnS0,q(x)Sn,q(b−1y)

=
bnSn,q(b−1x)

[n]q!
D(n)

q,y Sn,q(y) +
bn−1Sn−1,q(b−1x)

[n− 1]q!
D(n−1)

q,y Sn,q(y) + · · ·

+ bS1,q(b−1x)D(1)
q,ySn,q(y) + S0,q(b−1x)Sn,q(y).

Corollary 10. Consider q→ 1 in Theorem 10. Then, the following holds:

bnanSn(a−1x)
n!

dn

dyn Sn(b−1y) +
bnan−1Sn−1(a−1x)

(n− 1)!
dn−1

dyn−1Sn(b−1y) + · · ·

+ bnaS1(a−1x)
d

dy
Sn(b−1y) + bnS0(a−1x)Sn(b−1y)

=
anbnSn(b−1x)

n!
dn

dyn Sn(a−1y) +
anbn−1Sn−1(b−1x)

(n− 1)!
dn−1

dyn−1Sn(a−1y) + · · ·

+ anbS1(b−1x)
d

dy
Sn(a−1y) + anS0(b−1x)Sn(a−1y).
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3. Properties and Structures of Approximation Roots of q-Sigmoid Polynomials

In this section, we try to confirm the approximate roots for the q-sigmoid polynomials
mentioned for q-differential equations of higher order. By substituting various values for
the q-number, we can check the properties of q-sigmoid polynomials.

Several q-sigmoid polynomials are provided below; see [18]:

S0,q(x) =
1
2

,

S1,q(x) =
1
4
(1 + 2x),

S2,q(x) =
1
8
(−1 + q + 2(1 + q)x + 4x2),

S3,q(x) =
1

16
(1 + q(−2 + (−2 + q)q)− 2x + 2q3x + 4(1 + q + q2)x2 + 8x3),

S4,q(x) =
1

32
(−1 + 3q + 3q2 − 3q4 − 3q5 + q6 + 2(1 + q)2(1 + (−3 + q)q)(1 + q2)x

+ 4(−1 + q2(−1 + q + q3))x2 + 8(1 + q)(1 + q2)x3 + 16x4),

· · · .

Figure 1 shows the structures of the approximate roots of the q-sigmoid polynomials.
The graph in Figure 1a shows the condition of q = 0.1, while Figure 1b shows the condition
of q = 0.0001. Under the condition of 0 < n ≤ 50, we can observe Figure 1, which is a
figure that appears when viewed from above in 3D. The blue dots are the positions of
the approximate roots that appear when the value of n is small, and the red dots are the
positions of the approximate roots that appear when n = 50. Here, as the value of q is
smaller, we can assume that most points have a certain circular shape, with the exception
of only a few points.

(a) (b)
Figure 1. Positions of the approximate roots of Sn,q(x) with 0 ≤ n ≤ 50: (a) q = 0.1, (b) q = 0.0001.

Figure 2 shows the details of the guess made by looking at Figure 1. We fix n = 50 and
change the values of q to 0.01, 0.001, and 0.0001, respectively. Figure 2a show the results
with the value of q set to 0.01, Figure 2b shows the results with q = 0.001, and Figure 2c
shows the results with q = 0.0001. In Figure 2, the red dots indicate only imaginary roots
except for the real roots, and the blue lines indicate the closest circle to the approximate
roots. The blue dot represents the center of the approximated circle. Figure 2 shows that
the approximated root positions lie on a circle.



Mathematics 2022, 10, 4469 12 of 14

-0.4 -0.2 0.2 0.4
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-0.2

0.2

0.4

(a)

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

(b)

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

(c)
Figure 2. Approximate roots and approximated circles of S50,q(x): (a) q = 0.01, (b) q = 0.001,
(c) q = 0.0001.

Table 1 below is the result of accurately calculating Figure 2 using a computer. In
Table 1, it can be seen that the center of the approximated circle is slightly shifted to the
left when the value of q is smaller. Furthermore, it can be seen that the radius is closer to
0.4905 when the value of q is smaller. It can be observed in Table 1 that when the value
of q is smaller, the error ranges of the approximated circle and the approximate roots are
smaller as well; in other words, the positions of the approximate roots are located on the
approximated circle. Here, we can make the following assumptions.

Table 1. The center and radius of the approximated circles of S50,q(x).

The Center (x, y) The Radius The Error Range

q = 0.01 (−0.0013679, 4.21363× 10−13) 0.489466 0.00013278

q = 0.001 (−0.00911017, − 8.92717× 10−12) 0.490576 0.0000920933

q = 0.0001 (−0.00890715, 1.6445× 10−12) 0.490528 0.0000711247

Conjecture 11. The locations of the approximation roots of q-sigmoid polynomials lie on the
approximated circle under the condition in which n = 50 and q = 0.001.

In Figure 1, it can be seen that, in addition to the circle, there are red dots, blue dots,
etc., on the left side. Table 2 shows the real zeros of these approximation roots.

Based on Table 2, we can consider q-sigmoid polynomials by dividing n into even and
odd. When n is an even number, it can be assumed that the q-sigmoid polynomials have
two real roots regardless of the value of q-number. On the other hand, it can be assumed
that the q-sigmoid polynomials will always have one real root regardless of the q-number
when n is odd.

Figure 3 below shows another property of the approximate roots of q-sigmoid polyno-
mials. In Figure 3, we can see that the approximate roots of this polynomial are stacked
in two shapes. When 0 ≤ n ≤ 50, one shape is a circular shape and the other shape is a
straight shape. Because the shape of the circle is confirmed in Figure 2 and Table 1, we
consider the straight shape.

(a) (b) (c)
Figure 3. Approximate roots of Sn,q(x) with 0 ≤ n ≤ 50: (a) q = 0.01, (b) q = 0.001, (c) q = 0.0001.
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Table 2. Approximate real roots of Sn,q(x).

n
q 0.01 0.001 0.0001

... ...
...

...
5 −0.983547 −0.983031 −0.98298
6 −0.992142, 0.415504 −0.991826, 0.419697 −0.991795, 0.420109
7 −0.99619 −0.996003 −0.995984
8 −0.998137, 0.433359 −0.998028, 0.437674 −0.998017, 0.438096
9 −0.999084 −0.999022 −0.999015

10 −0.999548, 0.444653 −0.999513, 0.449039 −0.99951, 0.449468
... ...

...
...

19 −0.999999 −0.999999 −0.999999
20 −1, 0.46868 −1, 0.473205 −1, 0.473645
... ...

...
...

29 −1 −1 −1
30 −1, 0.47715 −1, 0.481719 −1, 0.482163
... ...

...
...

39 −1 −1 −1
40 −1, 0.481477 −1, 0.486068 −1, 0.486516
... ...

...
...

Based on Table 2 and Figure 3, we can make the following assumptions.

Conjecture 12. (i) Assume that the value of q is very small, while the value od n is even and
increasing. Then, the q-sigmoid polynomial has two real approximations.
(ii) Suppose that the value of q is very small, while the value of n is odd and increasing. Then, the
q-sigmoid polynomial has only one real approximation.

4. Conclusions

In this paper, we find several types of q-differential equations of higher order and
confirm that their solutions become q-sigmoid polynomials. In order to confirm the proper-
ties of the q-sigmoid polynomials which are the solutions of these differential equations
of higher order, we conducted many different types of experiments based on varying as-
sumptions. To solve these conjectures, it is necessary to study various approaches to special
polynomials. In addition, we think that useful results can be obtained by conducting new
research based on the defined function in [11].
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