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Abstract: Given a graph G, the zero forcing number of G, Z(G), is the minimum cardinality of any
set S of vertices of which repeated applications of the forcing rule results in all vertices being in S.
The forcing rule is: if a vertex v is in S, and exactly one neighbor u of v is not in S, then u is added
to S in the next iteration. Hence the failed zero forcing number of a graph was defined to be the
cardinality of the largest set of vertices which fails to force all vertices in the graph. A similar property
called skew zero forcing was defined so that if there is exactly one neighbor u of v is not in S, then
u is added to S in the next iteration. The difference is that vertices that are not in S can force other
vertices. This leads to the failed skew zero forcing number of a graph, which is denoted by F−(G). In
this paper, we provide a complete characterization of all graphs with F−(G) = 1. Fetcie, Jacob, and
Saavedra showed that the only graphs with a failed zero forcing number of 1 are either: the union of
two isolated vertices; P3; K3; or K4. In this paper, we provide a surprising result: changing the forcing
rule to a skew-forcing rule results in an infinite number of graphs with F−(G) = 1.

Keywords: zero forcing; skew zero forcing

MSC: 05C50

1. Introduction

The concept of failed zero forcing lies at the intersection of graph theory and linear
algebra with its application to minimum rank problems in linear algebra [1]. For a given a
graph G, the zero forcing number of G is denoted Z(G), and is the smallest cardinality of
any set S of vertices of which iterations of the forcing rule result in all vertices in G being in
S. The forcing rule is: if a vertex v is in S, and exactly one neighbor u of v is not in S, then
u is added to S in the next iteration. Zero forcing numbers have attracted great interest
over the past 15 years and have been well studied [1–7]. This area has applications to linear
and quantum controllability for evolving on networks [8]. These studies have included
determination the largest size of a set S that does not force all of the vertices in a graph to
be in S. This quantity is known as the failed zero forcing number of a graph and is denoted
by F(G) [9–11]. Shitov [12], proved that determining the failed zero forcing number of a
graph is NP-complete. Independently, a closely related property called the zero blocking
number of a graph was introduced in 2020 by Beaudouin-Lafona, Crawford, Chen, Karst,
Nielsen, and Sakai Troxell [13] and Karst, Shen, and Vu [14]. The zero blocking number of
a graph G equals |V(G)| − F(G). In 2010, researchers from the IMA-ISU research group [2]
introduced skew zero forcing where any vertex that has all but one of its neighbors colored
will force the last remaining vertex to be forced. In 2016, Ansill, Jacob, Penzellna, and
Saavedra [15] introduced the failed skew zero forcing number, denoted F−(G), which is
the largest size of a set of vertices that does not skew force all of the vertices in the graph. It
was noted in [15] that the skew zero forcing number of a graph gives an upper bound on
the maximum nullity of any skew-symmetric matrix associated with the graph.
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We will use Kn, Pn, Cn, to denote the complete graph, path, and cycle on n vertices,
respectively. A vertex v is a cut-vertex of a graph G if G− v has more components than G.

Throughout the paper we will use colorings to describe failed zero forcing sets where
the vertex in S will be referred to as colored and the vertices not in S will be referred to
as uncolored.

In 2016 Ansill, Jacob, Penzellna, and Saavedra [15] characterized graphs with extreme
values of F−(G) = 0, n− 2, n− 1, and n. The characterization of graphs with F−(G) = 0
was surprisingly complex. We review this in the next section.

In this paper, we characterize all graphs with a failed skew zero forcing number of
1. In these graphs, there is a vertex which is a stalled set (meaning that this set of vertices
does not force any other vertices), and any pair of vertices forces all vertices in the graph.
Within this class of graphs there is an interesting subclass of graphs where there is a unique
vertex v that is a failed skew zero forcing set of size 1 and all other vertices in the graph are
zero forcing sets.

In 2015, Fetcie, Jacob, and Saavedra [10], characterized all graphs with a failed zero
forcing number of 1—which turned out to be only four graphs: a pair of isolated vertices;
K3; P3; and P4. It is surprising to see that the change of the forcing rule where vertices not
in S can also force other vertices results in an infinite number of graphs with a failed skew
zero forcing number of 1.

Ansill, Jacob, Penzellna, and Saavedra [15] presented new results involving failed
skew zero forcing numbers of graphs. In particular they provided a characterization for
graphs with failed skew zero forcing numbers of 0.

They described a family of graphs called doubly extended bouquet-dipoles which is
defined below.

Definition 1. A graph G is a doubly extended bouquet-dipole if it consists of vertices u and v that
are each on a nonempty set of odd cycles, where all other vertices on the cycles have degree two, and
u and v are joined by a path of even order that alternates between single even order paths whose
internal vertices all have degree two, and multiple even order paths whose internal vertices all have
degree two.

We restate a theorem from Ansill, Jacob, Penzellna, and Savvedra [15] which gives a
characterization of all graphs with a failed skew zero forcing number of 0.

Theorem 1 ([15]). F−(G) = 0 if and only if G is one of the following graphs. (i) An odd cycle,
or a nonempty set of odd cycles whose intersection is a single vertex or (ii) A doubly extended
bouquet-dipole.

In this paper, we provide a characterization of all graphs with a failed skew zero
forcing number of 1. To show a graph has F−(G) = 0 one has to show that the set where
S = ∅ is a failed zero forcing set and if S 6= ∅ then all of the vertices in the graph are forced.
However to show a graph has F−(G) = 1 it is more complex. We need to show that there is
a vertex which is a stalled set, and that any pair of vertices forces all vertices in the graph.

2. Failed Skew Zero Forcing Numbers of Graphs

We begin by investigating the failed skew zero forcing numbers for disconnected
graphs followed and small examples of connected graphs.

Theorem 2. The only disconnected graph with F−(G) = 1 is 2K1.

Proof. Suppose G is disconnected and has more than two components or a component
with more than one vertex. Then S contains all but one component or the component
with two or more vertices. Now |S| > 1. Now let G have two components that both have
one vertex; G = 2K1. Let |S| = 1. It is clear that this is the maximum stalling set of 2K1.
Therefore, 2K1 is the only disconnected graph for which F−(G) = 1.
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From here we will assume that all graphs are connected. We first show two small
graphs that have a failed skew zero forcing number of 1.

Lemma 1. F−(P3) = 1.

Proof. Let the external vertices be labeled v1 and v2 and the middle vertex be w. If S = {w},
then S is skew stalled; F−(P3) ≥ 1. If |S| = 2, then without loss of generality there will
be a vertex in S with one neighbor outside of S, so the whole graph will be skew forced.
Therefore, F−(P3) ≤ 1, giving the desired conclusion that F−(P3) = 1.

Lemma 2. F−(K4) = 1.

Proof. Without loss of generality, choose a vertex on K4. Then that vertex has three
neighbors outside of S which implies it will not skew force. Then each neighbor outside of
S has two neighbors outside of S which implies each neighbor will not skew force. Thus,
F−(K4) ≥ 1. Now suppose |S| = 2. Then the vertices outside of S only have one uncolored
neighbor which will be skew forced into S, and then any vertex in S will force the remaining
vertex that is outside S. So, F−(K4) ≤ 1. Therefore, F−(K4) = 1.

Now we define a subgraph and a lemma that provides a lower bound for the failed
skew zero forcing number of a graph.

Definition 2. An n-blocking is a P2n+1 subgraph whose external vertices have degree higher than
2 and internal vertices have degree 2. An example is given in Figure 1.

1 
 

 
Figure 1. An example of a graph with a 2-blocking.

When n = 1, we will call this subgraph a 1-blocking.

Lemma 3. (n-Blocking Lemma) If G has no vertices of degree 1 and contains k disjoint blockings of
size n1, . . . nm then

F−(G) ≥ Σm
i=1ni.

Proof. Let P2n+1 be the largest n-blocking on a graph, G with vertices v1, . . . , v2n+1, where
v1 and v2n+1 are the endvertices with degree larger than 2. Then define S = {v2, v4, . . . , v2n}
such that |S| = n. Then each vertex in S has two neighbors outside S and will not skew
force, v1 and v2n+1 have degree higher than 2, so they have at least two neighbors outside S
and will not skew force, and each v2i+1 inside the n-blocking has exactly 2 neighbors inside
S. Since G has no vertices of degree 1, no vertex outside of the n-blocking will skew force
either. So, S is skew stalled, and F−(G) ≥ n.

Corollary 1. If G is an odd cycle with a chord that creates an odd cycle of length 2n + 1, then
F−(G) = n.

Notice that when n = 1, this family of graphs is defined by a 1-blocking. This
useful result begins our notions of how to characterize all graphs with F−(G) = 1. The
following three lemmas provide useful descriptions of graphs with F−(G) = 1, specifically
surrounding their failed skew stalling sets.
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It is possible for a graph where F−(G) = 1 and there is more than one vertex that is a
stalling set. An example of a graph with two different vertices that are both stalling sets is
shown in Figure 2.

Figure 2. A graph with two different stalling sets of size 1. The blue vertex represents one stalling set
and the red vertex represents another stalling set.

In our next lemma we show that it is not possible to have more than 2 different vertices
that are each stalling sets.

Lemma 4. Unless G = K4, there cannot be more than 2 vertices that are each failed skew zero
forcing sets of size 1 in a graph where F−(G) = 1.

Proof. We will assume that G is not K4. We then proceed by contradiction. Let G be a
graph and k ≥ 3 where F−(G) = 1 and a1, a2, . . . , ak are vertices that are each failed skew
zero forcing sets of size 1. We consider two cases.

• Case 1. There does not exist more than two vertices from the set {a1, a2, .., at} that
share a common neighbor. Without loss of generality consider three vertices a1, a2,
and a3 where N(a1) ∩ N(a2) = ∅. Then {a1, a2} forms a failed skew zero forcing set
of size 2, which contradicts the assumption that F−(G) = 1.

• Case 2. There exists vertices a1, a2, and a3 that share a common neighbor v. Now
since each of the vertices a1, a2, and a3 are failed skew zero forcing sets of size 1, all
of the neighbors of each ai, 1 ≤ i ≤ t have degree 3 or more. If N(a1) = N(a2),
N(a1) = N(a3), and N(a2) = N(a3) then F−(G) = |V(G)| = n − 2. Suppose that
N(a1) 6= N(a2), N(a1) 6= N(a3), and N(a2) 6= N(a3). Then there is a vertex x where
x ∈ N(a1) but x /∈ N(a2), and there is a vertex y where y ∈ N(a3) but x /∈ N(a2).
Hence each of the vertices a1, a2, and a3 has two uncolored neighbors each of which
has degree at least 3. Then {a1, a2, a3} forms a failed skew zero forcing set of size 3,
which contradicts the assumption that F−(G) = 1.

Lemma 5. (Cut vertex lemma) Let G be a graph with a cut vertex v with deg(v) > 2, and all
of the neighbors of v have degree at least 3. Let H1, H2, .., Ht be the components of G− v where
|H1| ≥ |H2| ≥ · · · ≥ |Ht|. Then F−(G) ≥ 1 + |Hi| when t = 2 and F−(G) ≥ 1 + ∑t−2

i=1 |Hi|
when t > 2.

Proof. If v is a cut vertex of degree greater than or equal to 2 and its removal divides the
graph into two components, the vertex v along with the vertices in the component of larger
size (or the same size if the two have equal size) form a failed zero forcing set. To see this
note that each vertex in the graph has either 0 or 2 uncolored neighbors. If v is a cut vertex
of degree t > 2 whose removal divides the graph into more than two components we
can take the vertices in the t− 2 largest components and add v. Since each vertex in this
set either has 0 or 2 uncolored neighbors, this set is a failed skew zero forcing set. Hence
F−1(G) ≥ 1 + ∑t−2

i=1 |Hi|.

Lemma 6. If F−(G) = 1 and {v} = S, v cannot have a neighbor of degree 2

Proof. If v has a neighbor, w, of degree 2, then w will skew force its neighbor, u, contradict-
ing that S is skew stalled. So, v cannot have a neighbor of degree 2.
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Definition 3. An even multiple path has vertices u and v with 2 or more even paths connecting
them and are buffered on both sides by an even path.

An example of an even multiple path can be seen in the middle of the first graph in
Figure 3. Next, we provide our main result, giving a full characterization of all graphs with
F−(G) = 1.

Figure 3. There are some graphs with F−(G) = 1. In each graph, the blue vertex represents one
stalling set and in the last four graphs the red vertex represents another stalling set.

Theorem 3. F−(G) = 1 if and only if G is K4 or P3 or G has all five of the following properties.

• Exactly 1 disjoint 1-blocking, no more than 2 non-disjoint 1-blockings that share a vertex of
degree 3, and no other n-blocking

• All degree 2 vertices are in a 1-blocking, an even path with external vertices with higher degree
than 2, and even multiple path, or an odd cycle with exactly one vertex of degree higher than 2

• There are no pendant even cycles on G and no vertices of degree 1.
• Outside of the 1-blocking, no vertex has more than one neighbor of degree 3.
• All but one of the exterior vertices of the 1-blockings can have one neighbor that is not in an

odd cycle or adjacent to another exterior of a 1-blocking through an even path.

Proof. We know F−(G) = 1 for K4 and P3 by Lemmas 1 and 2. Suppose F−(G) = 1. We
first show that if F−(G) = 1, then G contains 1 disjoint 1-blocking and no other disjoint
n-blocking, satisfying the first criterion.

By the n-blocking lemma, since F−(G) = 1, if G contains an n-blocking, then Σm
i=0ni = 1,

where ni is the size of each disjoint n-blocking. Hence G contains at most 1 n-blocking where
n = 1.

To show that G contains at least one disjoint 1-blocking, recall that if {v} is our
maximum failed skew stalling set, that unless v is on a P3 the neighbors of v must have
degree greater than 2. It remains to confirm that v necessarily has degree 2 which will
imply the existence of the 1-blocking.

Suppose deg(v) ≥ 3. We know its neighbors must have degree higher than 2 since if a
neighbor u has degree 1 then u, v would be a stalled set, contradicting the assumption that
F−(G) = 1.

Suppose v is a cut vertex of degree t ≥ 3. By Lemma 5, the set S consisting of v and
vertices in the t− 2 largest subsets of G− v is skew stalled.
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Next suppose v is not a cut vertex. Since v has no neighbors of degree 2, v must
be adjacent to a vertex u, which prevents the creation of a new n-blocking. Recall that
deg(u) ≥ 3. If u has no neighbor of degree 2, let S = {v, u}. S is skew stalled with |S| = 2,
contradicting the hypothesis that F−(G) = 1. If u has a neighbor of degree 2, that neighbor
must either be part of an even path or an odd cycle. If that neighbor is on an even path,
let S = {v, u} and skew force along the even path until it skew stalls at the next vertex
with degree higher than 2. If it is part of an odd cycle and has a neighbor with degree
higher than 2, then S contains only u and the vertices of the cycle to which u belongs. Since
u has two uncolored neighbors of degree higher than 2, S is skew stalled with |S| > 1,
which contradicts the original hypothesis. Therefore, if F−(G) = 1, then it must be that
deg(v) = 2.

We still have to consider the case when G has two distinct maximum skew stalling sets
of cardinality 1, {v} and {w}. By Lemma 6, neither vertex can have a neighbor of degree 2.
Their shared neighbor, u must have degree 3 or {v, w} will be a skew stalling set.

Suppose first that deg(v) and deg(w) > 2. If u is a cut vertex, then by the above
lemma, F−(G) > 1, so u cannot be a cut vertex. If u is not a cut vertex, then its neighbor, x
will have degree 2 or higher. If deg(x) = 2, then set S = {u} and skew force along the even
path until S skew stalls upon reaching some vertices with degree 3 or higher. If deg(x) > 2
and the neighbor of x has degree 3 or higher, then set S = {x, u}, which will stall and
contradict the original statement of the theorem. So, x has at least one neighbor of degree 2.
Then, since u is not a cut vertex, this neighbor may be on an even path or an odd cycle.
If x only has a degree 2 neighbor on an odd cycle, then x must have some other degree 3
neighbor that connects to other parts of the graph, since u is not a cut vertex. In that case, S
contains x and the vertices of that odd cycle. Otherwise, let S = {x} and skew force along
optional odd cycle and then the even path until it reaches a degree 3 vertex and skew stalls.
Then |S| > 1, contradicting the original hypothesis.

Therefore, G contains at most and at least 1 disjoint 1-blocking; G contains exactly 1
disjoint 1 blocking and no other n-blocking if F−(G) = 1.

Furthermore, suppose there is a degree 2 vertex v in V(G) that is not in one of the
specified structures of the second criterion. Then v would be in a separate n-blocking,
contradicting the first criterion. G cannot have a pendant even cycle since this contradicts
the second criteria. If G has a degree 1 vertex, it will skew force its neighbor. If that neighbor
is not an element of a maximum failed skew forcing set, this contradicts that F−(G) = 1. If
it is, then this vertex is not in a 1-blocking. For completeness, suppose that this vertex is a
maximum skew stalling set. Therefore it cannot have a neighbor of degree 2. By Lemma 5,
this would cause F−(G) > 1, contradicting that F−(G) = 1. Now suppose a vertex outside
the 1-blocking has 2 neighbors of degree higher than 2. Then, this vertex will stall in S but
color any neighbors of degree 2. These neighbors are either in an odd cycle or an even path.
If they are in an odd cycle, they are all skew forced, but will not be able to spread skew
forcing to the rest of the graph, as they only have one vertex of degree higher than 2. If they
are on an even path, then skew forcing will stall before the next vertex of degree higher
than 2. So, the fourth criterion holds. Finally, if all exterior vertices of 1-blockings have a
neighbor that is not in an odd cycle or on an even path connected to another exterior vertex
of a 1-blocking. Then if each exterior vertex of the 1-blocking is in S, they will skew force
along their neighbors of degree 2, but, since these vertices are in neither an odd cycle nor
a 1-blocking, they must be on an even path where skew forcing will stall before the next
vertex of degree higher than 3 that is not an exterior vertex of the 1-blocking. Therefore, the
theorem holds that if F−(G) = 1, it must have all of the criteria.

Suppose G satisfies all the conditions. Let v be the first vertex we place in S. Begin
with v being the vertex of degree 2 in the 1-blocking. Each neighbor has degree higher
than 2. Therefore, S is skew stalled and F−(G) ≥ 1. Now, there are 5 cases for the different
vertices we can start with for v.
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• (Case 1) Suppose v is the vertex on a nonempty collection of odd cycles with its degree
higher than 2. This will skew force the whole collection of odd cycles into S. Then it
will follow one of the following cases:

– Case 1(a): Let w be a degree 2 neighbor of v in S.

* Case 1(a) i: w is on a P2n where it will continue to skew force along the path
until the next vertex with degree higher than 2 is skew forced into S. Then
refer to Case 2.

* Case 1(a) ii: w is the vertex of degree 2 in a 1-blocking. It will then skew force
its neighbor with degree higher than 3, which is the intersection point of a
nonempty collection of odd cycles which will be forced or the beginning of
one or more even paths, which leads to Case 1(a).

– Case 1(b): Let w be a degree 3 neighbor of v.

* Case 1(b) i: w is the beginning of one or more even paths. Then skew forcing
will continue along each path; this case naturally leads to case 1(a).

* Case 1(b) ii: w is a vertex in the 1-blocking with degree higher than 2. The
vertex of degree 2 in the 1-blocking will skew force its neighbor which has
degree higher than 2. Then, that vertex is the intersection of a nonempty
collection of odd cycles which will now be skew forced, or the beginning of
one or more even path(s), which leads to Case 1(a).

Since G does not have any pendant even cycles and no vertex with degree 1, eventually
the skew forcing will reach some vertex, z, that is the beginning of a pendant. z cannot
be Cases 1(a) or 1(b) since it then would imply the existence of a degree 1 vertex.
Furthermore, z cannot be the vertex in Case 2(a) since that would create one or more
pendant even cycle(s). So, z is the beginning of a pendant of a nonempty collection of
odd cycles. Besides the degree 2 vertex of a 1-blocking, all neighbors of z will be in S.
Then all degree 2 neighbors of z will skew force their neighbors and z will skew force
that vertex in a 1-blocking if they are neighbors. Now, each vertex in S has at most
one neighbor outside of S, so they will skew force their remaining neighbors. Finally,
any degree 3 vertex with an edge incident to a nonempty set of odd cycles will skew
force the connecting degree 3 vertex and thus skew force the entire set.

• (Case 2) Now suppose v is a vertex of degree 2 on an odd cycle. Skew forcing will
continue along the cycle until you hit the only vertex with degree higher than 2 on the
cycle. At this point, the reader can refer back to the case where that vertex with degree
higher than 2 is v.

• (Case 3) Suppose v is the exterior point of a 1-blocking. Automatically, the other
exterior vertex of the 1-blocking is skew forced. If v shares a common exterior of
a 1-blocking with that vertex, that exterior vertex will also be skew forced. So, all
exterior vertices of 1-blockings are in S, causing each even path between them to be
skew forced. Since there is one exterior vertex with no neighbors besides vertices
in an odd cycle or vertices that are connected via an even path to another exterior
of a 1-blocking, that exterior vertex will now skew force the degree 2 vertex of the
1-blocking. If any other exterior vertex is adjacent to an even path or multiple even
paths that do not lead to another exterior of a 1-blocking, then it will skew force two
consecutive vertices along this path, that will end in a nonempty collection of odd
cycles or a multiple path, which would lead back to Cases 1 or 2.

• (Case 4) Suppose v has degree 2 on an even path. It will then skew force along the
path until one of the degree 3 vertices mentioned above is skew forced.

• (Case 5) Suppose there are two non-disjoint 1-blockings. Let x and y be the degree 2
vertices in these 1-blockings. Then if S = {x, y}, their common vertex has degree 3
and therefore will skew force another vertex, leading to one of the above cases.

Since selecting any vertex other than the degree 2 vertex in a 1-blocking will cause the
whole graph to become skew forced, and selecting two degree 2 vertices from a 1-blocking
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causes the whole graph to become skew forced, we know that F−(G) ≤ 1. Therefore,
F−(G) = 1.

From this result, we obtain the following corollary.

Corollary 2. If F−(G) < 2, G is planar.

Proof. According to Theorem 3, if F−(G) = 1, then G can be comprised of even paths,
even multiple paths, or nonempty odd cycles and one disjoint 1-blocking. Recall that a
1-blocking is an odd path with requirements on vertex degrees. All of these subgraphs are
planar and by Theorem 3, they are joined by paths that can be reduced to edges using edge
contraction(s). Since planar graphs with planar subgraphs that are joined by edges cannot
result in an edge crossing, G must be planar.

We note that this result cannot be extended as K5 is not planar and F−(K5) = 2.

3. Conclusions

Now that the characterization of graphs with F−(G) = 0 [15] and F−(G) = 1 com-
pleted here, the next logical step is to look at graphs where F−(G) = k for k ≥ 2. We also
proved that a graph with F−(G) = 1 can have at most two vertices that can be failed skew
zero forcing sets of size 1. An analogous question can be asked. How many different failed
skew zero forcing sets of size t exist for a graph with F−(G) = t?
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