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Abstract: The advancement of technology influenced the development of mechanical and mecha-
tronic systems. This article presents the integration of new technologies into traditional mechanics.
Specifically, it presents a flexible interactive software for dynamic plane geometry used for designing,
simulating and analyzing the mechanical systems. The article presents this interactive software for
dynamic geometry as a useful tool for the kinematic analysis of constrained linkages. The simulation
and kinematic analysis of some mechanical systems are presented.
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1. Introduction

The mechanical systems with rigid body dynamics are modelled by using methods
based on the Newtonian laws of motion [1]. However, there are some difficulties in
modelling the multibody system; when more mechanical components are interconnected,
modelling depends in general on geometry, and simulating these mechanical systems can
require a considerable effort [2]. This dependence on geometry requires a special consider-
ation. Since a large class of mechanical systems can be modelled by basic one-dimensional
translation and fixed-axis rotation, designing and analyzing mechatronic systems with
rather complex mechanical components could be facilitated by a flexible interactive soft-
ware for dynamic plane geometry. The article presents such an interactive software for
dynamic geometry as a tool for engineers and scientists interested in solving kinematic
and dynamic problems by using computers. By combining mathematical knowledge and
software engineering, this interactive software offers several facilities for geometric loci,
trajectories and parametric curves. The dynamic features subsume mobile elements, a path,
a direction, speed, acceleration, timing and other parameters. These facilities can simulate
dynamic trajectories, complex geometric loci and new geometrical relations. An important
aspect is that this software is intuitive and simple to use.

In the first part of this article, we present snapshots exemplifying how the interactive
environment is working, particularly on the representation of a curve dynamics with respect
to the continuous changes of its parameters. The interactive software for dynamic geometry
offers assistance in determining geometrical loci determined by many mobile elements
defined by the user. Thus, it is possible to use a geometrical construction, and to indicate the
movements of some of its elements. Each movement of an element provides a path given
by the mobile element. For example, if the moving element is a point, its corresponding
path can be either a line, a curve or a locus. Another option is to select a segment as the
moving element, having the segment moving around a point (acting as its path). Another
possibility is to have a circle as the moving element and a line as its path; namely, the
circle is sliding on the line. If the moving element is a point and the interior of a polygon
represents the path, the movement generates a set of arbitrary points inside the polygon.
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Additional to the mobile element and path, it is allowed to indicate other properties for
each movement as direction, speed, change of direction, starting time of the movement
(usually 0), a number of repetitions, time of a specific cycle, and a termination time. These
properties provide a certain flexibility in playing various simulations, generating a broad
spectrum of scenarios in dynamic geometry [3]. By using messages sent by the interactive
software, it is possible to check whether some specific geometrical relations and properties
are preserved during the whole process. In particular, the correctness of these messages is
important when the movement is not possible anymore (because the obtained trajectories
in a simulation cannot describe properly the behaviour of a mechanism). For instance,
when such a mechanism contains rigid segments (fixed length), it is possible to stop the
movement, also emitting a specific warning. Technically, when a critical situation appears,
the involved element returns to its previous position, and sends a message to its parent.
Such a recovery procedure is applied recursively until all (involved) elements are moved
back to their previous positions, and movement is stopped; additionally, an exception
identifying the deadlock type is raised.

One possible utilization of the dynamic geometry software is related to the kinematics
of mechanical and robotic systems [4]. We present how to use our interactive software
to simulate some scenarios in order to design properly mechanical systems by intercon-
necting several components. Joint constraints capture the interaction among rigid bodies.
Using our software, the designer introduces easily the dynamic geometry of the joints,
and the software verifies their consistency. The algorithms can extract the parameters
for each component, and joint components are computed and instantiated based on the
interconnections between components. The mechanical behaviour of each rigid component
is described by its position, orientation and the forces acting on the component (velocity,
acceleration, variations of the angles and movements). Some conditions are expressed
as (linear) algebraic constraints, then converted for simulation. The algorithms can also
extract the kinematic behaviour from the resulting geometry. Some possible inconsistencies
appear when the kinematic behaviour of the mechanical system does not match the specific
geometry properly. We present some examples of designing and simulating mechanical
systems by using our flexible software for dynamic geometry, and also providing their
kinematic diagrams. The advantage of this software is the intuitive and simple way of
describing and simulating the kinematics of mechanical systems.

2. Loci Functionalities

Technically, a trajectory could be used as a path; for this, it is enough to click the
trajectory to locate the point as a mobile element. Whenever the selected point (pixel) is not
on the trajectory, the closest point of the trajectory is determined (by using a radius decided
by the user). Whenever the pixel is very close to the trajectory, the point for the movement
appears as being on it (it becomes one of the points of the trajectory). Eventually, we can
move (by using the mouse) this point along the trajectory. Whenever an exact fit is not
possible, the fitting problem (for a trajectory) is resolved by interpolation and regression
analysis (an approximate fit is determined by using a nonlinear regression). Since every
plane trajectory can be fairly approximated by a sequence of Bezier curves, the interpolation
uses Bernstein polynomials.

When the involved elements move too fast, the distances between captured points of a
geometrical locus could be large, and so it could be difficult to determine it properly when
only few points (far from each other) are known. Our interactive software allows it to slow
down its speed. This aspect is new and indicates a distinctive feature, just because most of
the existing software systems present loci functionalities by using a single mobile element
without considering its speed.

We exemplify the geometrical loci and trajectories by using some geometric construc-
tions in which the moving elements change their positions according to the path, direction
and speed. Moreover, the moving elements can have specific relationships with other
involved elements. When a position is changed, certain messages are sent to the other
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elements placed in the same component vector, namely to the elements involved in a
specific geometrical relation. Consequently, the positions of these elements change in such
a way so as to preserve the current geometrical relations; this fact leads to a recursive
modification of all the components positions. In some situations, the mobile element could
appear in the component vector of a different element. Thus, it is possible to have messages
asking other changes of its position; sometimes, the movements are not possible. Therefore,
it is necessary to manage the messages for each component properly—we name this as the
‘feedback problem’. It is possible to generate several errors, particularly when the geometri-
cal construction is complex. Anyway, once the movements are decided in a correct way, we
indicate the elements under observation (they could be many of them). Thus, we set the
speed and acceleration for each element, and determine its correct trajectory. Additionally,
it is possible to indicate a colour for each trajectory, such that distinct trajectories may be
easily observed (by having different colours).

Figure 1. Example of a simple geometric construction.

As an example, we consider a rather simple geometric construction (Figure 1) given
by a circle and its centre A, together with two points B and C on this circle. We have a line
passing through A and B, together with the line perpendicular on AB passing through C (G
being the intersection point). Considering the perpendicular passing through G on line BC,
its intersection with line BC is denoted by I. The midpoint of line segment AI is denoted
by U, and the midpoint of line segment BU is denoted by W. Our interactive software
allows it to modify easily (by the mouse) the circle (its position) by moving its centre A as
well as its radius. It is easy to change also the positions of B and C moving on the circle.
The new obtained points G, I, U, W depends on these geometrical constraints; thus, their
positions are not allowed to be changed (by using the mouse). Since line segment CG is
perpendicular on line segment AB, it becomes an element of the component vector of line
segment AB. Since point G is given by the intersection of lines AB and CG, it belongs to the
component vector of both lines. Since line segment GI is perpendicular on BC, it belongs to
the component vector of line BC. In a similar way, point I belongs to the component vector
of lines BC and GI, point U belongs in both component vectors of points A and I (being the
midpoint of AI), and point W belongs to the component vectors of points B and U.

Whenever the position of point B is modified in this construction, a message is sent to
its ‘parent’ elements: the circle and line segments BA and BC. Point B does not change the
radius (and position) of the circle; in fact, point B represents a rotation point for both BA
and BC—this means that it modifies them, and this implies changes for all the elements of
the component vectors of BA and BC. Being a rotation point for line segment BA, point A is
not affected by changing point B. Since segment CG is in the component vector of line AB
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(being perpendicular on it), it changes its position and induces the change of point G.
Since G is a translation point for GI, line GI modifies its position, as well as the position of I.
Point I is also affected because of the movement of segment BC. Since IG belongs to the
component vector of segment BC (being perpendicular on it), a change of point I induces a
change of point U (related to points I and A), and the changes of points B and U induce a
change for W (related to points B and U).

The change of point C triggers less changes in the construction.

Figure 2. Trajectory of the point W (its geometrical locus)—adapted from [5].

We describe all these changes (depicted in Figure 2) in the following way:

Point B - update position;
Line1 - update position; goto et2; Line3 - update position; goto et4;
Point C - update position; goto et2; Line3 - update position; goto et4;
et2: Line2 - update position;
Point G - update position; goto et4;
et4: Line4 - update position;
Point I - update posiTION;
Point U - update posiTION;
Point W - update position;

Two additional movements can be considered in the previous construction. In the first
one, we consider point B as a moving element (along the circle). In the second one, we
consider point C as a moving element (along the circle); its direction is different, having
half of the speed of B. These movements are described in the software by

Motion1: Motion2:
mover: mover:
type: point; type: point;
mover: Point B; mover: Point C;
road: road:
type: circle type: circle
road: Circle1; road: Circle1;
properties: properties:
enabled: true; enabled: true;
direction: clock; direction: inv clock;
alternated: false; alternated: false;
speed: 400 pixel/s; speed: 200 pixel/s;
loop count: 10; loop count: 10;
loop time: 10"; loop time: 10";
start time: 0; start time: 0;
stop time: 2’0"; stop time: 2’0".
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Since we associate a thread to each movement, the threads corresponding to points B
and C are running concurrently. According to the above description, a change in the
position of each point generates a chain of movements. The evolution of point W can be
observed in the Figure 2.

In general, it is possible to observe more than one evolution by using the dynamic
geometry of this interactive software. Technically, each observation creates a Locus. A
thread captures the positions of the observed element with a certain frequency, storing
them in a vector associated to its Locus. It is worth noting that the representations of these
positions is influenced by the restricted representation of numbers in a computer. Thus,
we work with approximations of the correct positions; this means that the approximation
errors could be amplified during a simulation.

3. Dynamic Homotopy

Dynamic curves represent one of the new achievements, which could have an impor-
tant role in education and research. It allows one to create new curves, to manage and edit
existent ones, to modify and redraw curves and to use them in the working framework.

It is important to have the visual representation of curve dynamics with respect to
changes in parameters. In this system, we can view the changes which occur in the graphic
of a curve when one of its parameters is modified. In this way, one can discover particular
cases, which would be hard to find without such a feature. The dynamic representation
of a curve simulates a homotopy (a continuous deformation) from the initial curve to the
modified one. To be more precise, a homotopy from a curve α : [0, 1] → R2 to a curve
β : [0, 1] → R2 is a continuous map Θ : [0, 1]× [0, 1] → R2 such that Θ(0, t) = α(t) and
Θ(1, t) = β(t) for all t ∈ [0, 1]. Simulating a homotopy from α to β consists of taking
discrete ‘snapshots’ of the graphic of Θ, i.e. drawing Θ(k1, t), . . . , Θ(kn, t) for some values
0 = k1 < k2 < . . . < kn = 1.

From a technical point of view, the support for manipulating curves is implemented
in the comp.gui.curves and comp.gui.curves.parser packages. The data defining a curve is
kept in an object of type comp.gui.curves.Curve. The Curve class has the following public
fields: name, description, type, min, max, rate, params, x, y, fx, fy and ecurve. Their meaning is
presented below:
• name stores the name of the curve;
• description stores its description (its definition and/or some observations);
• type stores the mode of its representation; it can be one of the following: parametric,

explicit or polar;
• min and max store the minimum and maximum values of the argument;
• rate stores the sampling rate;
• params is an object matrix of type comp.gui.curves.Param; each element of this matrix

stores the data of one curve parameter, i.e., the name and value of the parameter;
• x and y store the curve equations; for a parametric representation we have x = f (t)

and y = g(t), for an explicit representation, we have x = t and y = g(t), while for a
polar representation x is an angle θ and y is given by ρ = g(θ);

• f x and f y have the type comp.gui.curves.parser.Function;
• ecurve is an object of type comp.geom.ECurve, which is used for the graphical repre-

sentation of the curve.

When calling the methods get f X and get f Y, the strings stored in the fields x and y
are interpreted, the objects f x and f y of type Function (which represent the functions
associated to the strings x and y) are built, and the parameters are stored in these objects
(which are added in the params matrix). This interpretation takes place whenever there
is a redraw request, before using the argument t. The objects f x and f y thus created are
used for every computation. The methods getX(double t) and getY(double t) return the
values of the functions x and y for the parameter t. The methods get f X and get f Y are
called only at the initial drawing or when the curve is redrawn in the work framework.
Other curve operations (editing; saving) do not involve these methods. Therefore, the
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computation of functions x and y for a parameter t is conducted without interpreting
the strings x and y. The objects of the type Curve are created and managed through the
graphical interface implemented by the classes MCurves, MCurves1, MCurves2, MCurves3,
MCurves4, MCurves41 and MCurves5 from the comp.gui.curves package.

The toolbar buttons of the curve manager allow us to create a new curve, to save it, to
erase the current curve, and to switch to the set of famous curves already implemented. In
this case, the toolbar list loads depending on the button selected in Curves Representation:
when selecting a curve from the list, the editable fields load as in Figure 3.

Figure 3. Curve manager (toolbar buttons and parameters).

The data of the of famous curves, which are already implemented, are stored in the
class comp.gui.curves.Curves. Their equations cannot be edited. To change these equations,
the curves must be saved separately and will be sent to the user list. The data for the saved
curves is written in a file using a method from the Curves class. This class also provides the
means to read curves from this file and to load them in the user list. The contents of this list
changes with respect to the active button in the Curves’ Representation. When pressing the
AddCurve button, the following happens:

• A curve object from the corresponding Curve object is created and initialized, and it is
added to the vector of geometric objects corresponding to the current simulation;

• An object ELocus from the ECurve object is created; it is initialized with the properties
set in the property window (colour, size, shadow, and label);

• The method setLocus() from ecurve is called. This calls in the methods get f X and
get f Y from the curve object. Then, by calling methods getX and getY of the same
object, the coordinates of a specified number of points from the geometrical image of
the curve are obtained. These will be loaded in the points vector from the associated
ELocus object.

• The redrawing is called, which leads to drawing the ELocus object and thus to the
graphical representation of the curve.

The last two steps are executed at every redrawing of the curve. The redrawing is
called by changing the value of the current parameter through the scroll bar, or by pressing
the ‘redraw’ button. When moving the scroll bar, each value produces a redraw of the
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current curve, and this simulates a (dynamic) homotopy. The value of the current parameter
can also be changed directly. If it is an integer, the scroll changes the parameter with rate 1.
If it has one decimal, the scroll changes the parameter with the rate 0.1 and so on.

Examples for Dynamic Geometry

As a first example, we take the Epicycloid, having the equations:

x = (a + b)× cos(t)− b× cos((a/b + 1)× t),
y = (a + b)× sin(t)− b× sin((a/b + 1)× t).

For the values a = 200 and b = 25, when parameter t is varying between 0 and 2π
with a rate of 0.01, it is graphically represented in Figure 4.

Figure 4. Epicycloid for values a = 200 and b = 25.

When changing the parameter b to 97, we obtain Figure 5.

Figure 5. Epicycloid for values a = 200 and b = 97.

Interesting representations are obtained by slight changes in the curve equations.
For example, if the equations considered are

x = (a + b)× cos(t)− b× cos((a/b− 1)× t),
y = (a/b)× sin(t)− b× sin((a/b + 1)× t),

for a = 500, b = 25 and t varies between −100 and 100 with a rate of 0.01 (Figure 6).

Figure 6. Epicycloid for values a = 500 and b = 25.
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For the equations

x = (a + b)× cos(t)− b× cos((a/b− 1)× t)
y = (a− b)× sin(t) + b× sin((a/b + 1)× t)

with values a = 350, b = 234 and t varying between −100 and 100 using a rate of 0.01,
we obtain the following picture:

We can change the parameter a ‘continuously’ by using the scroll bar, and the above
curve changes by also obtaining the following representation for a = 35:

For the equations

x = t× sin(t/a) + t
y = t× cos(t)× sin(t/a)

with value a = −1.03699 and t varying between −300 and 300 using the rate 0.01,
we obtain the following graphical representation:
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For a = 1.99699, we obtain the following picture:

For the equations

x = t× sin(t/a) + t
y = t× cos(t)× cos(t/a)

with value a = 0.98799 and t varying between −300 and 300 using the rate 0.01,
we obtain the following figure:

For a = 0.4961 we obtain a different graphical representation:

The above examples illustrate the possibilities that are offered by this mathematical
software to study the behaviour of plane curves. Unlike other curve drawing programs, it
is offered a powerful instrument for studying the curve dynamics with respect to certain
parameters. By visualizing homotopies, the researcher can find particular cases, which are
hard to imagine in some other way. By parsing the strings that give the curve equations only
once, before the initial drawing, i.e., building two objects which represent these formulas,
we obtain real-time drawing of the curve when the parameter is changed by the scroll bar.
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Those two objects compute the values of the functions for each t, and the parsing does
not take place again. For example, for a representation in which the parameter t varies
between −100 and 100 with a rate of 0.01, the getX and getY functions of the curve are
called 20,000 times. If the parsing of strings x and y would take 100 operations and would
be conducted every time a computation takes place, we would obtain 2,000,000 operations
(without counting the operations inside getX and getY). The difference between these two
approaches is significant, and it actually explains the real-time capabilities of the system.

4. Software Architecture and Algorithms

The software system is rather complex; in this section, we discuss some parts of it. If
we refer to the dynamic curves presented in the previous section, Figure 7 reveals the links
between various classes used in the corresponding module.

Figure 7. The software classes for dynamic curves, together with their links.

We can remark that the classes’ modelling geometric entities are built starting from the
central class ‘Element’. This approach emphasizes a suitable design, both from a conceptual
viewpoint and an implementation viewpoint. Conceptually, each entity has the same
abstract model that can derive particular models with specific properties and behaviour.
This is visible by the fact that objects as ‘ECircle’, ‘ECurve’ and ‘ELine’ inherit the central
entity ‘Element’.



Mathematics 2022, 10, 4457 11 of 16

From the implementation point of view, this design fruitfully uses the concepts of the
object-oriented programming, such as code reuse through class hierarchies, polymorphism
and data encapsulation. It is worth to note that the code for graphical representation is
separated from the code describing the main control of the system. This fact is supported by
the association relations between the elements providing the graphical representation and
those providing the main control of the system; for instance we have a relation ‘eshadow’
between ‘Element’ and ‘EShadow’. To conclude, the design is suitable to modelling and
representing dynamic geometric entities.

Complex numbers are used for the representation of the geometric elements. The
plane is represented through a system of coordinates xOy, in which the origin O can be
easily modified (by a mouse click). A geometric element is implemented by an object of
class Element having a complex attribute storing its position; a complex number z = a+ b · i
indicates the coordinates (a, b) of a point (called affix) on the plane—an affix is identified
with the complex number z. An element of type ELine is given by the positions of two of
its points; an element of type ECircle is given by its centre and radius, etc. An (object) eline
of type ELine implements a line with a rotation point; using any point of it, the rotation can
be indicated by a mouse. The points of eline keep their relative positions during a rotation
by using the algorithm below. Let us assume that the rotation centre is given by z0, and z1
is an arbitrary point on eline.

• Step 1: The distance is computed d = |z1 − z0| between the rotation point z0 and the
arbitrary point z1.

• Step 2: By mouse, modify the points representing the line (these points could be
located sometimes outside of the visible display, but they can determine the visible
part of the line). If the slope of the line becomes in absolute value greater than 1,
we rotate the relative system of coordinate of the line 90 degrees to the right; in this
way, the slope remains between 0 and 1. Thus, we avoid the computer representation
limitations (when the angle is close to 90 degrees).

• Step 3: According to the new position of the line α · z + α · z + a = 0, the coefficients
α and a are computed. If the slope eline.m is less than 1 (in its absolute value),
then set α = eline.m/2D + i · 0.5D and a = z0.y − (eline.m) · (z0.x). Otherwise,
α = i · (eline.m/2D) + 0.5D and a = −z0.x + (eline.m) · (z0.y).

• Step 4: The position of the point is computed, where the orthogonal line passing

through z1 meets eline by using z = α · z1 + α · z1 + a
2α .

This step is necessary to find the correct position of each point with respect to the
rotating centre, z0.

• Step 5: Use z1 = z; u = d · z1 − z0
|z1 − z0|

; z1 = z0 + u

to compute the next position of each point during the rotation.

Theoretically, the geometrical elements and their geometrical relations are provided
by equations in the complex plane. This is not always possible because of the discrete
representation of pixels on the computer display. Consequently, we use inequalities instead
of equalities. For example, the collinearity of three points P1, P2 and P3 given by the
complex number z1, z2 and z3 is expressed by z3 − z1

z2 − z1
∈ R. The algorithm of our software

verifies the condition |im( z3 − z1
z2 − z1

)| < ε, where im(z) represents the imaginary part of the
complex number z and ε is a (very small) positive number established by the implementer
of the system. As a different example, when considering the points P1, P2, P3, P4 with
affixes z1, z2, z3 and z4, a condition for verifying that lines P1P2 and P3P4 are orthogonal is
|re( z1 − z2

z3 − z4
)| < ε, where re(z) is the real part of complex number z. Moreover, the condition

to verify that P1, P2, P3, P4 are on the same circle is |im( z3 − z1
z3 − z2

· z4 − z2
z4 − z1

)| < ε. If z is the
affix of a point P (obtained after a click on the display), the condition to verify that point P
is on the circle of centre a and radius r is r− ε < |z− a| < r + ε.
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By using these approximations inequalities, it is possible to accumulate some errors
in the computations involving the positions of the geometric elements. To deal properly
with these errors, we use the corresponding equations and change the positions of the
visible points accordingly. It is worth noting that some errors cannot be avoided due to the
restricted representation of numbers in computers.

To appreciate the features of this software (together with several examples), visit:
www.math.uaic.ro/~drusu/dynamicGeometry/eng/demo.htm (accessed on 15 November 2022).

5. Kinematics of the Mechanical Systems

To design a mechanical system properly by interconnecting several mechanical com-
ponents, it would be useful to have a flexible tool allowing the simulation of certain
complicated scenarios. Such a tool can describe its time-dependent evolution, and identify
how the system responds under different input conditions. A proper tool can be used to
improve the design and performance, or to discover specific working conditions in order
to reach certain requirements.

We use our intuitive software in the kinematic analysis of linkages and the related
problems of the kinematic analysis of (over)constrained linkages. The software verifies and
maintains consistency between the components and their interactions (joint constraints).
The form and the behaviour of the mechanical system evolve simultaneously during the
design process; any change made to the form is propagated automatically to its behaviour
(eventually, some inconsistencies can be reported). To simulate the mechanical dynamics
of these systems with constraints, the algorithms of the software extract and derive the
parameters for each component, and joints are determined automatically. The behaviours
of the rigid bodies and joints are derived by using the positions and orientations (expressed
relative to the axes of a coordinate system) and the forces acting on each component
described by the Newton-Euler equations involving the input parameters and the variables
related to velocity, acceleration, mass, (twisting) force and inertia tensor. The constraints
are integrated properly to provide a safe motion simulation. The degrees of freedom
is automatically detected. The algorithms propagate all the interactions throughout the
system, offering a large variety of features.

The design space is located on the left side of the working window. The components
are drawn with the mouse (whenever the drawn parameter is on). The used coordinate
system is located in the lower left corner of the design space; the designer could change it
by using the menu on the top toolbar of the window. The coordinate system and the whole
system can be changed by using the zoom option (on the same toolbar).

The kinematic behaviour and analysis is displayed on the right side of the working
window. This space is used to observe the movement of the mechanical system based on the
elements set by using the left toolbar of the window (selected by double-click). The axes of
the coordinate system are automatically determined (taking care of the parameters values
indicated by the user). Time is on the X-axis, and on the Y-axis are the parameters indicated
by the user. Using a timeline, it is possible to move (by using the mouse) this timeline
in order to observe the values of the parameter at any moment of time. This movement
of the timeline is an event, and the indicated values are acquired by the software; the
corresponding answers from the system is displayed in the upper left corner of this space
(L: length, A: angle, AR: relative angle, AV: angular velocity, AA: angular acceleration, etc).

We present some examples of simulating mechanical systems by using our interactive
software for dynamic geometry, providing some kinematic diagrams of a few mechanisms.

A crankshaft is a mechanism consisting of cranks for which there are attached some
connecting rods of an engine. A crankshaft performs a conversion between the motion
of a piston into a rotational motion. A connecting rod of a piston engine joins the piston
to the crankshaft; in this way, it converts the reciprocating motion of the piston into the
rotation motion of the crankshaft. The most common use of the connecting rods is in
internal combustion engines.

www.math.uaic.ro/~drusu/dynamicGeometry/eng/demo.htm


Mathematics 2022, 10, 4457 13 of 16

Let us assume a jointed quadrilateral (a 4-sided polygon) of a crank mechanism
working with a combustion engine having a connecting rod. In Figure 8, the trajectory of a
point linked to the connecting rod is presented on the left-hand side of the window, where
we can observe the mechanism. On the right-hand side, the diagram for the kinematic
analysis of the mechanism is presented; the dynamic evolution can help a system designer
or system analyst to work properly with this software.

Figure 8. Kinematic diagram and the trajectory of the connecting rod.

Figure 9 presents a little more complicated mechanism, namely a manipulator-like
system used to test a variety of advanced nonlinear control strategies. The articulated
manipulator is a robot with rotating joints; these kind of articulated robots can vary from
basic two-jointed systems to complex structures with 10 (or even more) interacting joints.

Figure 9. Simulation of an articulated manipulator, and its kinematic diagram.

The simulation presents the functioning of a mechanism consisting of a series of
crank-piston mechanisms connected to the rod of the previous mechanism included in
a structural group of four pistons. In robotics, an (end) effector is the part of the robot
that interacts with the environment. The trajectory of the effector point is plotted on the
right-hand diagram.
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In a different scenario (Figure 10), it is simulated a plane manipulator with four grades
of mobility. The four trainers have different laws of motion (depending on time) introduced
as mathematical expressions. The simulation of the complex motion is presented on the
left-hand side, and the kinematic diagram is presented on the right-hand side of Figure 10.

Figure 10. Simulation of a manipulator with four trainers.

Figure 11 presents the simulation of a mechanism of higher complexity working as
a mechanical arm (a system between robots and bio-mechanisms). Its design has only
kinematic and rotation elements. The trajectory of the end effector could be complex.

Figure 11. Simulation of a mechanical arm, together with its kinematic diagram.

These simple examples illustrate in a comprehensible way how our interactive soft-
ware could be used in the kinematic analysis of linkages. Generally, more complicated
mechanisms could be described and analyzed.

6. Conclusions

The mechanical systems interconnecting several components dependant on
geometry [2]. This dependence on geometry requires special consideration, especially
when employing complicated mechanical and robotic systems [6]. In general, a description
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of such a mechanical system takes into account the constraints imposed on the motion (ex-
pressed as functions of time and of states themselves). The behaviour of various mechanical
systems depends on these constraints.

Several methods are used to model mechanical systems of interconnected components
based on the application of basic translational and rotational elements; these elements can
indeed characterize a great variety of mechanical systems [4]. In this paper, we emphasized
on a modern approach (an interactive software) regarding the kinematics of mechanical
systems by dynamic geometry. Extending a previous conference paper [5], we present
an interactive software for dynamic geometry to be used for designing, simulating and
analyzing mechanical systems, and for solving various kinematic and dynamic problems.
The software provides various attractive features: a flexible design, simulations involving
mobile elements, dynamic homotopy, configurable speeds, use of associated formulas, and
working properly with algorithms defined by the user. It is also worth mentioning the
parametric curve plots obtained with this software. These aspects improve the design
quality, saving time and money (for instance, by detecting inconsistencies and errors early
in the design process). These features can be used for several scientific and meaningful
tasks. It can be applied in scientific projects for discovering interesting relations in geometry,
it can be used to define and simulate systems in several engineering disciplines, and for
various interactive experiments. It could be used by scientists, but also by teachers.

There exist several software systems dealing with plane geometry [7]. We mention
the interactive geometry software Cinderella [8], a system designed many years ago (see
http://www.cinderella.de/tiki-index.php (accessed on 15 November 2022)), but still in
use and working well. Recently, GeoGebra became popular [9,10]; GeoGebra merges
features of dynamic geometry and computer algebra (visit www.geogebra.org (accessed on
15 November 2022) for details). There also exists large software systems with advanced
modules for geometry; among the most complex are Mathematica, Maple and Matlab.
In all of them, it is possible to define the equations of a curve; however, none of them
provides the possibility of dynamic homotopy and transformations of a curve depending
on its parameters.

Regarding the kinematics of mechanical systems, we mention the following software
tools. SolidWorks (www.solidworks.com (accessed on 15 November 2022)) is a commercial
computer-aided engineering application. The disadvantages of SolidWorks are given by
the high cost and the fact that it requires a powerful Windows computer (being limited only
to a Windows operating system). Even regarding its 2D functionality, our approach could
be a better option. MechAnalyzer (www.roboanalyzer.com/mechanalyzer.html (accessed
on 15 November 2022)) is a free software mainly used for teaching 3D mechanisms; it is
related to a software used to teach and learn robotics [11]. It can perform a synthesis of
four-bar mechanisms. Its dynamic geometry module is less developed. Moreover, it does
not present kinematic diagrams, and so the kinematic analysis of linkages and other related
issues are not explicitly treated. GIM (www.ehu.eus/compmech/software (accessed on 15
November 2022)) is devoted to the kinematics and dynamics analysis of planar and spatial
mechanisms [12]. It is limited by the use of the Windows operating system. Sometimes,
its interface is not so intuitive. Comparing with our approach, it also has some dynamic
geometry limitations. The kinematics software ASOM (visit asom.eu/en/ (accessed on 15
November 2022) for details) is a licensed software for linkage design and for the simulation
of multi-bar mechanisms. It offers an intuitive handling, and several advanced features
for synthesis, analysis and optimization of the multi-bar systems. The licensing costs and
requirements reduce its benefits.

By comparing our approach with these software tools, we consider that an important
advantage is given by the intuitive and simple way of working with it; this is due to the
algorithms we use, and the way of describing and manipulating the mechanisms.

http://www.cinderella.de/tiki-index.php
www.geogebra.org
www.solidworks.com
www.roboanalyzer.com/mechanalyzer.html
www.ehu.eus/compmech/software
asom.eu/en/


Mathematics 2022, 10, 4457 16 of 16

Author Contributions: Conceptualization, G.C. and D.R.; methodology, G.C. and D.R.; software,
G.C. and D.R.; validation, G.C. and D.R.; formal analysis, G.C. and D.R.; investigation, G.C. and D.R.;
resources, G.C. and D.R.; data curation, G.C. and D.R.; writing—original draft preparation, G.C. and
D.R.; writing—review and editing, G.C. and D.R.; visualization, G.C. and D.R.; supervision, G.C. and
D.R.; project administration, G.C. and D.R.; funding acquisition, G.C. and D.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Many thanks to the anonymous referees for their useful remarks and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kleppner, D.; Kolenkow, R. An Introduction to Mechanics; Cambridge University Press: Cambridge, UK, 2013.
2. Uicker, J.J.; Pennock, G.R.; Shigley, J.E. Theory of Machines and Mechanisms, 5th ed.; Oxford University Press: Oxford, UK, 2016.
3. Gao, X. Building Dynamic Mathematical Models with Geometry Expert. In Proceedings of the Asian Technology Conference

in Mathematics, Guangzhou, China, 17–21 December 1999; pp. 153–162.
4. Norton, R.L. Kinematics and Dynamics of Machinery; McGraw-Hill: New York, NY, USA, 2013.
5. Ciobanu, G.; Rusu, D. Pythagoras: An Interactive Environment for Plane Geometry. In Proceedings of the 3rd Conference on

Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 6–8 September 2007; pp. 283–286.
6. Dresig, H.; Holzweissig, F. Dynamics of Machinery: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2010.
7. Wu, W.; Gao, X. Mathematics mechanization and applications after thirty years. Front. Comput. Sci. China 2007, 1, 1–8. [CrossRef]
8. Richter-Gebert, J.; Kortenkamp, U.H. The Interactive Geometry Software Cinderella; Springer: Berlin/Heidelberg, Germany, 1999.
9. Hohenwarter, M. GeoGebra: Vom Autodesign zur Computerschriftart. Inform. Spektrum 2009, 32, 18–22. [CrossRef]
10. Hohenwarter, M.; Kovacs, Z.; Recio, T. Using Automated Reasoning Tools to Explore Geometric Statements and Conjectures.

In Proof Technology in Mathematics Research and Teaching; Springer: Berlin/Heidelberg, Germany, 2019; pp. 215–236.
11. Saha, S.K. Introduction to Robotics; Tata McGraw-Hill: New York, NY, USA, 2014.
12. Petuya, V.; Macho, E.; Altuzarra, O.; Pinto, C.; Hernandez, A. Educational Software Tools for the Kinematic Analysis of

Mechanisms. Comput. Appl. Eng. Educ. 2014, 22, 72–86. [CrossRef]

http://doi.org/10.1007/s11704-007-0001-8
http://dx.doi.org/10.1007/s00287-009-0323-z
http://dx.doi.org/10.1002/cae.20532

	Introduction
	Loci Functionalities
	Dynamic Homotopy
	Software Architecture and Algorithms
	Kinematics of the Mechanical Systems
	Conclusions
	References

