
Citation: Wei, D.; Zhou, T.; Huang, Y.;

Jiang, K. A Multi-Category Inverse

Design Neural Network and Its

Application to Diblock Copolymers.

Mathematics 2022, 10, 4451. https://

doi.org/10.3390/math10234451

Academic Editor: Pedro A. Castillo

Valdivieso

Received: 30 September 2022

Accepted: 23 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Multi-Category Inverse Design Neural Network and Its
Application to Diblock Copolymers
Dan Wei †, Tiejun Zhou †, Yunqing Huang and Kai Jiang *

Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of
Intelligent Computing and Information Processing of Ministry of Education, School of Mathematics and
Computational Science, Xiangtan University, Xiangtan 411105, China
* Correspondence: kaijiang@xtu.edu.cn
† These authors contributed equally to this work.

Abstract: In this work, we design a multi-category inverse design neural network to map ordered
periodic structures to physical parameters. The neural network model consists of two parts, a classifier
and Structure-Parameter-Mapping (SPM) subnets. The classifier is used to identify structures, and
the SPM subnets are used to predict physical parameters for desired structures. We also present
an extensible reciprocal-space data augmentation method to guarantee the rotation and translation
invariant of periodic structures. We apply the proposed network model and data augmentation
method to two-dimensional diblock copolymers based on the Landau–Brazovskii model. Results
show that the multi-category inverse design neural network has high accuracy in predicting physical
parameters for desired structures. Moreover, the idea of multi-categorization can also be extended to
other inverse design problems.

Keywords: inverse design; multi-category network; reciprocal-space data augmentation method;
Landau-Brazovskii model; diblock copolymers; periodic structure
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1. Introduction

Material properties are mainly determined by microscopic structures. Therefore, to
obtain satisfactory properties, how to find desired structures is very important in material
design. The formation of ordered structures directly relies on physical conditions, such as
temperature, pressure, molecular components, and geometry confinement. However, the
relationship between ordered structures and physical conditions is extremely complicated
and diversified. A traditional approach is a trial-and-error manner, i.e., passively finding
ordered structures for given physical conditions. This approach, in terms of solving the
direct problem, is time-consuming and expensive. A wise way is an inverse design that
turns to find physical conditions for desired structures.

In this work, we are concerned about the theoretical development of the inverse de-
sign method for block copolymers. Block copolymer systems are important materials in
industrial applications since they can self-assemble into innumerous ordered structures.
There are many approaches for solving the direct problem of block copolymer systems,
such as the first principle calculation [1], Monte Carlo simulation [2,3], molecular dynam-
ics [4], dissipative particle dynamics [5,6], self-consistent field simulation [7], and density
functional theory [8]. In the past decades, a directed self-assembly (DSA) method has
been developed to invert design block copolymers. Liu et al. [9] presented an integration
scheme of a block-copolymer-directed assembly with 193 nm immersion lithography, and
provided a pattern quality that was comparable with existing double patterning techniques.
Suh et al. [10] obtained nanopatterns via DSA of block copolymer films with a vapor-phase-
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deposited topcoat. Many DSA strategies have been also developed for the fabrication of
ordered square patterns to satisfy the demand for lithography in semiconductors [11–14].

With the rise of data science and machine learning, many deep-learning inverse design
methods have been developed to learn the mapping between structures and physical
parameters [15–18]. These new techniques and methods are beginning to be used to study
block copolymers. Yao et al. combined machine learning with self-consistent field theory
(SCFT) to accelerate the exploration of parameter space for block copolymers [19]. Lin and
Yu designed a deep learning solver inspired by physical-informed neural networks to tackle
the inverse discovery of the interaction parameters and the embedded chemical potential
fields for an observed structure [20]. Based on the idea of classifying first and fitting later,
Katsumi et al. estimated Flory–Huggins interaction parameters of diblock copolymers from
cross-sectional images of phase-separated structures [21]. The phase diagrams of block
copolymers could be predicted by combining the deep learning technique and SCFT [22,23].

In this work, we propose a new neural network to address inverse design problem
based on the idea of multi-categorization. We take the AB diblock copolymer system as an
example to demonstrate the performance of our network. The training and test datasets are
generated from the Landau–Brazovskii (LB) model [24]. The LB model is an effective tool
to describe the phases and phase transition of diblock copolymers [25–29]. Let φ(r) be the
order parameter, a function of spatial position r, which represents the density distribution
of diblock copolymers. The free energy functional of the LB model is

E(φ(r)) =
1
|Ω|

∫
Ω

{
ξ2

2
[(∆ + 1)φ]2 +

τ

2!
φ2 − γ

3!
φ3 +

1
4!

φ4
}

dr, (1)

where φ(r) satisfies the mass conservation 1
|Ω|
∫

Ω φ(r)dr = 0 and Ω is the system volume.
The model parameters in (1) are associated to physical conditions of diblock copolymers.
Concretely, τ is a temperature-like parameter related to the Flory–Huggins interaction
parameter, the degree of polymerization N, and the A monomer fraction f of each diblock
copolymer chain. τ can control the onset of the order–disorder spinodal decomposition.
The disordered phase becomes unstable at τ = 0. γ is associated with f and N; it is nonzero
only if the AB diblock copolymers chain is asymmetric. ξ is the bare correlation length.
Further relationships can be found in [25–29]. The stationary states of the LB free energy
functional correspond to ordered structures.

The rest of the paper is organized as follows. In Section 2, we solve the LB model (1) to
obtain datasets. In Section 3, we present the multi-category inverse design neural network
and the reciprocal-space data augmentation method for periodic structures. In Section 4,
we take the diblock copolymer system confined in two dimensions as an example to test
the performance of our proposed inverse design neural network model. In Section 5, we
draw a brief summary of this work.

2. Direct Problem

Solving the direct problem involves optimizing the LB free energy functional (1) to
obtain stationary states corresponding to ordered structures:

min
φ(r)

E(φ(r)), s.t.
1
|Ω|

∫
Ω

φ(r)dr = 0. (2)

Here, we only consider periodic structures. Therefore, we can apply the Fourier
pseudospectral method to discretize the above optimization problem.
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2.1. Fourier Pseudospectral Method

For a periodic order parameter φ(r), r ∈ Ω := Td = Rd/AZd, where A = (a1, a2, . . . , ad)
∈ Rd×d is the primitive Bravis lattice. The primitive reciprocal lattice B = (b1, b2, . . . , bd) ∈
Rd×d, satisfying the dual relationship

ABT = 2πI. (3)

The order parameter φ(r) can be expanded as

φ(r) = ∑
k∈Zd

φ̂(k)ei(Bk)Tr , r ∈ Td, (4)

where the Fourier coefficient

φ̂(k) =
1
|Td|

∫
Td

φ(r)e−i(Bk)Trdr, (5)

|Td| is the volume of Td.
We define the discrete grid set as

Td
N =

{
(r1,j1 , r2,j2 , ..., rd,jd) = A

(
j1/N, j2/N, ..., jd/N

)T , 0 ≤ ji < N, ji ∈ Z, i = 1, 2, ..., d
}

, (6)

where the number of elements of Td
N is M = Nd. Denote the grid periodic function space

GN =
{

f : Td
N 7→ C, f is periodic

}
. For any periodic grid functions F, G ∈ GN , the `2-inner

product is defined as

〈F, G〉N =
1
M ∑

rj∈Td
N

F(rj)Ḡ(rj). (7)

The discrete reciprocal space is

Kd
N =

{
k =

(
k j
)d

j=1 ∈ Zd : −N/2 ≤ k j < N/2
}

, (8)

and the discrete Fourier coefficients of φ(r) in Td
N can be represented as

φ̂(k) = 〈φ(rj), ei(Bk)Trj〉N =
1
M ∑

rj∈Td
N

φ
(
rj
)
e−i(Bk)Trj , k ∈ Kd

N . (9)

For k ∈ Zd and l ∈ Zd, we have the discrete orthogonality

〈ei(Bk)Trj , ei(Bl)Trj〉N =

{
1, k = l + Nm, m ∈ Zd,
0, otherwise.

(10)

Therefore, the discrete Fourier transform of φ(rj) is

φ(rj) = ∑
k∈Kd

N

φ̂(k)ei(Bk)Trj , rj ∈ Td
N . (11)

The Nd-order trigonometric polynomial is

INφ(r) = ∑
k∈Kd

N

φ̂(k)ei(Bk)Tr , r ∈ Td. (12)

Then, for rj ∈ Td
N , we have φ(rj) ≈ INφ(rj).
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Due to the orthogonality (10), the LB energy functional E(φ) can be discretized as

Eh[Φ̂] =
ξ2

2 ∑
h1+h2=0

[
1− (Bh1)

T(Bh2)
]2

φ̂(h1)φ̂(h2) +
τ

2! ∑
h1+h2=0

φ̂(h1)φ̂(h2)

− γ

3! ∑
h1+h2+h3=0

φ̂(h1)φ̂(h2)φ̂(h3)

+
1
4! ∑

h1+h2+h3+h4=0
φ̂(h1)φ̂(h2)φ̂(h3)φ̂(h4),

(13)

where hi ∈ Kd
N , i = 1, 2, 3, 4, and Φ̂ =

(
φ̂1, φ̂2, . . . , φ̂M

)T ∈ CM. The convolutions in the
above expression can be efficiently calculated through the fast Fourier transform (FFT).
Moreover, the mass conservation constraint 1

|Ω|
∫

Ω φ(r)dr = 0 is discretized as

eTΦ̂ = 0, (14)

where e = (1, 0, ..., 0)T ∈ RM. Therefore, (2) reduces to a finite dimensional optimization
problem

min
Φ̂∈CM

Eh[Φ̂] = Gh[Φ̂] + Fh[Φ̂], s.t. eTΦ̂ = 0, (15)

where Gh and Fh are the discretized interaction and bulk energies

Gh(Φ̂) =
ξ2

2 ∑
h1+h2=0

[
1− (Bh1)

T(Bh2)
]2

φ̂(h1)φ̂(h2),

Fh(Φ̂) =
τ

2! ∑
h1+h2=0

φ̂(h1)φ̂(h2)−
γ

3! ∑
h1+h2+h3=0

φ̂(h1)φ̂(h2)φ̂(h3)

+
1
4! ∑

h1+h2+h3+h4=0
φ̂(h1)φ̂(h2)φ̂(h3)φ̂(h4).

(16)

In the work, we employ the adaptive APG method to solve (15).

2.2. Phase Diagram

Given parameters [γ, τ], we can obtain the stationary states by solving the free energy
functional (16). Due to the non-convexity of LB free energy functional, there are many, even
infinite stationary states for given parameters. We need to determine the stationary state
with the lowest energy, which corresponds to the most probable ordered structure observed
in experiments. It requires comparing the energies of stationary states to obtain the stable
structure and constructing a phase diagram. In the following, we consider disordered (DIS),
cylindrical hexagonal (HEX), lamellar (LAM), body-centered cubic (BCC), and double
gyroid (DG) phases as candidate structures. We use the AGPD software [30] to produce a
(τ, γ)-plane phase diagram, as shown in Figure 1. The obtained phase diagram is consistent
with previous work [29,31,32].
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Figure 1. (a) Phase diagram of the Landau-Brazovskii model. (b) LAM. (c) HEX. (d) BCC. (e) DG.

3. Inverse Design Neural Network
3.1. Multi-Category Inverse Design Network

The architecture of the multi-category inverse design network for predicting physical
parameters for the desired periodic structure is shown in Figure 2. The neural network
mainly consists of two modules: a classifier and SPM subnets. The former (orange block)
identifies and classifies candidate structures, and the latter (blue block) including a family
of subnets is a mapping connecting physical parameters and ordered structures.

Figure 2. Multi-category inverse design network.

According to the characteristics of the problem, we can design corresponding network
architectures of classifier and SPM subnets. In this work, the classifier and each SPM subnet
use the same network architecture as shown in Figure 3. Concretely, the network contains
an input layer, three convolutional layers, three max-pooling layers, four fully connected
layers, and an output layer. For the classifier network, the size of the output layer represents
the number of categories, while for each subnet, it means the number of predicted physical
parameters. The network architecture is a development of the Lenet-5 network [33].

3.2. Computational Complexity

In this subsection, we analyze the computational complexity of the network architec-
ture of the classifier and each SPM subnet. As shown in Figure 3, the network consists of
three parts:

1. Convolution. The computational amount of a convolution layer is O((2 · Cin · k2 − 1) ·
H ·W · Cout), where k2 is the size of the convolution kernel. Cin and Cout represent
the number of channels of the previous layer and the current layer. H and W are the
height and width of the current layer.
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2. Max-pooling. The computational amount of a pooling layer is O(Cin · k2 ·H ·W ·Cout),
where k2 is the size of the pooling kernel. Cin and Cout represent the number of
channels of the previous layer and the current layer. H and W are the height and
width of the current layer.

3. Full connection. The computational amount of a fully connected layer is O(2 · Nin ·
Nout), where Nin and Nout represent the dimensionality of the previous layer and the
current layer.

Figure 3. Network architecture of classifier and each SPM subnet.

3.3. Reciprocal-Space Data Augmentation (RSDA) Method

Generally, the ability of a network depends not only on its architecture, but also
on the amount and properties of data. Due to the rotation and translation invariance of
periodic structures, how to make the classifier recognize the invariance is very important.
Here, we use a data augmentation method to increase the amount of data. Existing data
augmentation methods, such as Swapping, Mixup, Insertion, and Substitution, are often
used for classification tasks, see a recent review [34] and the references therein. However,
as the dataset increases, these data augmentation approaches might become expensive, and
it would be easy to use the wrong labels to train the network. For one-dimensional periodic
phases, Yao et al. [19] used a Period-Filling method for data augmentation. However, this
approach is difficult to extend to higher dimensions.

In this paper, we propose an extensible data augmentation method implemented in
reciprocal space called the RSDA method. For a periodic structure, the primary wave
vectors in the reciprocal space can describe the main features of the structure. The RSDA
method uses the information of the primary wave vectors for data augmentation. We denote
the fundamental domain of periodic structure φ(r) as Ω = {∑d

j=1 ζ jaj, aj ∈ Rd, ζ j ∈ [0, 1)}.
For any translation t ∈ Rd, t/AZd ∈ Ω; therefore, we only need to consider the translation
in the fundamental domain Ω. From the Fourier expansion (12), and for rotation matrix
R ∈ SO(d), t ∈ Ω, we have

φ(Rr + t) = ∑
h∈Kd

N

φ̂(h)ei(Bh)T(Rr+t)

= ∑
h∈Kd

N

φ̂(h)ei(Bh)Ttei(B̃h)
T

r

= ∑
h∈Kd

N

φ̃(h)ei(B̃h)
T

r

(17)

where B̃ = RT B is a new reciprocal lattice by rotation transformation and φ̃(h) =

φ̂(h)ei(Bh)Tt is a new Fourier coefficient associated with translation transformation. Obvi-
ously, the RSDA method is easy to implement, and can be suitable for arbitrary dimensional
periodic structures.
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4. Application

In this section, we apply the multi-category network model to diblock copolymers
confined on a two-dimensional plane to obtain the mapping from periodic structure to
physical parameters. Besides, we compare the approximation accuracy and computational
time of forecasting parameters. All the experiments in this section are conducted on a
workstation equipped with two Intel(R) Xeon(R) Silver 4214 CPUs @ 2.20 GHz with 128 GB
RAM. As the phase diagram shows, in two dimensions, only LAM and HEX phases are
thermodynamic stable. Therefore, the SPM has two subnets, i.e., LAM and HEX subnets.
As shown in Figure 4, the classifier is used to distinguish LAM or HEX phase after inputting
the order parameter φ. For desired structures, LAM and HEX subnets are used to predict the
physical parameters (τ∗, γ∗). The dataset required for the classifier consists of {(φj, yj)}N

j=1,

where yj is the label, and for each SPM subnet, consists of {(φj, (τ∗j , γ∗j ))}N
j=1; N is the size

of training data.

Figure 4. Network of the two-dimensional diblock copolymer system.

Table 1 shows the network parameters of the classifier and SPM subnets. In all
networks, the size of the output layer is 2. We adopt the ReLU function as the activation
function and the Adam optimizer with a learning rate of 10−4 to train the neural network
model. Kaiming_uniform [35] is used to initialize the network parameters both in tje
classifier and subnets. We set the maximum epoch to be 20,000 and stop training if the
error on the validation set decreases to 10−5 to prevent overfitting. For the classifier, the
loss function is defined as

L =
1
N

N

∑
i=1
−[yi · log(pi) + (1− yi) · log(1− pi)], (18)

where yi represents the label of the sample, LAM phase is 0, and HEX phase is 1. pi is the
probability of identifying HEX phase. For each SPM subnet, the loss function is

MSE =
1
N

N

∑
i=1

(ui − ũi)
2, (19)

where ui = (τ∗, γ∗) are the targeted parameters and ũi = (τ, γ) are the predicted parame-
ters.

Table 1. Network parameters of classifier and each subnet. The notations of parameters in the table
are as follows: in channels (i), out channels (o), kernel size (k), stride (s), padding (p), batch size (Nb).

Layer Type Output Shape Layer Type Output Shape

Conv2d (i = 1, o = 4, k = 5, p = 2, s = 1) (Nb, 4, 40, 40) Connect left
MaxPool2d (k = 2, s = 2) (Nb, 4, 20, 20) Reshape (Nb, 256)
Conv2d (i = 4, o = 8, k = 5, p = 2, s = 1) (Nb, 8, 20, 20) Fully connected (Nb, 128)
MaxPool2d (k = 2, s = 2) (Nb, 8, 10, 10) Fully connected (Nb, 64)
Conv2d (i = 8, o = 16, k = 5, p = 1, s = 1) (Nb, 16, 8, 8) Fully connected (Nb, 10)
MaxPool2d (k = 5, s = 1) (Nb, 16, 4, 4) Fully connected (Nb, 2)

It is well known that the LAM and HEX phases have 2- and 6-fold symmetries,
respectively. As shown in Figure 5a,b, the fundamental domain ΩLAM of the LAM phase is
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a square, while the fundamental domain ΩHEX of the HEX phase is a parallelogram region
due to the 6-fold rotational symmetry. Their corresponding primitive Bravis lattice is

ALAM = λ1

[
1 0
0 1

]
, AHEX = λ2

[
1 cos(π/3)
0 sin(π/3)

]
.

Lattice constants λ1 and λ2 depend on the model parameters.
Now, we construct the dataset of the LAM phase. We discrete the τ-γ phase space

of the stable LAM phase with step size [∆τ, ∆γ] = [0.008, 0.02] to form the dataset S1
LAM

for training and validation, and with step size [∆τ, ∆γ] = [0.003, 0.015] to form S2
LAM for

testing. We randomly choose 627 parameter pairs as a group G1
LAM from S1

LAM to construct
training and validation sets, and 262 parameter pairs as a group G2

LAM from S2
LAM to build

the test set. Then, we generate LAM phases by solving the direct problem with each selected
parameter pair in G2

LAM and G2
LAM.

(a) ΩLAM (b) ΩHEX (c) Rotation of LAM (d) Rotation of HEX

Figure 5. Schematic diagram of fundamental domain. (a) LAM phase ΩLAM; (b) HEX phase ΩHEX .
Illustration of rotating primary spectral points of (c) LAM and (d) HEX phases in reciprocal space.
Reference state (red); transform state after rotating θ degree(s) (blue).

We augment data by rotation and translation. The rotation matrix is

R =

[
cos θ sin θ
− sin θ cos θ

]
, (20)

where θ is the rotation angle. LAM phases have 2-fold rotational symmetry; therefore,
θ ∈ [0, π). Figure 5c gives a sketch plot of rotating LAM phase in the reciprocal space.
Concretely, we rotate 627 LAM phases in G1

LAM with θ = {jπ/60}60
j=1 and translate them

with t = (i, i)> ∈ ΩLAM, i ∈ {0, 0.2, 0.4, 0.6, 0.8}. The dataset we obtained includes 188,100
LAM phases. We randomly split these samples into a training set and a validation set at a
ratio of 4:1. In the group G2

LAM, 262 LAM phases are rotated by θ ∈ {3◦, 7◦, 19◦, 20◦, 27◦,
34◦, 78◦, 80◦, 82◦, 114◦} and translated by t = (i, i)>, i ∈ {0.17, 0.37, 0.51, 0.65, 0.73} to
form the test set.

Similarly, we construct a dataset of the HEX phase. The τ-γ domain of the stable
HEX phase is discretized with step size [∆τ, ∆γ] = [0.008, 0.02] to form S1

HEX for training
and validation, and with step size [∆τ, ∆γ] = [0.003, 0.015] to form S2

HEX for testing. We
randomly choose 1600 parameter pairs as a group G1

HEX from S1
HEX to construct training

and validation sets, and 300 parameter pairs as a group G2
HEX from S2

HEX to build the test
set. We still obtain HEX phases by solving the direct problem for selected parameters.

Then, we augment the dataset by rotation and translation operators. The HEX phase
has 6-fold rotational symmetry; therefore, the rotation angle θ in (20) belongs to [0, π/3). An
illustration of rotating HEX phase in the reciprocal space is shown in Figure 5d. Concretely,
we discretize rotation angle θ = {jπ/60}20

j=1 and select translation vector t = (i, i)> in

ΩHEX , i ∈ {0, 0.2, 0.4, 0.6, 0.8}, for processing each sample in G1
HEX . This results in 16,000

HEX phases. We randomly divide them into a training set and a validation set with a ratio
of 4:1. The generated dataset of 300 in G2

HEX is rotated by θ ∈ {3◦, 11◦, 24◦, 27◦, 38◦, 40◦,
52◦, 54◦, 59◦} and translated by t = (i, i)T , i ∈ {0.17, 0.37, 0.51, 0.65, 0.73} to form the
test set.
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Some LAM and HEX phases under rotation and translation transformation are visually
illustrated in Figure 6. The sizes of training, validation, and test sets for the classifier are
given in Table 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Density and spectral pattern of LAM and HEX phases under rotation and translation
transformation. LAM phases at [τ, γ] = [−0.3, 0.2]: (a) θ = 0, t = (0, 0)>; (b) θ = 0, t = (0.1, 0.1)>;
(c) θ = π/6, t = (0, 0)>; (d) θ = π/2, t = (0.1, 0.1)>. HEX phases [τ, γ] = [−0.3, 0.8]: (e) θ = 0,
t = (0, 0)>; (f) θ = 0, t = (0.1, 0.1)>; (g) θ = π/6, t = (0, 0)>; (h) θ = π/4, t = (0.1, 0.1)>.

Table 2. Amount of training, validation, and test data for the classifier.

Training Set Validation Set Test Set

Classifier 278,480 69,620 26,600

Figure 7 shows the training and validation loss of the classifier. One can find that the
training and validation losses reach 10−7 and 10−8 at epoch = 5, respectively. The accuracy
is defined as α = ∑i Mi,i/ ∑i,j Mi,j, where M is the confusion matrix [21]—a visual table
layout that reflects the predictions of the network. As shown in Table 3, Mij denotes the
number of i identified to be j, and i, j ∈ {LAM, HEX}. These results show that the classifier
can identify structures with 100% success.

Figure 7. Training and validation losses of classifier.
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Table 3. The confusion matrix of classifier at epoch = 5.

Identified LAM Identified HEX

Certain LAM 13,100 0

Certain HEX 0 13,500

We classify the training and validation data by the classifier and obtain 188,100 LAM
and 160,000 HEX phases. Then, we adopt them as the training and validation data for
each subnet. For the test data onto each subnet, we only consider the data translated by
t = (0.17, 0.17)> in the test set. Table 4 indicates the size of the dataset for each SPM subnet.

Table 4. Amount of training, validation, and test data for LAM and HEX subnets.

Training Data Validation Data Test Data

LAM subnet 150,480 37,620 2620
HEX subnet 128,000 32,000 2700

Figure 8 presents the training and validation losses of SPM networks. We can see that
the training loss of the LAM (HEX) subnet is 5.75× 10−5 (1.16× 10−5) and the validation
loss is 1.89× 10−5 (8.30× 10−6) at epoch = 700 (1200).

(a)LAM subnet (b)HEX subnet

Figure 8. The training and validation losses of SPM subnets: (a) LAM and (b) HEX.

We define the relative error

E =
‖u− ũ‖`2

‖u‖`2
,

and the average relative error

Eaverage =
1

Ntest

Ntest

∑
k=1

∥∥∥uk − ũk
∥∥∥
`2∥∥uk

∥∥
`2

,

where Ntest is the size of test data. The predicted accuracy of single sample is (1−E)× 100%,
while the average accuracy is (1− Eaverage)× 100%. Figure 9 illustrates the test accuracy of
the LAM and HEX subnets. Results indicate that the accuracy of parameters prediction
for a single sample can achieve 80% ∼ 100%, and the average prediction accuracy of LAM
subnet (blue dashed line) is 84%. For the HEX subnet (pink dashed line), the average
prediction accuracy can reach 91%.

We randomly select two test samples in the test set and input them into the network
to predict the corresponding parameters. Next, we obtain structures corresponding to the
predicted parameters by solving the direct problem. Figure 10 shows LAM and HEX phases
with targeted and predicted parameters, and the absolute errors between the targeted and
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predicted phases. From Figure 10c,f, we can see that the absolute error of the LAM phase is
10−2 and of the HEX phase is 10−3. This also reflects a good fitting effect of SPM subnets.

Figure 9. The test accuracy of LAM (blue) and HEX (green) subnets. Scatter plots demonstrate the
parameter prediction accuracy of HEX and LAM subnets. The average test accuracy of the two
subnets is shown by two dashed lines.

Figure 10. The phases with targeted and predicted parameters are obtained by solving the direct
problem (15). LAM phase: (a) [τ∗,γ∗] = [−0.4, 0.2], θ = 82◦ and t = (0.17, 0.17)>; (b) [τ,γ] =
[−0.3914, 0.2067], θ = 82◦ and t = (0.17, 0.17)>. HEX phase: (d) [τ∗,γ∗] = [−0.08, 0.28], θ = 40◦

and t = (0.17, 0.17)>; (e) [τ,γ] = [−0.0807, 0.2744], θ = 40◦ and t = (0.17, 0.17)>. Absolute errors
between targeted and predicted LAM (c) and HEX (f) phases.

Table 5 shows the training time of the classifier and each SPM subnet, and the online
calculation time of these networks when identifying structures or predicting parameters
with one sample in the test set.

Table 5. Training and test time for the classifier and each SPM subnet.

Classifier LAM Subnet HEX Subnet

Training time 11.5 min 11.6 h 20.0 h
Test time 0.0078 s 0.0034 s 0.0074 s

5. Conclusions

In this paper, we propose a multi-category neural network for the inverse design of
ordered periodic structures. The proposed network can construct the mapping between
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phases and physical parameters. For periodic phases, we provide an extensible RSDA
approach to augment data. Then, we apply these methods to the two-dimensional diblock
copolymer system. The dataset is produced by the LB free energy functional. Experimental
results show that the structure recognition accuracy of the classifier can reach 100% based
on 26600 randomly selected test data. Moreover, on a dataset consisting of 5320 randomly
selected test data, the parameter prediction accuracy of the LAM phase reaches 84% and the
accuracy of the HEX phase reaches 91%. The network model and RSDA method are applied
to a two-dimensional problem; however, they can be extended to higher-dimensional
inverse design problems.
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