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Abstract: Response functions completely define the constitutive equations for a hyperelastic material.
A strain measure providing an orthogonal stress response, grants response functions directly from
experimental curves. One of these strain measures is the Laplace stretch based on QR-decomposition
of the deformation gradient. Such a recovery of response functions from experimental data fits
the paradigm of data-driven modeling. The set of independent conjugate stress–strain base pairs
were proposed as a simple alternative for constitutive modeling and thus might be efficient for
data-driven modeling. In the present paper we explore applicability of the conjugate pairs approach
for data-driven modeling. The analysis is based on representation of the conjugate pairs in terms of
the response functions due to the Laplace stretch. Our analysis shows that one can not guarantee
independence of these pairs except in the case of infinitesimal strain.
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1. Introduction

Simulation of the mechanical behavior of soft tissues remains a challenge in many
applications of biomechanics and biomedical engineering. Due to their complex structure,
soft tissues demonstrate a nonlinear mechanical behavior [1]. Hyperelastic models are
very popular in the mechanical description of soft tissues [2]. The standard approach
to the mechanical model recovery is the following. First, one collects experimental data
such as stress–strain curves under different loading conditions (e.g., tensile testing and/or
shear testing). Second, one chooses a few hyperelastic models and fits them to existing
experimental curves to find model parameters. Third, the best fitted hyperelastic model is
used to describe the mechanical behavior under complex loading conditions.

The main problem of such an approach is the necessity to solve an ill-posed inverse
problem, since the number of material model parameters is usually larger than the number
of independent experimental data. This leads to the occurrence of multiple sets of optimal
material model parameters for the same data sets [3]. Another issue of the standard
approach is its predictive capability of the fitted hyperelastic model in case of limited
experimental data [4]. The data-driven modeling seems to be a more appealing alternative
approach to the recovery of constitutive equations from experimental data.

Response functions (partial derivatives of an elastic potential with respect to a strain
measure) completely define the constitutive equation for a hyperelastic material [5,6]. A
strain measure providing an orthogonal stress response, grants response functions directly
from experimental curves [6,7]. One of these strain measures is the Laplace stretch based on
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QR-decomposition of the deformation gradient [8,9]. Such a recovery of response functions
from experimental data fits the paradigm of data-driven modeling [10].

The seminal work of Freed et al. [11] suggests to use the Laplace stretch in order
to construct a set of three independent conjugate stress/strain base pairs: “conjugate
pairs ought to be chosen where paired responses are observed to be independent of one
another”. Such a set of independent conjugate stress/strain pairs provides one-to-one
mapping between conjugate pairs and solid stress-strain state. In other words, construction
of constitutive equations for solids is assumed to be possible without any invariant-based
theory. The authors highlight that independence of proposed conjugate pairs “cannot be
proved theoretically, only disproved experimentally, if at all. If disproved for a certain
scenario, that would not necessarily invalidate the utility of a particular conjugate pairing;
rather, it would bracket its range of applicability”. The conjugate stress/strain base pairs
approach has been actively extended to three-dimensional, anisotropic, and inelastic cases
(see Refs. [12–16] and references within).

In the present paper we briefly review the above three approaches to the construction
of the constitutive equation from experimental data, and explore the applicability of the
conjugate pairs approach for data-driven modeling. The analysis is based on representation
of the conjugate pairs in terms of the response functions due to the Laplace stretch. Two
virtual experiments for a hyperelastic membrane (homogeneous planar deformation and
circular membrane inflation) confirm the theoretical prediction.

The paper is organized as follows. In Section 2 we introduce basic notions for
kinematics of the membrane. In Section 3 we review the above three approaches for data-
driven deriving constitutive equations for isotropic hyperelastic materials. In Section 4
we present two virtual experiments for a hyperelastic membrane which confirm our
theoretical analysis.

2. Kinematics

We consider a thin incompressible hyperelastic membrane whose deformation is
described by the deformation of its mid-surface via the surface deformation gradient [17,18]

F2d =
2

∑
α=1

gα ⊗Gα.

Here gα are covariant basis vectors of an actual (deformed) mid-surface configuration, Gα

are contravariant basis vectors of a reference (undeformed) configuration, and operation
⊗ is the tensor product mapping vectors a, b to a matrix a⊗ b = abT (for details, refer to
Appendix A).

The assumption of a hyperelastic isotropic material model implies the existence of an
elastic potential ψ = ψ̂(ηi) such that

σ = ∑
i

∂ψ̂

∂ηi
Ai, (1)

where σ is the Cauchy stress tensor, ηi is a strain measure, ∂ψ̂/∂ηi are response functions, Ai
are known tensors depending on ηi. It is clear that constitutive equations σ = σ(ηi) depend
on the chosen strain measure. Strain measures ηi satisfying Ai : Aj = tr(AiAT

j ) = δij grant
explicit definition of the response functions:

∂ψ

∂ηi
= σ : Ai.

Here and after δij is the Kronecker delta.
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3. Constitutive Equations

Below we review several approaches for the data-driven deriving constitutive equa-
tions for isotropic hyperelastic materials.

3.1. Constitutive Equation via Invariants of the Right Cauchy–Green Deformation Tensor

Various strain measures are based on the deformation gradient, the most popular
measure is the right Cauchy–Green deformation tensor

C2d = FT
2dF2d =

2

∑
α,β=1

gαβGα ⊗Gβ, gαβ = (gα, gβ).

For invariants of C2d

I1 = trC2d, (2)

I2 = J2 = detC2d. (3)

the surface elastic potential has the form ψ = ψ̄(I1, J) and the main tension tensors (the
second Piola–Kirchhoff tension tensor S2d, the Cauchy tension tensor σ2d, and the Kirchhoff
tension tensor τ2d) are as follows [17]:

S2d = SαβGα ⊗Gβ, Sαβ = 2
(

∂ψ̄

∂I1
Gαβ +

J
2

∂ψ̄

∂J
gαβ

)
; (4)

σ2d =
1
J
F2dS2dFT

2d =
2
J

(
∂ψ̄

∂I1
Gαβ +

J
2

∂ψ̄

∂J
gαβ

)
gα ⊗ gβ;

τ2d = Jσ2d = Sαβgα ⊗ gβ. (5)

Although the invariant-based approach has many advantages, one of its main drawbacks
is “non-orthogonality”: the representation σ2d = ∑i(∂ψ̄/∂Ii)Ai is based on non-orthogonal
tensors Ai : Aj 6= δij. This leads to errors amplification during the procedure of find-
ing response functions [7]. Nevertheless, the invariant-based approach for data-driven
constitutive modeling are appealing, see e.g., Refs. [19,20].

3.2. Constitutive Equation via Laplace Stretch

Laplace stretch is the strain measure based on the QR-decomposition of the deforma-
tion gradient [8,9]:

F2d = QF̃2d, F̃2d =
2

∑
α,β=1

F̃αβεα ⊗ εβ, [F̃2d]εα⊗εβ
=
(

F̃αβ

)
=

(
F̃11 F̃12
0 F̃22

)
.

Here Q = e′β ⊗ εβ is an orthogonal tensor, vector pairs e′α, εα are orthonormal: (e′α, e′β) = δαβ

and (εα, εβ) = δαβ. Construction of e′β and εβ is discussed in Appendix B. Here and
after, the subscript for matrix notation [·]εα⊗εβ

indicates with respect to which base object
(εα⊗εβ) entries of the matrix are computed.

Srinivasa [8] proposed to use the components of F̃2d as the new strain measure later
referred to as the Laplace stretch [9]:

ξ1 = ln F̃11, ξ2 = ln F̃22, ξ3 = F̃12/F̃11. (6)

Since C2d is a symmetric positive definite tensor and

C2d = FT
2dF2d = F̃T

2dQ
TQF̃2d = F̃T

2dF̃2d, (7)
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one can find entries F̃αβ via Cholesky factorization of matrix [C2d]εα⊗εβ
= (Cαβ) [8]

F̃11 =
√

C11, F̃12 = C12/F̃11, F̃22 =
√

C22 − F̃2
12. (8)

The invariants (2) and (3) in terms of ξi are

I1 = F̃2
11 + F̃2

22 + F̃2
12 = e2ξ1(1 + ξ2

3) + e2ξ2 , (9)

J = detF2d = detQdet F̃2d = F̃11 F̃22 = eξ1+ξ2 . (10)

These expressions will be used in the next section.
Strain characteristics ξ1, ξ2, ξ3 yielding an elastic potential ψ = ψ̃(ξ1, ξ2, ξ3) provide

the “orthogonality” condition Ai : Aj = δij [8]:

σ2d =
1
J

∂ψ̃

∂ξ1
e′1 ⊗ e′1 +

1
J

∂ψ̃

∂ξ2
e′2 ⊗ e′2 +

1
J

F̃22

F̃11

∂ψ̃

∂ξ3
e′1 ⊗ e′2 +

1
J

F̃22

F̃11

∂ψ̃

∂ξ3
e′2 ⊗ e′1, (11)

or in terms of the Kirchhoff tension tensor components:

τ2d = Jσ2d =
2

∑
α,β=1

τ̃αβe′α ⊗ e′β

τ̃11 =
∂ψ̃

∂ξ1
, τ̃22 =

∂ψ̃

∂ξ2
, τ̃12 =

F̃22

F̃11

∂ψ̃

∂ξ3
. (12)

Equations (12) allow us to obtain tabulated data for response functions directly from
experimental stress–strain curves. Examples of using strain measures ξ1, ξ2, ξ3 for data-
driven modeling are discussed in Ref. [10].

3.3. Constitutive Equation via Conjugate Stress/Strain Base Pairs

Freed et.al [11] propose to use the Laplace stretch for constructing conjugate stress/strain
base pairs. The fundamental hypothesis for such pairs is orthogonality as well: “the govern-
ing tensors for stress and the rate of deformation can be encoded into a set of independent
conjugate base pairs wherein each stress/strain conjugate pair is a scalar pair” [11]. This
approach has been extended to three-dimensional and anisotropic cases [12–15].

For the simplest planar isotropic material (membrane) the conjugate stress/strain base
pairs are:

π = τ̃11 + τ̃22, δ = ln
√

F̃11 F̃22, (13)

σ = τ̃11 − τ̃22, ε = ln
√

F̃11/F̃22, (14)

τ =
F̃11

F̃22
τ̃12, γ = F̃12/F̃11. (15)

It is claimed that “the dilation response {δ, π}, the squeeze response {ε, σ}, and the shear
response {γ, τ} can all be varied separately and independently of one another (at least in
principle)” [11]. The response functions (12) give us a tool to check this statement. To this
end, we rewrite the conjugate pairs in terms of ξi and the response functions ∂ψ̃/∂ξi:

π = τ̃11 + τ̃22 =
∂ψ̃

∂ξ1
+

∂ψ̃

∂ξ2
, δ =

ξ1 + ξ2

2
, (16)

σ = τ̃11 − τ̃22 =
∂ψ̃

∂ξ1
− ∂ψ̃

∂ξ2
, ε =

ξ1 − ξ2

2
, (17)

τ =
F̃11

F̃22
τ̃12 =

∂ψ̃

∂ξ3
, γ = ξ3. (18)
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According to the representation theorem for invariants for scalar value isotropic functions,
any isotropic hyperelastic material can be represented by an elastic potential as a function
of the principal invariants of the right Cauchy–Green deformation tensor [21]. In our
two-dimensional case this implies the surface potential function ψ of two arguments
I1, J, ψ = ψ̄(I1, J). At the same time I1 = I1(ξ1, ξ2, ξ3) and J = J(ξ1, ξ2, ξ3) are known
functions (9) and (10). Since by the chain rule the response function are

∂ψ̃

∂ξ1
=

∂ψ̄

∂I1

∂I1

∂ξ1
+

∂ψ̄

∂J
∂J
∂ξ1

= 2e2ξ1(1 + ξ2
3)ψ̄,I1 + eξ1+ξ2 ψ̄,J (19)

∂ψ̃

∂ξ2
=

∂ψ̄

∂I1

∂I1

∂ξ2
+

∂ψ̄

∂J
∂J
∂ξ2

= 2e2ξ2 ψ̄,I1 + eξ1+ξ2 ψ̄,J (20)

∂ψ̃

∂ξ3
=

∂ψ̄

∂I1

∂I1

∂ξ3
+

∂ψ̄

∂J
∂J
∂ξ3

= 2ξ3e2ξ1 ψ̄,I1 , (21)

where

ψ̄,I1 :=
∂ψ̄

∂I1
, ψ̄,J :=

∂ψ̄

∂J
,

we rewrite (16)–(18) in terms of δ, ε, γ:

π =
∂ψ̃

∂ξ1
+

∂ψ̃

∂ξ2
= 2(e2ξ1(1 + ξ2

3) + e2ξ2)ψ̄,I1 + 2eξ1+ξ2 ψ̄,J =

= 2(e2δe2εγ2 + 2e2δ cosh 2ε)ψ̄,I1 + 2e2δψ̄,J ; (22)

σ =
∂ψ̃

∂ξ1
− ∂ψ̃

∂ξ2
= 2(e2ξ1(1 + ξ2

3)− e2ξ2)ψ̄,I1 =

= 2(e2δe2εγ2 + 2e2δ sinh 2ε)ψ̄,I1 , (23)

τ =
∂ψ̃

∂ξ3
= 2ξ3e2ξ1 ψ,I1 = 2γe2δe2εψ̄,I1 , (24)

where

cosh ε := (eε + e−ε)/2, sinh ε := (eε − e−ε)/2. (25)

Since ψ̄,I1 = ψ̄,I1(I1(δ, ε, γ), J(δ, ε, γ)) and ψ̄,J = ψ̄,J(I1(δ, ε, γ), J(δ, ε, γ)),
formulas (22)–(24) show that the dilation response {δ, π}, the squeeze response {ε, σ} and
the shear response {γ, τ} can not all be varied separately and independently: π = π(δ, ε, γ),
σ = σ(δ, ε, γ), τ = τ(δ, ε, γ).

In the next section, this general observation is illustrated by two virtual experiments
representing real laboratory tests.

4. Independence of Conjugate Stress/Strain Base Pairs in Virtual Experiments

Let us check the orthogonality of the conjugate stress/strain base pairs for the simplest
elastic potential of an incompressible neo-Hookean material. For neo-Hookean membrane
with shear modulus µ and thickness H one has [18,22]:

ψNH =
µH
2

(I1 + J−2 − 3). (26)

4.1. Homogeneous Deformation

We consider the simple homogeneous deformation of a membrane:

x1 = aX1 + aκX2, x2 = bX2. (27)
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In this case Gα = Gα = εα = eα, α = 1, 2, and the surface deformation gradient is

[F2d]εα⊗εβ
=

(
a aκ
0 b

)
. (28)

In QR-decomposition the orthogonal tensor Q becomes the identity tensor I and F̃2d = F2d.
The conjugate stress/strain pairs are

δ = ln
√

ab, ε = ln
√

a/b, γ = κ, (29)

and surface invariants are

I1 = a2(1 + κ2) + b2 = e2δe2εγ2 + 2e2δ cosh 2ε, J = ab = e2δ. (30)

Therefore,

ψNH
,I1

= µH/2, ψNH
,J = −µHJ−3 = −µHe−6δ, (31)

and according to (22)–(24)

π = µHe2δ(e2εγ2 + 2 cosh 2ε)− 2µHe−4δ (32)

σ = µHe2δ(e2εγ2 + 2 sinh 2ε), (33)

τ = µHγe2δe2ε. (34)

This implies that (π, δ), (σ, ε) and (τ, γ) are not independent pairs. They may become
independent (π = π(δ), σ = σ(ε), τ = τ(γ)) under certain restrictions.

From Taylor series expansion

π = −2µHe−4δ + µHe2δ

(
γ2

[
1 +

∞

∑
n=1

2n

n!
εn

]
+ 2

∞

∑
n=1

2(2n−2)

(2n− 2)!
ε2n−2

)
, (35)

σ = µH

[
1 +

∞

∑
n=1

2n

n!
δn

](
γ2e2ε + 2 sinh 2ε

)
, (36)

τ = µγe2δe2ε = µγ

[
1 +

∞

∑
n=1

2n

n!
δn

][
1 +

∞

∑
n=1

2n

n!
εn

]
(37)

one can derive such restrictions. The assumption for γ� 1 and ε� 1 neglects terms γ2, ε2

and higher order, and gives π ≈ π(δ). To make τ and σ be functions of single arguments
γ and ε, respectively, one needs δ� 1. Thus the conjugate stress/strain base pairs become
independent for infinitesimal dilation, squeeze, and shear.

4.2. Membrane Inflation

Inflation by pressure of a circular membrane is another popular experiment. Initially,
the membrane with radius R = 1 mm and thickness H = 0.07 mm is flat. The membrane is
assumed to be hyperelastic and to have the neo-Hookean potential (26), the shear modulus
µ = 0.35 kPa ([23], Table 7). The dimensionless inflated pressure p∗ = pR/(µH) grows
from 0 to 1.2 with an increment of 0.1.

The mid-surface of the membrane is represented by a triangular mesh with mesh
size hmesh = 0.05 mm. Displacements of the mesh nodes for the inflated membrane are
computed using a finite element method [24]. For each pressure p∗ we find F̃αβ, τ̃αβ which
give (δ, π), (ε, σ), (γ, τ) for all mesh triangles. In order to reduce boundary effects, we omit
three of the close-to-boundary layers of triangles.
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The computed conjugate base pairs are shown in Figure 1. The top plot demonstrates
independence for pair (π, δ) and thus π ≈ π(δ). However, the dispersion ellipses at the
middle and bottom plots prove dependence of the other pairs (ε, σ) and (γ, τ).

Figure 1. Virtual inflation of the neo-Hookean membrane (26). Top: (δ, π) pair; middle: (ε, σ) pair;
bottom: (γ, τ) pair. Units of π, σ, τ are Pa·mm. The gap at the beginning is due to elimination of
near-boundary triangles from the plots.

We note that in case of potential (26), the analytical expressions for the dilation response
{δ, π} (32), the squeeze response {ε, σ} (33), and the shear response (34) help to propose inde-
pendent pairs. Modifications (ε, σ′ = e−2δσ/(µH)− γ2e2ε) and (γ, τ′ = τe−2δe−2ε) result in
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independent responses that are confirmed by the virtual experiment, see Figure 2. Such a
fortunate solution is possible due to specific forms of the analytical expressions (32)–(34).
The other potentials do not grant such modifications since their response functions are
essentially nonlinear functions.

Figure 2. Virtual inflation of the neo-Hookean membrane (26). Top: (ε, σ′) pair; bottom: (γ, τ′) pair.

5. Conclusions

We reviewed three approaches for the construction of data-driven hyperelastic con-
stitutive equations. The invariant-based approach lacks orthogonality of base tensors in
the representation of the constitutive equations. This leads to errors amplification in the
procedure of data-driven recovery of the response functions, but it is a very popular ap-
proach due to the well-developed mathematical apparatus and convenience for numerical
simulation.

The Laplace stretch-based approach is very powerful since it finds response functions
directly from experimental data and the base tensors of constitutive equations are orthog-
onal. There are some challenges for future research in the development of this approach,
such as the numerical implementation of a three-dimensional incompressible material and
the data-driven modeling in case of material anistropy.

The conjugate stress–strain pairs were proposed as a simple alternative for mutually
independent pairs and thus might be efficient for data-driven modeling. The keystone of
this approach is the suggested independence of stress–strain base pairs. We considered the
applicability of the conjugate approach for planar analysis of isotropic biomaterials. To this
end we obtain conjugate pairs analytically and numerically in case of virtual experiments
for neo-Hookean material. Our analysis shows dispersion ellipses; therefore, one cannot
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guarantee independence of these pairs except in the case of infinitesimal dilation, squeeze,
and shear. Similar dispersion ellipses were obtained for the Ogden and Gent models
(not shown here). Therefore, the applicability of conjugate base pairs is strictly restricted,
and using the response functions approach is more appealing to construct data-driven
hyperelastic constitutive equations.

Funding: This research was funded by Russian Science Foundation grant number 21-71-30023.

Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to Alexey Liogky for providing the numerical results for
the membrane inflation.
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Appendix A. Kinematics of a Thin Membrane

Given the basis vectors of a Cartesian coordinate system e1, e2, e3, the initial configu-
ration (undeformed) of the mid-surface by Ω0 and the current configuration (deformed) of
the mid-surface by Ωt are represented as follows.

The position vector r0 of each point X ∈ Ω0 is

r0 = X =
3

∑
i=1

Xiei, X3 = X3(X1, X2), X ∈ Ω0. (A1)

Corresponding the covariant basis vectors Gα and the unit normal to the surface N are
defined as

Gα =
∂r0

∂Xα
, α = 1, 2; (A2)

G1 =

(
1, 0,

∂X3

∂X1

)T
, G2 =

(
0, 1,

∂X3

∂X2

)T
, N =

G1 ×G2

||G1 ×G2||
, (A3)

then the matrix [G] of metric tensor components and the contravariant basis vectors Gα are

[G] = (Gαβ), Gαβ = (Gα, Gβ), (A4)

Gα =
2

∑
β=1

GαβGβ, Gαβ =
(
[G]−1

)
αβ

. (A5)

A similar description holds for the current configuration of the mid-surface Ωt. For
each point x ∈ Ωt its position vector r, corresponding covariant basis vectors gα, unit
normal n and metric tensor with matrix of components [g] are:

r = x =
3

∑
i=1

xiei, xi = xi(X1, X2, X3) = xi(X1, X2), i = 1, 2, 3; (A6)

gα =
∂r

∂Xα
, α = 1, 2; (A7)

g1 =

(
∂x1

∂X1
,

∂x2

∂X1
,

∂x3

∂X1

)T
, g2 =

(
∂x1

∂X2
,

∂x2

∂X2
,

∂x3

∂X2

)T
, n =

g1 × g2

||g1 × g2||
, (A8)

[g] = (gαβ), gαβ = (gα, gβ). (A9)

Appendix B. QR-Decomposition of Surface Deformation Gradient

QR-decomposition of the deformation gradient was porposed in Ref. [8] to construct
the new strain measure.
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After orthogonalization of the contravariant basis vectors Gα

ε1 =
G1

||G1|| , ε2 =
G2 − (G2, ε1)ε1

||G2 − (G2, ε1)ε1||
,

we define a transformation from one basis to another

Gα =
2

∑
β=1

Aαβεβ, [A] =
(

Aαβ

)
=

(
||G1|| 0
(G2, ε1) ||G2 − (G2, ε1)ε1||

)
.

The surface deformation gradient F2d and the surface deformation tensor C2d in the
new basis vectors are

F2d =
2

∑
α=1

gα ⊗Gα =
2

∑
β=1

fβ ⊗ εβ, where fβ ≡
2

∑
α=1

Aαβgα (A10)

C2d = FT
2dF2d =

2

∑
α,β=1

Cαβεα ⊗ εβ, where Cαβ ≡ (fα, fβ). (A11)

The matrix of components of tensor C2d with respect to basis objects εα ⊗ εβ has the form

[C2d]εα⊗εβ
= (Cαβ) = [A]T [g][A]. (A12)

The orthogonal tensor Q for the QR-decomposition of F2d can be defined as follows [8]

Q = e′β ⊗ εβ, e′1 =
f1

||f1||
, e′2 =

f2 − (f2, e′1)e
′
1

||f2 − (f2, e′1)e
′
1||

; (A13)

QTQ = (εβ ⊗ e′β) · (e′α ⊗ εα) = (e′β · e′α)εβ ⊗ εα = δβαεβ ⊗ εα = I, (A14)

where I is the identity tensor, δαβ is the Kronecker delta. Then the QR-decomposition of the
deformation gradient is [8]

F2d = QF̃2d −→ F̃2d = QTF2d =
2

∑
α=1

(εα ⊗ e′α) ·
2

∑
β=1

(fβ ⊗ εβ) =
2

∑
α,β=1

(e′α, fβ)εα ⊗ εβ =

=
2

∑
α,β=1

F̃αβεα ⊗ εβ, F̃αβ ≡ (e′α, fβ)

[F̃2d]εα⊗εβ
=
(

F̃αβ

)
=

(
F̃11 F̃12
0 F̃22

)
.
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