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Abstract: The KdV equation has special significance as it describes various physical phenomena.
In this paper, we use two methods, namely, a variational homotopy perturbation method and a
classical finite-difference method, to solve 1D and 2D KdV equations with homogeneous and non-
homogeneous source terms by considering five numerical experiments with initial and boundary
conditions. The variational homotopy perturbation method is a semi-analytic technique for handling
linear as well as non-linear problems. We derive classical finite difference methods to solve the
five numerical experiments. We compare the performance of the two classes of methods for these
numerical experiments by computing absolute and relative errors at some spatial nodes for short,
medium and long time propagation. The logarithm of maximum error vs. time from the numerical
methods is also obtained for the experiments undertaken. The stability and consistency of the finite
difference scheme is obtained. To the best of our knowledge, a comparison between the variational
homotopy perturbation method and the classical finite difference method to solve these five numerical
experiments has not been undertaken before. The ideal extension of this work would be an application
of the employed methods for fractional and stochastic KdV type equations and their variants.

Keywords: linear and non-linear KdV equations; homogeneous; non-homogeneous; variational
homotopy perturbation method; classical finite difference method; stability; consistency
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1. Introduction
Different physical phenomena are modelled using partial differential equations (PDEs)

in a variety of applied science fields, including fluid dynamics, cosmology, mathematical
biology, quantum physics, chemical kinetics and linear optics. It is well known that
the study of non-linear wave equations and their travelling wave solutions is of great
importance in various areas. Palencia [1] explored travelling waves and instability in the
case of a Fisher–KPP problem with a non-linear advection and a high-order diffusion
(see [2,3] and the references therein). Solitary wave solutions of some PDE models have
numerous applications in various scientific disciplines, including hydrodynamics, fluid
mechanics, plasma physics, plasma waves and chemical physics, condensed matter and
solid-state physics [4].

Numerous shallow water wave models have been developed to date [5], notably,
the Korteweg–de Vries (KdV) equations, which govern the asymptotic dynamics of wave
profiles of long waves in shallow water and are completely integrable. The KdV equation,
which was formulated by Korteweg–de Vries in 1895, is recognised as a paradigm for the
description of weakly non-linear long waves and is one of the most important non-linear
evolution equations in the mathematical sciences [4,6–8]. It is given by

∂u(t, x)
∂t

+ u(t, x)
∂u(t, x)

∂x
+

∂3u(t, x)
∂x3 = 0, (1)
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where u(x, t) : R×R+ −→ R. Equation (1) admits solitary wave solutions [9] and is used
as a model for ion-acoustic waves [10], non-resonant lattice vibrations, plasma magnetic
current waves, pressure gauges for liquid-gas mixtures [7], cosmic inflations [11], long
wave propagation through a channel [8], tectonic dynamics and earthquake prediction [12].

In general, the exact solution to the majority of non-linear PDEs may not be found;
hence, many analytical techniques have been used for determining an approximate analyti-
cal solution. In some instances, the employment of numerical methods is an appropriate
alternative. Some of the well-known numerical and analytical techniques used for non-
linear PDEs include the spectral method [13], the finite element method [14], the collocation
method [15–18], Adomian’s decomposition method (ADM) [19,20], the variational iteration
method (VIM) [21–23], and the homotopy perturbation method (HPM) [24,25]. ADM
has been applied to solve non-linear equations in [19,20] by separating the equation into
linear and non-linear components. The method produces series solutions whose terms
are computed from a recursive relation involving the Adomian polynomial, which itself
is not an easy problem to address. To overcome these challenges, He [22] explored the
variational iteration method (VIM) for solving linear and non-linear problems. We note that
VIM was originally referred to in Inokuti et al. [26] as a modification of a general Lagrange
multiplier method and it has been found that VIM is user-friendly. VIM was implemented
to solve numerous non-linear ODEs and PDEs. VIM does not require exceptional treatment
of the non-linear terms as in ADM [27], and it solves linear, as well as non-linear, problems
directly. HPM was explored in [24,25] to solve different functional equations, by combining
the standard homotopy technique of topology and a perturbation method. HPM has been
applied to determine accurate asymptotic solutions for some non-linear PDEs that are used
in modelling flows in porous media [28].

Due to the significance of the dispersive KdV equations and their applications, many
researchers have been interested in studying various analytical and numerical techniques.
These techniques include the differential quadrature method [29], the inverse scattering
technique [4], the modified variational iteration technique [30], and the B-spline method [31]
for fifth-order KdV equations. Wazwaz [32] applied the variational iteration method (VIM)
to solve the Burgers, cubic Boussinesq, KdV, and K(2, 2) equations. Nuruddeen et al. [33]
studied a class of fifth-order KdV equations by formulating suitable novel hyperbolic
and exponential estimates. The authors in [34] constructed classical and multisymplectic
finite difference schemes for linearised KdV equations using numerical experiments and
undertook dispersion analysis. Appadu et al. [35] solved some dispersive KdV equations
via the LADM, the LADM based on Bernstein polynomials (BLADM), the HPM, and the
reduced differential transform method. The authors derived an effective method, BALDM,
using Bernstein polynomials, which is applicable to specific types of KdV equations; it was
shown that the method diminished the large volume of calculations and its iteration steps
towards an exact solution were straightforward. See also recent investigations reported
in [36–38] for solving the dispersive KdV equations.

The numerical and analytical solutions of two- or higher-dimensional initial boundary
value problems of real (or variable) coefficients, both linear and non-linear, are of con-
siderable importance in the applied sciences. The dispersive KdV equation attracted our
attention due to its various applications.

Motivated by recent research methodologies that have been developed for PDEs, we
consider here an analytical method, known as the variational homotopy perturbation
method (VHPM), to solve dispersive 1D and 2D KdV-type equations. VHPM is obtained by
combining the homotopy perturbation approach and the variational iteration method [39].
VHPM uses Lagrange multipliers to identify the optimal values of parameters in a func-
tional and homotopy perturbation method. This technique, when used, enables quick
and accurate determination of the wave solution to the dispersive KdV equations. The
proposed VHPM provides the solution in a quick convergent series, which can lead to a
closed form solution and is in good agreement with other semi-analytic approaches [40] in
which quite similar problems were solved using a decomposition method. The advantage
of the VHPM over decomposition-based approaches is that it solves non-linear problems
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without the use of Adomian polynomials. For example, the Fisher’s equation is solved
using VHPM [41]. It has also been successfully used with non-linear oscillators in [42].

In this investigation, our main objective is not only to apply the variational homotopy
perturbation method (VHPM) to determine approximate analytical solutions to various
1D and 2D dispersive Korteweg–de Vries-type equations, but also to construct classical
or standard finite difference methods for the experiments undertaken. We compare the
performance of the two classes of methods. The investigation involved evaluation of the
two methodologies, VHPM and FDM, to determine the most efficient method.

An original contribution of this study is the comparative investigation of the numerical
solution of two classes of schemes, namely, the standard finite-difference method and a
semi-analytic method, the VHPM, for solving linearised, as well as non-linear dispersive
1D and 2D KdV equations, with some initial and boundary conditions. The reason for
working with short propagation times for the experiment pursued is because of their
applications in earthquake modelling [12] and the simulation of optical laser pulses along
fibres [36], whereas applications for medium and longer propagation times occur, for
example, with respect to water waves, sound waves, surface and internal gravity waves
arising in various oceanographic conditions [12], oscillations in a solid structure, and
electromagnetic radiation [43]. We considered five numerical experiments;using Von
Neumann’s analysis, we investigated the stability of the numerical schemes for all the
experiments. Analytical proofs of the consistency of the numerical schemes are also given
and it is shown that the numerical methods are convergent. The two- and three-dimensional
surfaces of the obtained numerical, as well as analytical, solutions are plotted and the
maximum error norms vs. time using loglog plots are computed for the experiments.

The remainder of this paper is organised as follows: Section 2 briefly describes the
two classes of methods, namely, the semi-analytical variational homotopy perturbation
method (VHPM) and the standard finite difference method (FDM). In this section, we
describe how both the VHPM and the FDM schemes are constructed to solve the various
partial differential equations for the numerical experiments considered. The five numerical
experiments are described in Section 3. In Sections 4–8, we analyse the performance of the
VHPM and FDM methods for 1D-homogeneous, 1D-non-homogeneous, 2D-homogeneous,
2D-non-homogeneous and 1D-non-homogeneous non-linear KdV equations, respectively.
We compare the performance of the numerical schemes using the absolute and relative
errors for short, medium and long time propagation. Finally, Section 9 highlights the key
features of the paper.

2. The Methods
This section introduces the techniques employed in this paper to solve dispersive KdV

problems, namely the standard FDM and VHPM.

2.1. Variational Homotopy Perturbation Method (VHPM)
The variational homotopy perturbation method is derived by combining VIM with

HPM. Let us consider a general PDE

L[u(t, x)] +M[u(t, x)] +N [u(t, x)] = g(t, x), (2)

where L = ∂
∂t ,M is a linear operator that includes partial derivatives with respect to x,

N is a non-linear operator and g is a non-homogeneous term, which is u-independent.
By relying on VIM in [22,39], the correct functional for the problem in Equation (2) can be
written as

un+1(t, x) = un(t, x) +
∫ t

0
λ(τ)

{
Lun(τ, x)) +Mun(τ, x)) +N ũn(τ, x)− g(τ, x)

}
dτ, (3)

where λ is a Lagrange multiplier that can be identified optimally via VIM [22]. Here, ũn
is considered to be a restricted variation which shows that δũn = 0. Making the correct
functional (3) stationary yields
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δvn+1(t, x) = δvn(t, x) + δ
∫ t

0
λ(τ)

{
Lvn(τ, x)) +Mvn(τ, x)) +N ṽn(τ, x)− g(τ)

}
dτ

= δvn(t, x) +
∫ t

0
δ

{
λ(τ)(Lvn(τ, x)) +Mvn(τ, x))

}
dτ. (4)

Its stationary conditions can be obtained using the technique of integration in Equation (4).
Hence, we obtain [22,23]

λ(τ) =
(−1)m(τ − x)m−1

(m− 1)!
.

By applying HPM, we obtain the following relation:

∞

∑
i=0

ρiui(t, x) = u0(t, x) + ρ

[ ∫ t

0
λ(τ)

{
L
(

∞

∑
i=0

ρiui

)
+M

(
∞

∑
i=0

ρiui

)
+N

(
∞

∑
i=0

ρiũi

)}
dτ −

∫ t

0
λ(τ)g(τ, x)dτ

]
. (5)

The values u0, u1, u2, · · · , are obtained by comparing the like powers of ρ. Thus, the
approximate solution of Equation (2) can be given as

u(t, x) = lim
ρ→1

∞

∑
i=0

ρi ui(t, x) = u0(t, x) + u1(t, x) + u2(t, x) + · · · , (6)

which converges for most cases; it is always assumed that Equation (6) has a unique solution.

2.2. The Standard (Classical) Finite Difference Method
In order to derive the finite difference method for solving 1D and 2D dispersive

KdV-type equations, we use the following difference approximations to approximate
the derivatives:

∂u
∂t

∣∣∣n
i
≈

Un+1
i −Un−1

i
2∆t

,

∂u
∂x

∣∣∣n
i
≈

Un
i+1 −Un

i−1
2∆x

,

∂3u
∂x3

∣∣∣n
i
≈

Un
i+2 − 2Un

i+1 + 2Un
i−1 −Un

i−2
2(∆x)3 ,

where a uniform grid (xi, tn) is introduced with

xi = (i− 1) · ∆x, i = 1, . . . , N, and tn = (n− 1) · ∆t, n ∈ N,

where ∆x and ∆t are the spatial and temporal step sizes, respectively. We obtain the stability
region using von Neumann stability analysis and we also study the consistency of the
numerical schemes.

3. Numerical Experiments
We solve five problems as detailed below.

(i) We consider the linear homogeneous dispersive KdV equation [44]

∂u(t, x)
∂t

+ 2
∂u(t, x)

∂x
+

∂3u(t, x)
∂x3 = 0, (7)

with (t, x) ∈ [0, 10.0]× [0, 2π], subject to initial conditions [44] u(0, x) = sin(x) and
the boundary conditions: u(t, 0) = − sin(t) and u(t, 2π) = sin(2π − t). The exact
solution is given by u(t, x) = − sin(t − x). We used spatial step size ∆x = π

10 for
this experiment.

(ii) We consider the linear non-homogeneous dispersive equation [44]

∂u(t, x)
∂t

+
∂3u(t, x)

∂x3 = h(t, x), (8)
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with (t, x) ∈ [0, 1.0] × [0, 1.0], and the source term h(t, x) = − sin(t) sin(πx) −
π3 cos(t) cos(πx), subject to initial conditions u(0, x) = sin(πx), and the bound-
ary conditions are given by u(t, 0) = 0 and u(t, 1.0) = 0. The exact solution is given
by u(t, x) = cos(t) sin(πx). We used spatial step size ∆x = 0.05 for this experiment.

(iii) We solve the 2D homogeneous equation [44]

∂u(t, x, y)
∂t

+
∂3u(t, x, y)

∂x3 +
∂3u(t, x, y)

∂y3 = 0, (9)

with (t, x, y) ∈ [0, 3.0]×Ω, Ω = [0, 1.0]× [0, 1.0], subject to the initial condition

u(0, x, y) = cos(x + y) (10)

and the boundary conditions are given by

u(t, x, 0) = cos(2t + x), u(t, x, 1) = cos(1 + 2t + x),
u(t, 0, y) = cos(2t + y), u(t, 1, y) = cos(2t + 1 + y).

}
(11)

The exact solution is u(t, x, y) = cos(2t + x + y). We used ∆x = ∆y = 0.1 for
this experiment.

(iv) We solve the following 2D non-homogeneous equation [43]

∂u(t, x, y)
∂t

+
∂3u(t, x, y)

∂x3 +
∂3u(t, x, y)

∂y3 = exp(t) cos(x− y), (12)

with (t, x, y) ∈ [0, 8.0] × Ω, Ω = [0, 1.0] × [0, 1.0], subject to the initial condition
u(0, x, y) = sin(x− y); the boundary conditions are given by

u(t, x, 0) = exp(t) cos(x), u(t, x, 1) = exp(t) cos(1− x),
u(t, 0, y) = exp(t) cos(y), u(t, 1, y) = exp(t) cos(1− y),

}
. (13)

The exact solution is u(t, x, y) = exp(t) cos(x − y). We used ∆x = ∆y = 0.1 for
this experiment.

(v) We solve the dispersive non-linear KdV equation

∂u(t, x)
∂t

+ 6u(x, t)
∂u(t, x)

∂x
+

∂3u(t, x)
∂x3 = 0, (14)

where (t, x) ∈ [0, 1.0]× [0, 2π], subject to the initial condition

u(x, 0) =
1
2

sech2
(

1
2

x
)

, (15)

and the boundary conditions are given by

u(0, t) =
1
2

sech2
(
− t

2

)
, and u(2π, t) =

1
2

sech2
(

π − t
2

)
;

∂u
∂x

(0, t) =
1
2

sech2
(

t
2

)
tanh

(
t
2

)
. (16)

The exact solution is u(x, t) = 1
2 sech2

[
1
2 (x− t)

]
. We used spatial step size ∆x = π

10
for this experiment.

4. Numerical Experiment 1
4.1. Solution of Numerical Experiment 1 Using VHPM

Let us now rewrite Equation (7) as

Lu +Mu = 0,

where the differential operators are given by L =
∂

∂t
andM = −2

∂

∂x
− ∂3

∂x3 .
We write Equation (7) as

∞

∑
i=0

ρiui(t, x) = u0(t, x)− ρ

[ ∫ t

0

{(
2

∞

∑
n=0

ρiun,x +
∞

∑
n=0

ρiun,xxx

)}
dτ

]
, (17)
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where ui,x =
∂ui(t, x)

∂x
and ui,xxx =

∂3ui(t, x)
∂x3 . By comparing like terms of ρ on both sides

of Equation (17), we obtain the following components:

ρ(0) : u0(x) = u(0, x) = sin(x),

ρ(1) : u1(t, x) = −
∫ t

0
(2u0,x(τ, x) + u0,xxx(τ, x))dτ = −

∫ t

0
cos(x) dτ = −t cos(x),

ρ(2) : u2(t, x) = −
∫ t

0
(2u1,x(τ, x) + u1,xxx(τ, x))dτ = −

∫ t

0
τ sin(x) dτ = − t2

2!
sin(x).

ρ(3) : u3(t, x) = −
∫ t

0
(2u2,x(τ, x) + u2,xxx(τ, x))dτ = −

∫ t

0

(
−τ2

2!
cos(x)

)
dτ =

t3

3!
cos(x).

ρ(4) : u4(t, x) = −
∫ t

0
(2u3,x(τ, x) + u3,xxx(τ, x))dτ = −

∫ t

0

(
−τ3

3!
sin(x)

)
dτ =

t4

4!
sin(x).

ρ(5) : u5(t, x) = −
∫ t

0
(2u4,x(τ, x) + u4,xxx(τ, x))dτ = −

∫ t

0

τ4

4!
cos(x) dτ = − t5

5!
cos(x),

and so on. The rest of the components can be obtained in this manner. Thus, the semi-
analytical solution with the first ten terms is given by

u(t, x) ≈ u0(t; x) + u1(t; x) + u2(t; x) + u3(t; x) + u4(t; x) + . . . + u10(t; x),

= sin(x)− t cos(x)− t2

2!
sin(x) +

t3

3!
cos(x) +

t4

4!
sin(x)− t5

5!
cos(x)

− t6

6!
sin(x) +

t7

7!
cos(x) +

t8

8!
sin(x)− t9

9!
cos(x)− t10

10!
sin(x),

which converges to the exact solution u(t, x) = sin(x− t) as required.
In order to verify numerically whether the proposed method leads to higher accuracy,

we compute the approximate solution using the n-term sum approximation up to a certain
order, say n,

lim
n→∞

Ψn(x, t) = u(x, t),

where

Ψn(x, t) =
n

∑
k=0

uk(x, t), n ≥ 0,

where uk are the approximate solutions obtained by VHPM. We observe that the numerical
and exact profiles are close to each other, especially at low and medium propagation times.

Figure 1 shows the exact solution, as well as the VHPM solution vs. x ∈ [0, 2π] at times
t = 0.1, 2.0, and 4.0, while Figure 2 depicts plots of the absolute errors versus x ∈ [0, 2π] at
some different values of time t.
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VHPM(x, t = 0.1)

0 1 2 3 4 5 6
x

−1.0

−0.5
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0.5

1.0
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n
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VHPM(x, t = 1.0)

Figure 1. Cont.
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Figure 1. Plots of exact and approximate solutions vs x using n = 10 terms from VHPM at times
0.1, 1.0, 2.0 and 4.0.
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The spatial step size used is π
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(d)

Figure 2. Plots of absolute errors vs. x at some values of time; t = (a) 0.1, (b) 1.0, (c) 2.0, (d) 4.0 using

n = 10 terms from VHPM
(

∆x =
π

10

)
.

4.2. Solution of Numerical Experiment 1 Using Finite Difference Scheme
We consider the homogeneous dispersive KdV equation

∂u(t, x)
∂t

+ 2
∂u(t, x)

∂x
+

∂3u(t, x)
∂x3 = 0, (18)

where u(x, 0) = sin(x). The discretised form of the finite difference scheme for Equation (18)
is given by

Un+1
i −Un−1

i
2 (∆t)

+ 2
(Un

i+1 −Un
i−1

2 (∆x)

)
+

Un
i+2 − 2Un

i+1 + 2Un
i−1 −Un

i−2
2 (∆x)3 = 0. (19)

Equation (19) can be expressed as

Un+1
i = Un−1

i − 2 · ∆t
∆x
·
(
Un

i+1 −Un
i−1
)
− ∆t

(∆x)3 ·
(
Un

i+2 − 2Un
i+1 + 2Un

i−1 −Un
i−2
)
, (20)
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for i = 2, 3, . . . , N− 2 and n = 2, 3, . . . , Itmax− 1. (We use N spatial nodes and the number
of time nodes is Itmax). To facilitate the numerical computation, we need to use another
scheme to obtain the solution at the second time level, using the FTCS scheme:

U2
i = U1

i −
(∆t)
∆x

(
U1

i+1 −U1
i−1

)
− (∆t)

2(∆x)3

(
U1

i+2 − 2U1
i+1 + 2U1

i−1 −U1
i−2

)
,

for i = 3, 4, . . . , N− 2 and n = 2, 3, . . . , Itmax− 1.

The stability region of the scheme can be determined using von Neumann stability
analysis on substituting Un

i with ξneIθih in Equation (20) to get

ξ = ξ−1 − 2 · ∆t
∆x
·
(

e(Iω) − e(−Iω)
)
− ∆t

(∆x)3 ·
(

e(2Iω) − 2e(Iω) + 2e(−Iω) − e(−2Iω)
)

, (21)

where ω = θh. Equation (21) can be rewritten as

ξ2 = 1− 2 · ∆t
∆x
· ξ · (2I sin(ω)− ∆t

(∆x)3 · (2I sin (2ω)− 4I sin (ω)). (22)

The quadratic equation in (22) can be expressed as

ξ2 + I · K · ξ − 1 = 0,

where

K = 4 · ∆t
∆x
· sin (ω) + 2 · ∆t

(∆x)3 · (sin (2ω)− 2 sin (ω)).

Solving Equation (22) gives

ξ1 =
−IK+

√
4−K2

2
and ξ2 =

−IK−
√

4−K2

2
,

where ξ1 and ξ2 are amplification factors of the physical and computational nodes, respectively.
We must have 4−K2 > 0; i.e., |K| < 2,; this then gives |ξ1| = 1. We solve∣∣∣4∆t

∆x
sin(w) +

2∆t
(∆x)3 (sin(2w)− 2 sin(w))

∣∣∣ < 2. (23)

For ∆x → 0, we see that (∆x)3 << ∆x; i.e.,
1

(∆x)3 >>
1

∆x
.

By letting y = sin (2ω)− 2 sin (ω), we have

dy
dω

= 2 cos (2ω)− 2 cos (ω).

By putting
dy
dω

= 0 and solving for ω, gives 2
(
2 cos2(ω)− 1

)
− 2 cos(ω) = 0. We, thus,

obtain ω = 0 or w = −2π

3
. Hence, the approximate region of stability, when ∆x → 0, is

given by ∣∣∣2√3
∆t
∆x
− 3
√

3∆t
(∆x)3

∣∣∣ < 2. (24)

By choosing h = ∆x = π
10 ≈ 0.314, we obtain

0 < ∆t ≤ 0.012774. (25)

Consistency
Using Taylor’s series expansion about (tn, xi), Equation (20) gives
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U + (∆t)Ut +
(∆t)2

2!
Utt +

(∆t)3

3!
Uttt +

(∆t)4

4!
Utttt +

(∆t)5

5!
Uttttt +O((∆t)6)

= U − (∆t)Ut +
(∆t)2

2!
Utt −

(∆t)3

3!
Uttt +

(∆t)4

4!
Utttt −

(∆t)5

5!
Uttttt +O((∆t)6)

− 2(∆t)
∆x

[
U + (∆x)Ux +

(∆x)2

2!
Uxx +

(∆x)3

3!
Uxxx +

(∆x)4

4!
Uxxxx +O((∆x)5)

−
(

U − (∆x)Ux +
(∆x)2

2!
Uxx −

(∆x)3

3!
Uxxx +

(∆x)4

4!
Uxxxx +O((∆x)5)

)]

− (∆t)
(∆x)3

[(
U + 2(∆x)Ux +

(2(∆x))2

2
Uxx +

(2(∆x))3

3!
Uxxx +

(2(∆x))4

4!
Uxxxx +

(
2(∆x))5

5!
Uxxxxx +O((∆x)6)

)
− 2
(
U + (∆x)Ux +

(∆x)2

2!
Uxx +

(∆x)3

3!
Uxxx +

(∆x)4

4!
Uxxxx +

(∆x)5

5!
Uxxxxx +O((∆x)6)

)
+ 2(U − (∆x)Ux +

(∆x)2

2!
Uxxx −

(∆x)3

3!
Uxxx +

(∆x)4

4!
Uxxxx −

(∆x)5

5!
Uxxxxx +O((∆x)6)

)
−
(
U − 2(∆x)Ux +

(2(∆x))2

2!
Uxx −

(2(∆x))3

3!
Uxxx +

(2(∆x))4

4!
Uxxxx −

(2(∆x))5

5!
Uxxxxx +O

(
(∆x)6

)]
. (26)

After some simplifications, we get

Ut + 2Ux + Uxxx = − (∆t)2

3!
Uttt −

(∆t)4

5!
Uttttt −

2(∆x)2

3!
Uxxx −

2(∆x)4

5!
Uxxxxx −

30(∆x)2

5!
Uxxxxx +O((∆x)5) +O((∆t)5). (27)

As ∆t, ∆x → 0, Equation (27) gives Ut + 2Ux + Uxxx = 0 and, therefore, we conclude
that the scheme is consistent with Equation (18). The scheme is second-order accurate in
time and space.

In Figure 3, we now obtain plots of the numerical and exact profiles vs. x.
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Figure 3. Plots of initial, numerical and exact solution vs. x ∈ [0, 2π] at times t = 0.10, 2.0, 6.0, 10.0,

using FDM with ∆t = 10−3 and ∆x =
π

10
.

The absolute and relative errors vs. x are shown in Figures 4 and 5, respectively, using
∆x = π

10 ≈ 0.314 and ∆t = 10−3.
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Figure 4. Plots of absolute errors vs. x at times t = 0.10, 2.0, 6.0, 10.0 using a classical finite difference

scheme with ∆t = 10−3 and ∆x =
π
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Figure 5. Plots of relative errors vs. x at times t = 0.10, 2.0, 6.0, 10.0, using a classical finite difference

scheme with ∆t = 10−3 and ∆x =
π

10
.

The following plots give loglog graphs of the maximum error vs. time, t ∈ [0, 10].
We note that Figure 6 compares the effect of the loglog plot of the maximum error vs.

time using two different time steps: ∆t = 0.001, 0.01 and with the spatial step ∆x = π
10

using the classical FDM for Experiment 1.
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Figure 6. Plots of the maximum error vs. time t ∈ [0, 10.0] and the loglog plot of max. error vs. time
using the classical FDM for Experiment 1 with ∆t = 0.001, 0.01 and ∆x = π

10 .

5. Numerical Experiment 2
5.1. Solution of Experiment 2 Using VHPM

Let us now consider
∂u(t, x)

∂t
+

∂3u(t, x)
∂x3 = h(t, x), (28)

with the source term as given in Equation (8). If we now employ the procedures of VHPM
using Equation (5), we can rewrite Equation (8) as

∞

∑
i=0

ρiui(t, x) = u0(t, x)− ρ

[ ∫ t

0
λ(τ)

{(
∞

∑
n=0

ρiun,xxx

)}
dτ

]

−
[ ∫ t

0
λ(τ)

{(
−π3 cos(πx) cos(τ)− sin(πx) sin(τ)

)}
dτ

]
, (29)

where we have λ(τ) = −1, as noted above.
Using Equation (29), the first few VHPM approximation terms are given by

ρ(0) : u0(t, x) = −π3 sin(t) cos(π x) + cos(t) sin(π x), (30a)

ρ(1) : u1(t, x) = π6 sin(π x) + π3 sin(t) cos(π x)− π6 cos(t) sin(π x), (30b)

ρ(2) : u2(t, x) = −π6 sin(π x) + π9[t− sin(t)] cos(π x) + π6 cos(t) sin(π x), (30c)

ρ(3) : u3(t, x) = π12 sin(π x)− π9t cos(π x) + π9 sin(t) cos(π x)− π12
[

t2

2!
+ cos(t)

]
sin(π x), (30d)

ρ(4) : u4(t, x) = −π12 sin(π x)− π15
[

t3

3!
+ sin(t)

]
cos(π x) + π15t cos(π x) + π12 sin(π x)

[
t2

2!
+ cos(t)

]
, (30e)

and so on; in this way the remaining equations of VHPM in the series can be obtained.
Thus, the approximate solution to Equation (8), using the first seven terms, is:

Ψ7(t, x) = −π24 cos(t) sin(π x) + π24
(

1− t2

2!
+

t4

4!
− t6

6!
+ . . .

)
sin(π x) + cos(t) sin(π x). (31)

We observe that Equation (31) converges to the exact solution u(t, x) = cos(t) sin(π x).
From Figures 7 and 8, we see that VHPM has some challenges for medium and long time
propagation; however, it is quite effective for short times for the considered numerical
experiment. We note that short time propagation experiments have applications in the
analysis of physical phenomena, such as cosmic dynamics [11] and the modelling of
earthquakes and tsunamis, as well as oceanographic applications [12].
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Figure 7. Plots of the exact and approximate solution vs. x at times 0.01, and 0.10 with ∆x = 0.05,
using n = 7 terms from VHPM.
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Figure 8. Plots of absolute errors vs. x at times 0.01, and 0.10 with ∆x = 0.05 using n = 7 terms
from VHPM.

Remark 1. One can observe from Equations (30a)–(30e) the occurrence of noise terms. By ‘noise’
terms, we mean the identical terms, with opposite signs, that may appear in various components
uj, j ≥ 1 [45,46]. These terms do not show up for homogeneous equations but are used solely
for specific types of non-homogeneous equations. A necessary condition for the generation of the
noise terms for non-homogeneous problems is that the zeroth component u0 must contain the exact
solution u among other terms. For a complete and thorough discussion of noise terms, we refer
readers to [46].

5.2. Solution of Numerical Experiment 2 Using Finite Difference Scheme
We propose the following CTCS (CTCS denotes central in time central in space scheme)

scheme to discretise Equation (8):

Un+1
i −Un−1

i
2∆t

+
Un

i+2 − 2Un
i+1 + 2Un

i−1 −Un
i−2

2(∆x)3 = − sin(tn) sin(πxi)− π3 cos(tn) cos(πxi). (32)

Equation (32) can be rewritten as

Un+1
i = Un−1

i − ∆t
(∆x)3 (U

n
i+2 − 2Un

i+1 + 2Un
i−1 −Un

i−2) + 2∆t
(
− sin(tn) sin(πxi)− π3 cos(tn) cos(πxi)

)
, (33)

for i = 2, 3, . . . , N− 2 and n = 2, 3, . . . , Itmax− 1.
To obtain a solution at the second time level, we use the following FTCS scheme (FTCS

denotes forward in the time central in space scheme):

Un+1
i −Un

i
∆t

+
Un

i+2 − 2Un
i+1 + 2Un

i−1 −Un
i−2

2(∆x)3 = − sin(πxi) sin(tn)− π3 cos(πxi) cos(tn), (34)

which can be rewritten as

Un+1
i = Un

i −
∆t

2(∆x)3 (U
n
i+2 − 2Un

i+1 + 2Un
i−1 −Un

i−2) + ∆t[− sin(πxi) sin(tn)− π3 cos(πxi) cos(tn)]. (35)

In order to find the region of stability for Equation (8), we consider Equation (33) with
the source term being zero since the source term g(t, x) does not depend on u. We have

Un+1
i = Un−1

i − ∆t
(∆x)3 ·

(
Un

i+2 − 2Un
i+1 + 2Un

i−1 −Un
i−2
)
. (36)
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By substituting Un
i by ξneIθih in Equation (36) and simplifying, we get

ξ = ξ−1 − ∆t
(∆x)3

(
e(2Iω) − 2e(Iω) + 2e(−Iω) − e(−2Iω)

)
, (37)

Equation (37) can be expressed as

ξ2 +
∆t

(∆x)3 · ξ · I · (2 sin (2ω)− 4 sin (ω))− 1 = 0. (38)

Solving Equation (38) yields

ξ =

− ∆t
(∆x)3 · I · (2 sin (2ω− 4 sin (ω))±

√
4− (∆t)2

(∆x)6 (2 sin (2ω)− 4 sin (ω))2

2
.

For stability, we need[
∆t

(∆x)3 (2 sin (2ω)− 4 sin (ω))

]2

< 4,

which simplifies to ∣∣∣∣ ∆t
(∆x)3 (2 sin(2ω)− 4 sin (ω))

∣∣∣∣ < 2.

We now let y = 2 sin (2ω)− 4 sin (ω). This gives
dy
dω

= 8 cos2 (ω)− 4 cos (ω)− 4.

By putting
dy
dω

= 0, we obtain ω = 0,
−2π

3
,

2π

3
for ω ∈ [−π, π]. Thus, the region of

stability associated with Equation (8) is given by

|∆t|
|(∆x)3| ·

∣∣∣∣2 sin
(

4π

3

)
− 4 sin

(
2π

3

)∣∣∣∣ < 2,

which simplifies as
|∆t|
|(∆x)3| <

2
3
√

3
.

We choose ∆x = 0.05 and, therefore, ∆t ≤ 4.811252× 10−5. (The choice ∆x = 0.05,
∆t = 10−5 is used to run the experiment).

Consistency
We consider Equation (8). The Taylor series expansion about (tn, xi), gives

U+(∆t)Ut +
(∆t)2

2!
Utt +

(∆t)3

3!
Uttt +

(∆t)4

4!
Utttt +

(∆t)5

5!
Uttttt +O((∆t)6)

= U − (∆t)Ut +
(∆t)2

2!
Utt −

(∆t)3

3!
Uttt +

(∆t)4

4!
Utttt −

(∆t)5

5!
Uttttt +O((∆t)6)

+ 2(∆t)
[
− sin (πxi) sin (tn)− π3 cos (πxi) cos (tn)

]
− (∆t)

(∆x)3 ·
[

U + 2(∆x)Ux +
(2(∆x))2

2!
Uxx +

(2(∆x))3

3!
Uxxx +

(2(∆x))4

4!
Uxxxx +

(2(∆x))5

5!
Uxxxxx + . . .

− 2
(

U + (∆x)Ux +
(∆x)2

2!
Uxx +

(∆x)3

3!
Uxxx +

(∆x)4

4!
Uxxxx +

(∆x)5

5!
Uxxxxx + . . .

)
+ 2(U − (∆x)Ux +

(∆x)2

2!
Uxx −

(∆x)3

3!
Uxxx +

(∆x)4

4!
Uxxxx −

(∆x)5

5!
Uxxxxx + . . .)

−
(

U − 2(∆x)Ux +
(2(∆x))2

2!
Uxx −

(2(∆x))3

3!
Uxxx +

(2(∆x))4

4!
Uxxxx −

(2(∆x))5

5!
Uxxxxx + . . .

)]
. (39)

Simplifying Equation (39) gives

Ut + Uxxx + sin (πxi) sin (tn) + cos (πxi) cos (tn) = −
(∆t)2

3!
Uttt −

(∆t)4

5!
Uttttt +O((∆t)5)

− 30(∆x)2

5!
Uxxxxx +O((∆x)3).
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Thus, the scheme is consistent and is second-order accurate in time and space.
We obtain plots of the numerical and exact profiles vs. x; the corresponding graphical

representations of the absolute and relative errors vs. x are shown in Figures 9 and 10,
respectively.
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Figure 9. Plots of the exact and numerical solution vs. x ∈ [0, 1] at times t = 0.01, 0.10, using
a classical finite difference scheme with ∆t = 10−5, ∆x = 0.05 with corresponding absolute and
relative errors vs. x (at times t = 0.01, 0.10), respectively. (a) ∆t = 1.0× 10−5, (Time = 0.01);
(b) ∆t = 1.0 × 10−5, (Time = 0.10); (c) ∆t = 1.0 × 10−5, (Time = 0.01); (d) ∆t = 1.0 × 10−5,
(Time = 0.10); (e) ∆t = 1.0× 10−5, (Time = 0.01); (f) ∆t = 1.0× 10−5, (Time = 0.10).
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Figure 10. Plots of the exact and numerical solution vs. x ∈ [0, 1] at times t = 1.0, 2.0, using a classical
finite difference scheme with ∆t = 10−5, ∆x = 0.05, with corresponding absolute and relative errors vs. x
(at times 1.0, 2.0), respectively. (a) ∆t = 1.0× 10−5, (Time = 1.0); (b) ∆t = 1.0× 10−5, (Time = 2.0);
(c) ∆t = 1.0 × 10−5, (Time = 1.0); (d) ∆t = 1.0 × 10−5, (Time = 2.0); (e) ∆t = 1.0 × 10−5,
(Time = 1.0); (f) ∆t = 1.0× 10−5, (Time = 2.0).

Table 1 displays a comparison between the approximate solution and the exact solution
together with corresponding absolute and relative errors.
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Table 1. Absolute and relative errors at some values of x using a classical finite difference scheme
with ∆t = 10−5, ∆x = 0.05 at times t = 0.10, 1.0, 2.0.

t x Exact Solution Numerical (FDM) Solution Absolute Error Relative Error

0.00 0.000000 0.000000 0.000000 —-
0.05 0.155653 0.155653 0.0000000 0.000000
0.10 0.307473 0.307109 3.644020 × 10−4 1.434768 × 10−3

0.15 0.451722 0.451502 2.209258 × 10−4 3.513621 × 10−4

0.20 0.584849 0.584398 4.510973 × 10−4 6.214351 × 10−4

0.25 0.703574 0.703362 2.119868 × 10−4 1.180486 × 10−4

0.30 0.804975 0.804631 3.446030 × 10−4 4.394541 × 10−5

0.35 0.886555 0.886501 5.388093 × 10−5 4.614600 × 10−4

0.40 0.946305 0.946163 1.424468 × 10−4 2.362730 × 10−4

0.45 0.982754 0.98290 1.486446 × 10−4 5.587316 × 10−4

0.10 0.50 0.995004 0.995063 5.837165 × 10−5 2.152711 × 10−4

0.55 0.982754 0.98306 3.067277 × 10−4 4.054379 × 10−4

0.60 0.946305 0.946478 1.731246 × 10−4 5.305065 × 10−5

0.65 0.886555 0.886901 3.466181 × 10−4 8.155528 × 10−5

0.70 0.804975 0.805127 1.512676 × 10−4 4.798332 × 10−4

0.75 0.703574 0.703823 2.488465 × 10−4 3.046279 × 10−4

0.80 0.584849 0.584854 5.435241 × 10−6 9.697751 × 10−4

0.85 0.451722 0.451787 6.425356 × 10−5 5.839323 × 10−4

0.90 0.307473 0.307322 1.516304 × 10−4 1.517804 × 10−3

0.95 0.155653 0.155653 0.0000000 0.00000000
1.0 1.218529 × 10−16 1.218529 × 10−16 0.000000 0.0000000

0.00 0.000000 0.000000 0.000000 —
0.05 8.452190 × 10−2 8.452190 × 10−2 0.000000 0.000000
0.10 1.669626 × 10−1 1.666859 × 10−1 2.766808 × 10−4 1.657142 × 10−3

0.15 2.452921 × 10−1 2.450695 × 10−1 2.226391 × 10−4 9.076487 × 10−4

0.20 3.175817 × 10−1 3.171776 × 10−1 4.041147 × 10−4 1.272475 × 10−3

0.25 3.820514 × 10−1 3.817850 × 10−1 2.664477 × 10−4 6.974131 × 10−4

0.30 4.371137 × 10−1 4.367783 × 10−1 3.354752 × 10−4 7.674781 × 10−4

0.35 4.814129 × 10−1 4.812927 × 10−1 1.202064 × 10−4 2.496951 × 10−4

0.40 5.138580 × 10−1 5.137448 × 10−1 1.132063 × 10−4 2.203066 × 10−4

0.45 5.336503 × 10−1 5.337604 × 10−1 1.101442 × 10−4 2.063978 × 10−4

1.0 0.50 5.403023 × 10−1 5.403990 × 10−2 9.664654 × 10−5 1.788749 × 10−4

0.55 5.336503 × 10−1 5.339099 × 10−1 2.597111 × 10−4 4.866691 × 10−4

0.60 5.138580 × 10−1 5.140498 × 10−1 1.917252 × 10−4 3.731092 × 10−4

0.65 4.814129 × 10−1 4.817033 × 10−1 2.903852 × 10−4 6.031938 × 10−4

0.70 4.371137 × 10−1 4.372791 × 10−1 1.653917 × 10−4 3.783723 × 10−4

0.75 3.820514 × 10−1 3.822549 × 10−1 2.035211 × 10−4 5.327060 × 10−4

0.80 3.175817 × 10−1 3.176247 × 10−1 4.299915 × 10−5 1.353955 × 10−4

0.85 2.452921 × 10−1 2.453477 × 10−1 5.561969 × 10−5 2.267488 × 10−4

0.90 1.669626 × 10−1 1.668844 × 10−1 7.823184 × 10−5 4.685591 × 10−4

0.95 8.452190 × 10−2 8.452190 × 10−2 0.000000 0.000000
1.0 6.616795 × 10−17 6.616795 × 10−17 0.000000 0.000000

0.00 0.000000 0.000000 0.000000 —
0.05 −6.509971 × 10−2 −6.509971 × 10−2 0.000000 0.000000
0.10 −1.285964 × 10−1 −1.287342 × 10−1 1.377844 × 10−4 1.071448 × 10−3

0.15 −1.889267 × 10−1 −1.889825 × 10−1 5.578956 × 10−5 2.952974 × 10−4

0.20 −2.446050 × 10−1 −2.447289 × 10−1 1.2393035 × 10−4 5.066551 × 10−4

0.25 −2.942603 × 10−1 −2.942303 × 10−1 2.990097 × 10−5 1.01614 × 10−4

0.30 −3.366699 × 10−1 −3.366621 × 10−1 7.762543 × 10−6 2.305684 × 10−5

0.35 −3.707895 × 10−1 −3.706230 × 10−1 1.665078 × 10−4 4.490629 × 10−4

0.40 −3.957792 × 10−1 −3.956736 × 10−1 1.055953 × 10−4 2.668036 × 10−4

0.45 −4.110234 × 10−1 −4.108272 × 10−1 1.961779 × 10−4 4.772914 × 10−4

2.0 0.50 −4.161468 × 10−1 −4.160785 × 10−1 6.834419 × 10−5 1.642310 × 10−4

0.55 −4.110234 × 10−1 −4.109187 × 10−1 1.046469 × 10−4 2.546009 × 10−4

0.60 −3.957792 × 10−1 −3.958259 × 10−1 4.670829 × 10−5 1.180160 × 10−4

0.65 −3.707895 × 10−1 −3.708076 × 10−1 1.804617 × 10−5 4.866957 × 10−5

0.70 −3.366699 × 10−1 −3.368163 × 10−1 1.464149 × 10−4 4.348916 × 10−4

0.75 −2.942603 × 10−1 −2.943478 × 10−1 8.754363 × 10−5 2.975041 × 10−4

0.80 −2.446050 × 10−1 −2.447732 × 10−1 1.681892 × 10−4 6.875951 × 10−4

0.85 −1.889267 × 10−1 −1.890046 × 10−1 7.784946 × 10−5 4.120617 × 10−4

0.90 −1.285964 × 10−1 −1.287197 × 10−1 1.232140 × 10−4 9.581445 × 10−4

0.95 −6.509971 × 10−2 −6.509971 × 10−2 0.000000 0.000000
1.0 −5.096329 × 10−17 −5.096329 × 10−17 0.000000 0.000000
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Remark 2. For the non-homogeneous case (1D space), VHPM faces challenges, even for short time
propagation, whereas the classical finite-difference method performs quite well; its relative error
ranges from 10−5 to 10−3. The 3D surface plot in Figure 11 for the exact and numerical solution
using classical FDM validates the numerical results in Table 1. Figure 12 also shows plots for the
maximum error vs. time t ∈ [0, 2.0] and the loglog plot of the maximum error vs. time using the
standard FDM for Experiment 2 with ∆t = 10−5 and ∆x = 0.05.

(a) (b)

Figure 11. 3D surface plots of the (a) exact solution and (b) numerical solution vs. x at time 2.0 with
∆x = 0.05, using the standard finite difference method.
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Figure 12. Plots of the maximum error vs. time t ∈ [0, 2.0], and the loglog plot of max. error vs. time,
using the classical FDM with ∆t = 10−5 and ∆x = 0.05.

6. Numerical Experiment 3
6.1. Solution of Numerical Experiment 3 Using VHPM

By considering the homogeneous 2D KdV equation in Equation (9), and by applying
the VHPM procedure, we have

∞

∑
i=0

ρiui(t, x) = u0(t, x) + ρ

[ ∫ t

0
(−1)

{
∞

∑
i=0

ρiui,xxx(τ, x) +
∞

∑
i=0

ρi ui,yyy(τ, x)

}
dτ

]
. (40)

We then compare the coefficients of ρ on both sides of Equation (40) to obtain

ρ(0) : u0(t, x, y) = cos(x + y), (41a)

ρ(1) : u1(t, x, y) = −
∫ t

0

(
u0,xxx(τ, x, y) + u0,yyy(τ, x, y)

)
dτ = −

∫ t

0
2 sin(x + y) dτ = −2t cos(x + y), (41b)

ρ(2) : u2(t, x, y) = −
∫ t

0

(
u1,xxx(τ, x, y) + u1,yyy(τ, x, y)

)
dτ = −

∫ t

0
4τ cos(x + y) dτ = − (2t)2

2!
cos(x + y), (41c)

ρ(3) : u3(t, x, y) = −
∫ t

0

(
u2,xxx(τ, x, y) + u2,yyy(τ, x, y)

)
dτ = −

∫ t

0
4τ2 sin(x + y) dτ =

(2t)3

3!
sin(x + y), (41d)
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and so on. Hence, the sum of the first seven approximate VHPM-terms, as in Equation (41),
which are close to the exact solution, is

Ψ7(t, x, y) = cos(x + y)

[
1− (2t)2

2!
+

(2t)4

4!
− (2t)6

6!

]
− sin(x + y)

[
2t− (2t)3

3!
+

(2t)5

5!
− (2t)7

7!

]
≈ cos(2t) cos(x + y)− sin(2t) sin(x + y) = cos(2t + x + y),

which converges to the closed form as required.
For Experiment 3, we present some numerical results in Table 2 and Figure 13.

Table 2. A comparison between the exact solution and VHPM solution at some values of x and y at
time t = 0.10, 1.0, 2.0.

t x y Exact Solution VHPM Solution Absolute Error Relative Error

0.0 0.0 9.800666× 10−1 9.800666× 10−1 6.346390× 10−11 6.475468× 10−11

0.2 0.2 8.253356× 10−1 8.253356× 10−1 5.790479× 10−11 7.015909× 10−11

0.4 6.967067× 10−1 6.967067× 10−1 5.158263× 10−11 7.403779× 10−11

0.6 5.403023× 10−1 5.403023× 10−1 4.320399× 10−11 7.996263× 10−11

0.8 3.623578× 10−1 3.623578× 10−1 3.310296× 10−11 9.135437× 10−11

0.10 0.4 0.2 6.967067× 10−1 6.967067× 10−1 5.158263× 10−11 7.403779× 10−11

0.4 5.403023× 10−1 5.403023× 10−1 4.320399× 10−11 7.996263× 10−11

0.6 3.623578× 10−1 3.623578× 10−1 3.310296× 10−11 9.135437× 10−11

0.8 1.699671× 10−1 1.699671× 10−1 2.168213× 10−11 1.275666× 10−10

0.8 0.2 3.623578× 10−1 3.623578× 10−1 3.310296× 10−11 9.135437× 10−11

0.4 1.699671× 10−1 1.699671× 10−1 2.168213× 10−11 1.275666× 10−10

0.6 −2.919952× 10−2 −2.919952× 10−2 9.39695× 10−12 3.218185× 10−10

0.8 −2.272021× 10−1 −2.272021× 10−1 3.262889× 10−12 1.436118× 10−11

1.0 1.0 −5.885011× 10−1 −5.885011× 10−1 2.769285× 10−11 4.705658× 10−11

0.0 0.0 −4.161468× 10−1 −4.222222× 10−1 6.075386× 10−3 1.459914× 10−2

0.2 0.2 −7.373937× 10−1 −7.424596× 10−1 5.065830× 10−3 6.869920× 10−3

0.4 −8.568888× 10−1 −8.611346× 10−1 4.245800× 10−3 4.954900× 10−3

0.6 −9.422223× 10−1 −9.454788× 10−1 3.256500× 10−3 3.456190× 10−3

0.8 −9.899925× 10−1 −9.921299× 10−1 2.137370× 10−3 2.158980× 10−3

1.0 0.4 0.2 −8.5688875× 10−1 −8.611346× 10−1 4.245800× 10−3 4.954900× 10−3

0.4 −9.422223× 10−1 −9.454788× 10−1 3.256500× 10−3 3.456190× 10−3

0.6 −9.899925× 10−1 −9.921299× 10−1 2.137370× 10−3 2.158980× 10−3

0.8 −9.982948× 10−1 −9.992278× 10−1 9.330300× 10−4 9.346300× 10−4

0.8 0.2 −9.899925× 10−1 −9.9212987× 10−1 2.137370× 10−3 2.158980× 10−3

0.4 −9.982948× 10−1 −9.992278× 10−1 9.330300× 10−4 9.346300× 10−4

0.6 −9.667982× 10−1 −9.664897× 10−1 3.085000× 10−4 3.191000× 10−4

0.8 −8.967584× 10−1 −8.952207× 10−1 1.537740× 10−3 1.714770× 10−3

1.0 1.0 −6.536436× 10−1 −6.498779× 10−1 3.765733× 10−3 5.761140× 10−3

0.0 0.0 −6.536436× 10−1 −2.022222 1.368579× 100 2.093768× 100

0.2 0.2 −3.073329× 10−1 −1.323586× 100 1.016253× 100 3.306684× 100

0.4 −1.121525× 10−1 −8.874751× 10−1 7.753226× 10−1 6.913109× 100

0.6 8.749898× 10−2 4.159839× 10−1 5.034829× 10−1 5.754156× 100

0.8 2.836622× 10−1 7.209137× 10−2 2.115708× 10−1 7.458549× 10−1

0.4 0.2 −1.121525× 10−1 −8.874751× 10−1 7.753226× 10−1 6.91311× 100

2.0 0.4 8.749898× 10−2 −4.159839× 10−1 5.034829× 10−1 5.754157× 100

0.6 2.836622× 10−1 7.209137× 10−2 2.115708× 10−1 7.458548× 10−1

0.8 4.685167× 10−1 5.572926× 10−1 8.877587× 10−2 1.894828× 10−1

0.8 0.2 2.836622× 10−1 7.209137× 10−2 2.115708× 10−1 7.458548× 10−1

0.4 4.685167× 10−1 5.572926× 10−1 8.877587× 10−2 1.894828× 10−1

0.6 6.346929× 10−1 1.020276× 100 3.855834× 10−1 6.075117× 10−1

0.8 7.755659× 10−1 1.442585× 100 6.670188× 10−1 8.600415× 10−1

1.0 1.0 9.601703× 10−1 2.100124× 100 1.139954× 100 1.187242× 100
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The following graphics in Figure 13 show the results of the exact and approximate
solutions using VHPM; the behaviour of the numerical results is shown in Table 2.

(a) (b)

(c) (d)

Figure 13. 3D graphical representation of the exact solution and approximate solutions vs. x vs. y
using n = 7 terms from VHPM for Equation (9) at times t = 0.10, 1.0, respectively. (a) t = 0.10;
(b) t = 0.10; (c) t = 1.0; (d) t = 1.0.

Remark 3. Table 2 compares the exact solution with the VHPM solution with corresponding
absolute and relative errors at some values of x and y, and at times t = 0.10, t = 1.0 and t = 2.0,
respectively. Figure 13 depicts the 3D graphs of the exact and approximate solution vs. x vs. y using
n = 7 terms from the VHPM. From the numerical results, one can see that the VHPM solution is
effective for short time propagation and may struggle to achieve accuracy for long time propagation.

6.2. Solution of Numerical Experiment 3 Using Finite Difference Scheme
In order to construct a classical finite difference method to solve numerical Experi-

ment 3, we use the following central difference approximations:

∂u
∂t

∣∣∣n
i,j
≈

Un+1
i,j −Un−1

i,j

2 · ∆t
,

∂u
∂x

∣∣∣n
i,j
≈

Un
i+1,j −Un

i−1,j

2 · ∆x
,

∂3u
∂x3

∣∣∣n
i,j
≈

Un
i+2,j − 2Un

i+1,j + 2Un
i−1,j −Un

i−2,j

2 · (∆x)3 ,

∂3u
∂y3

∣∣∣n
i,j
≈

Un
i,j+2 − 2Un

i,j+1 + 2Un
i,j−1 −Un

i,j−2

2 · (∆y)3 .


We point out that a rectangular domain is divided into square grids with each x

and y interval of length ∆x and ∆y, respectively, whereas each t-interval is of length ∆t.
A uniform grid ∆x = ∆y = h is considered with
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xi = (i− 1) · ∆x = (i− 1) · h, i = 1, . . . , N,
yj = (j− 1) · ∆y = (j− 1) · h, j = 1, . . . , N,

tn = (n− 1) · ∆t = (n− 1) · k, n ∈ N.

The scheme is given by

Un+1
i,j −Un−1

i,j

2∆t
= −

(
Un

i+2,j − 2Un
i+1,j + 2Un

i−1,j −Un
i−2,j

2 · (∆x)3

)
−
(

Un
i,j+2 − 2Un

i,j+1 + 2Un
i,j−1 −Un

i,j−2

2 · (∆y)3

)
.

Hence, the numerical scheme takes the form

Un+1
i,j = Un−1

i,j − rx

(
Un

i+2,j − 2Un
i+1,j + 2Un

i−1,j −Un
i−2,j

)
− ry

(
Un

i,j+2 − 2Un
i,j+1 + 2Un

i,j−1 −Un
i,j−2

)
, (42)

where
rx =

∆t
(∆x)3 and ry =

∆t
(∆y)3 . (43)

By substituting Un
i,j by ξn · eIωx i · eIωy j, we obtain

ξn+1 exp
[
I(ωxi + ωy j)

]
= ξn−1 exp

[
I(ωxi + ωy j)

]
− ∆t

(∆x)3

(
ξn exp

[
I(ωx(i + 2) + ωy j)

]
− 2ξn exp

[
I(ωx(i + 1) + ωy j)

]
+ 2ξn exp

[
I(ωx(i− 1) + ωy j)

]
− ξn exp

[
I(ωx(i− 2) + ωy j)

])

− ∆t
(∆y)3

(
ξn exp

[
I(ωxi + ωy(j + 2))

]
− 2ξn exp

[
I(ωxi + ωy(j + 1))

]
+ 2ξn exp

[
I(ωxi + ωy(j− 1))

]
− ξn exp

[
I(ωxi + ωy(j− 2))

])
. (44)

By dividing both sides of Equation (44) with ξneI(ωx i+ωy j), we have

ξ2 = 1− ∆t
(∆x)3

(
ξ exp[2Iωx]− 2ξ exp[Iωx] + 2ξ exp[−Iωx]− ξ exp[−2Iωx]

)

− ∆t
(∆y)3

(
ξ exp

[
2Iωy

]
− 2ξ exp

[
Iωy

]
+ 2ξ exp

[
−Iωy

]
− ξ exp

[
−2Iωy

])
, (45)

Equation (45) can be expressed as

ξ2 = 1− ∆t
(∆x)3 ·

(
ξ.I.(2 sin(2ωx)− 4 sin(ωx))

)
− ∆t

(∆y)3 ·
(

ξ.I.
(
2 sin(2ωy)− 4 sin(ωy)

))
,

which simplifies to

ξ2 + 2 · B(x, y) · I · ξ − 1 = 0, (46)

where
B(x, y) = rx · (sin(ωx)− 2 sin(ωx)) + ry ·

(
sin(2ωy)− 2 sin(ωy)

)
,

and rx and ry are given as in Equation (43). By solving the quadratic equation in Equation (46), we obtain

ξ =
1
2

(
−2B(x, y) · I ±

√
4− 4B2(x, y)

)
A condition for the stability criterion is determined by finding a condition for ∆t, ∆x, so that, for all

θ, ξ

|ξ(ωx, ωy)| ≤ 1 holds; i.e., 1−B2(x, y) ≥ 0 =⇒ |B(x, y)| ≤ 1. (47)



Mathematics 2022, 10, 4443 21 of 36

Hence, Equation (47) is equivalently expressed as∣∣∣rx · (sin(2ωx)− 2 sin(ωx)) + ry ·
(
sin(2ωy)− 2 sin(ωy)

)∣∣∣ ≤ 1.

We fixed ∆x = ∆y = 0.1. For stability, we need to solve

∣∣∣Ψ(ωx, ωy, ∆t)
∣∣∣ ≤ 1,

with Ψ(ωx, ωy, ∆t) =
∆t

(0.1)3 · (sin(2ωx)− 2 sin(ωx)) +
∆t

(0.1)3 ·
(
sin(2ωy)− 2 sin(ωy)

)
.

We now give the 3D graphical representation of Ψ(ωx, ωy) vs. ∆t vs. ωx, ωy ∈ [−π, π], as in
Figure 14.

(a) (b)

(c) (d)

Figure 14. Plots of Ψ(x, y) vs. ωx vs. ωy for the ∆t-values of ∆t = 0.00008, 0.0001, 0.00012, 0.00014.
(a) ∆t = 0.00006; (b) ∆t = 0.00010; (c) ∆t = 0.00012; (d) ∆t = 0.00014.

We deduce that the stability region is |∆t| ≤ 0.00012.

Remark 4. The above plot clearly shows that our numerical scheme in Equation (42) for the 2D KdV equation preserves
stability for ∆t ≤ 0.00012, as depicted in Figure 14, whereas, in Figure 14d, the instability behaviour emanates.

Consistency
We consider the dispersive 2D KdV equation given in Equation (9) and, using the Taylor series

expansion about (tn, xi, yj), we have

Ut + Uxxx + Uyyy = − (∆t)2

3!
Uttt −

(∆t)4

5!
Uttttt −

30
5!

(∆x)2Uxxxxx

− 30
5!

(∆y)2Uyyyyy +O
(
(∆t)5

)
+O

(
(∆x)3 + (∆y)3

)
.

Thus, the scheme in Equation (42) is consistent with the PDE in (9) and is second-order accurate
in time and space.
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Let us consider the homogeneous 2D-dispersive equation as in Equation (9) with (t, x, y) ∈
[0, T] × Ω, T > 0, Ω = [0, 1] × [0, 1], subject to the initial condition in Equation (10); the time-
dependent boundary conditions are given by

u(t, x, 0) = cos(2t + x), u(t, x, 1) = cos(1 + 2t + x),

u(t, 0, y) = cos(2t + y), u(t, 1, y) = cos(2t + 1 + y),

}
(48)

We note that the finite difference scheme given in Equation (42) works in such a way that the
unknown value of (i; j) at iteration n + 1; Un+1

i,j is computed at the preceding nth iteration values of
the indices (i + 1; j), (i− 1; j),(i− 2; j) (i; j), (i; j + 1), (i; j− 1), and (i; j− 2).

The initial condition in Equation (10) tells us that u(0, x, y) = u1
i,j = f (xi, yj) for i = 1, 2, . . . , N,

while the non-zero Dirichlet boundary conditions in Equation (48) give the equations

u(tk, 0, yj) = uk
0,j = cos(yj + 2tk), u(tk, 1, yj) = uk

0,j = cos(1 + yj + 2tk),

u(tk, xi, 0) = uk
i,0 = cos(xi + 2tk), u(tk, xi, 1) = uk

i,0 = cos(xi + 1 + 2tk),


for i, j ∈

{
1, 2, . . . , N

}
. In other words, if (xi, yj) is a boundary node, then un

i,j = g(xi, yj, tk), where g
is considered from the non-zero Dirichlet boundary conditions given in (48).

The following graphics depict plots of the maximum error vs. time and the loglog plot of the
maximum error vs. time for numerical Experiment 3, as displayed in Figure 15.

0 0.5 1 1.5 2 2.5 3

Time t

0

1

2

3

4

5

6

7

L
 e

rr
o
r

10
-3

k = 10
-4

10-1 100

Time t

10-3

10-2

L
o
g
lo

g
(L

)-
 e

rr
o
r

k = 10
-4

Figure 15. Plots of the maximum error vs. time t ∈ [0, 3.0] and the loglog plot of max. error vs. time
using the standard FDM for Experiment 3 with ∆x = ∆y = 0.1 and ∆t = 10−4.

Remark 5. When used to solve the homogeneous 2D KdV equation, VHPM performs excellently at t = 0.10
and performs well at time t = 1.0, but is less effective at time t = 2.0. On the other hand, the classical finite
difference scheme performs well for short, medium, and long time propagation, as shown in Table 3. We see that
Figure 16 shows the 3D plots of the exact and numerical solution, using the standard finite difference scheme
for Equation (42) on Ω = (0, 1)2 at times t = 0.1, 1.0, 2.0 with spatial step sizes ∆x = ∆y = 0.1 and time
step ∆t = 0.0001.

(a) (b)

Figure 16. Cont.
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(c) (d)

(e) (f)

Figure 16. Plots of exact and numerical solution vs. x vs. y, using the classical FDM scheme of Equation (42)
on Ω = (0, 1)2 at t = 0.10, 1.0, 2.0 used spatial step sizes ∆x = ∆y = 0.1 and time-step ∆t = 0.0001.
(a) Time = 0.10; (b) Time = 0.10; (c) Time = 1.0; (d) Time = 1.0; (e) Time = 2.0; (f) Time = 2.0.

Table 3. A comparison between the exact solution and FDM solution at some values of x and y three
different time propagations.

t x y Exact Solution FDM Solution Absolute Error Relative Error

0.0 0.0 9.800666× 10−1 9.800666× 10−1 0.00000 0.00000

0.2 0.2 8.253356× 10−1 8.256634× 10−1 3.278350× 10−4 3.972141× 10−4

0.4 6.967067× 10−1 6.971658× 10−1 4.591225× 10−4 6.589897× 10−4

0.6 5.403023× 10−1 5.408007× 10−1 4.983545× 10−4 9.223624× 10−4

0.8 3.623578× 10−1 3.626549× 10−1 2.971107× 10−4 8.199376× 10−4

0.10 0.4 0.2 6.967067× 10−1 6.971658× 10−1 4.591225× 10−4 6.589897× 10−4

0.4 5.403023× 10−1 5.410416× 10−1 7.393096× 10−4 1.368326× 10−3

0.6 3.623578× 10−1 3.630982× 10−1 7.404366× 10−4 2.043385× 10−3

0.8 1.699671× 10−1 1.704611× 10−1 4.939410× 10−4 2.906097× 10−3

0.6 0.2 5.403023× 10−1 5.408007× 10−1 4.983545× 10−4 9.223624× 10−4

0.4 3.623578× 10−1 3.630982× 10−1 7.404366× 10−4 2.043385× 10−3

0.6 1.699671× 10−1 1.707071× 10−1 7.399203× 10−4 4.353314× 10−3

0.8 −2.919952× 10−2 −2.874490× 10−2 4.546532× 10−4 1.557057× 10−2

0.8 0.2 3.623578× 10−1 3.626549× 10−1 2.971107× 10−4 8.199376× 10−4

0.4 1.699671× 10−1 1.704611× 10−1 4.939410× 10−4 2.906097× 10−3

0.6 2.919952× 10−2 2.874487× 10−2 4.546532× 10−4 1.557057× 10−2

0.8 −2.272021× 10−1 −2.268801× 10−1 3.219550× 10−4 1.417042× 10−3

1.0 1.0 −5.885011× 10−1 −5.885011× 10−1 0.000000 0.000000
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Table 3. Cont.

t x y Exact Solution FDM Solution Absolute Error Relative Error

0.0 0.0 −4.161468× 10−1 −4.161468× 10−1 0.000000 0.000000

0.2 0.2 −7.373937× 10−1 −7.345692× 10−1 2.824511× 10−3 3.830398× 10−3

0.4 −8.568888× 10−1 −8.529301× 10−1 3.958671× 10−3 4.619819× 10−3

0.6 −9.422223× 10−1 −9.37927× 10−1 4.295795× 10−3 4.559216× 10−3

0.8 9.899925× 10−1 −9.874045× 10−1 2.588046× 10−3 2.614208× 10−3

1.0 0.4 0.2 −8.568888× 10−1 −8.529301× 10−1 3.958671× 10−3 4.6198195× 10−3

0.4 −9.422223× 10−1 −9.358445× 10−1 6.377865× 10−3 6.768959× 10−3

0.6 −9.8999249× 10−1 −9.836041× 10−1 6.388385× 10−3 6.452963× 10−3

0.8 −9.982948× 10−1 −9.939962× 10−1 4.298589× 10−3 4.305931× 10−3

0.6 0.2 −9.422223× 10−1 −9.379265× 10−1 4.295795× 10−3 4.559216× 10−3

0.4 −9.899925× 10−1 −9.836041× 10−1 6.388385× 10−3 6.452963× 10−3

0.6 −9.982948× 10−1 −9.919138× 10−1 6.381004× 10−3 6.391904× 10−3

0.8 −9.667982× 10−1 −9.628336× 10−1 3.964556× 10−3 4.100707× 10−3

0.8 0.2 −9.899925× 10−1 −9.874045× 10−1 2.588046× 10−3 2.614208× 10−3

0.4 −9.982948× 10−1 −9.939962× 10−1 4.298589× 10−3 4.305931× 10−3

0.6 −9.667982× 10−1 −9.628336× 10−1 3.964556× 10−3 4.100707× 10−3

0.8 −8.967584× 10−1 −8.939276× 10−1 2.830849× 10−3 3.156758× 10−3

1.0 1.0 6.536436× 10−1 6.536436× 10−1 0.000000 0.000000

0.0 0.0 −6.536436× 10−1 −6.536436× 10−1 0.000000 0.000000

0.2 0.2 −3.073329× 10−1 −3.068653× 10−1 4.675817× 10−4 1.521418× 10−3

0.4 −1.121525× 10−1 −1.114919× 10−1 6.606069× 10−4 5.890254× 10−3

0.6 8.749898× 10−2 8.821557× 10−2 7.165873× 10−4 8.189664× 10−3

0.8 2.836622× 10−1 2.840925× 10−1 4.302832× 10−4 1.516886× 10−3

2.0 0.4 0.2 −1.121525× 10−1 −1.114919× 10−1 6.606069× 10−4 5.890254× 10−3

0.4 8.749898× 10−2 8.857237× 10−2 1.073386× 10−3 1.226741× 10−2

0.6 2.836622× 10−1 2.847349× 10−1 1.072748× 10−3 3.781779× 10−3

0.8 4.685167× 10−1 4.692368× 10−1 7.201221× 10−4 1.537025× 10−3

0.6 0.2 8.749898× 10−2 8.821557× 10−2 7.165873× 10−4 8.189664× 10−3

0.4 2.836622× 10−1 2.847349× 10−1 1.072748× 10−3 3.781779× 10−3

0.6 4.685167× 10−1 4.695865× 10−1 1.069798× 10−3 2.283372× 10−3

0.8 6.346929× 10−1 6.353552× 10−1 6.6228012× 10−4 1.043466× 10−3

0.8 0.2 2.836622× 10−1 2.840925× 10−1 4.302832× 10−4 1.516886× 10−3

0.4 4.685167× 10−1 4.692368× 10−1 7.201221× 10−4 1.537025× 10−3

0.6 6.346929× 10−1 6.353552× 10−1 6.622802× 10−4 1.043466× 10−3

0.8 7.755659× 10−2 7.760373× 10−2 4.713753× 10−4 6.077824× 10−4

1.0 1.0 9.601703× 10−1 9.601703× 10−1 0.000000 0.000000

7. Numerical Experiment 4
7.1. Solution of Numerical Experiment 4 Using VHPM

Let us consider the non-homogeneous 2D KdV equation given in Equation (12). We now apply
the VHPM procedure given in Equations (3) and (5) into Equation (12) to obtain

∞

∑
i=0

ρiui(t, x) = u0(t, x) + ρ

[ ∫ t

0
λ(τ)

{
L
(

∞

∑
i=0

ρiui

)
+N

(
∞

∑
i=0

ρiũi

)}
dτ−

∫ t

0
λ(τ)g(τ, x)dτ

]
. (49)

Equation (49) reduces to

∞

∑
i=0

ρiui(t, x) = u0(t, x)− ρ

( ∫ t

0

(
∞

∑
n=0

ρnun,xxx +
∞

∑
n=0

ρnun,yyy − g(x, τ)

)
dτ

)
, (50)

where the source term is g(t, x) = et cos(x− y).
By now collecting terms of the same power of ρ, the components of ui’s are obtained as
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ρ(0) : u0(x, y) = cos(x− y),

ρ(1) : u1(t, x, y) = −
∫ t

0

(
u0,xxx(τ, x, y) + u0,yyy(τ, x, y)− g(x, τ)

)
dτ

ρ(2) : u2(t, x, y) = −
∫ t

0

(
u1,xxx(τ, x, y) + u1,yyy(τ, x, y)

)
dτ

ρ(n) : un(t, x, y) = −
∫ t

0

(
un−1,xxx(τ, x, y) + un−1,yyy(τ, x, y)

)
dτ, n ≥ 3.


(51)

Using Equation (51), the solution, using VHPM, reads as

u0(x, y) = cos(x− y),

u1(t, x, y) = et cos(x− y)− cos(x− y),

un(t, x, y) = 0, n ≥ 2.

 (52)

By looking at the components u0 and u1 in Equation (52), one can easily observe that the first
two terms are self-cancelling (noise) terms, confirming that the exact solution is concentrated in the
initial few approximations. It is of note that the higher-order components vanish quickly to assure
rapid convergence to the exact solution. Figure 17 shows the 3D plots of the exact and VHPM solution
vs. x vs. y for Experiment 4.

Figure 17. (Left) Graphical representation of the exact (as well as the VHPM) solution vs. x ∈ [0, 1.0]
vs. t ∈ [0, 1.0] along y = 0.95, and (Right) plot of the VHPM solution (with n = 2) (as well as the
exact solution) vs. x ∈ [0, 1.0] vs. y ∈ [0, 1.0] at time t = 0.50.

Remark 6. Following the approaches described in [27,46,47], if we modify VHPM by shifting the source term,
we obtain a solution which converges to the exact solution after only two iterations. Such a modification for
most PDEs usually gives a promising result, depending on the type of problem considered (cf. [48]). We note
here that G. Adomian and Rach [49] and Wazwaz [45] investigated the phenomenon of self-cancelling ‘noise’
terms where some terms in the series vanish on the limit. These ‘noise’ terms do not show up for homogeneous
equations but solely for specific types of non-homogeneous equations. It was formally shown that by cancelling
the noise terms that appear in u0 and u1 from u0, even though u1 contains additional terms, the remaining
non-cancelled terms of u0 may give the exact solution of the non-homogeneous problem [43].

7.2. Solution of Numerical Experiment 4 Using Finite Difference Scheme
To obtain the stability region of the classical FDM for Experiment 4, we consider the follow-

ing scheme

Un+1
i,j = Un−1

i,j − rx

(
Un

i+2,j − 2Un
i+1,j + 2Un

i−1,j −Un
i−2,j

)
− ry

(
Un

i,j+2 − 2Un
i,j+1 + 2Un

i,j−1 −Un
i,j−2

)
− 2∆t

(
exp(tn) cos(xi − yj)

)
, (53)

where rx and ry are given in Equation (43).

Taylor’s series expansion about (tn, xi, yj) gives
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U + (∆t)Ut +
(∆t)2

2!
Utt +

(∆t)3

3!
Uttt +

(∆t)4

4!
Utttt +

(∆t)5

5!
Uttttt +O

(
(∆t)6

)
= U − (∆t)Ut +

(∆t)2

2!
Utt −

(∆t)3

3!
Uttt +

(∆t)4

4!
Utttt −

(∆t)5

5!
Uttttt +O((∆t)6)− 2(∆t)

(
exp(tn) cos(xi − yj)

)
− (∆t)

(∆x)3

[
2(∆x)3Uxxx +

60
5!

(∆x)5Uxxxxx +O((∆x)6)
]
− (∆t)

(∆y)3

[
2(∆y)3Uyyy +

60
5!

(∆y)5 Uyyyyy +O((∆y)6)
]
. (54)

Simplifying Equation (54) gives

Ut + Uxxx + Uyyy − exp(t) cos(x− y) = − (∆t)2

3!
Uttt −

(∆t)4

5!
Uttttt −

30
5!

(∆x)2Uxxxxx

− 30
5!

(∆y)2Uyyyyy +O
(
(∆t)5

)
+O

(
(∆x)3 + (∆y)3

)
.

Thus, the scheme is consistent with the PDE in (12) and is second-order accurate in time and space.
Figure 18 shows plots of the maximum error vs. time and the loglog plot of the maximum error

vs. time using the classical FDM for Experiment 4.
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Figure 18. Plots for the maximum error vs. time t ∈ [0, 8.0] and the loglog plot of the max. error vs.
time using the standard FDM for Experiment 4 with ∆x = ∆y = 0.1 and ∆t = 10−4, respectively.

Figure 19 gives the 3D plots for the numerical solution vs. x vs. y, using the classical FDM with
the exact solution at times t = 1.0, 2.0, 5.0, 8.0 for Experiment 4. We can also see from Table 4 that
the classical finite difference scheme performs very well for numerical Experiment 4 and that the
numerical results using VHPM rapidly converge to the exact solution, as shown in Section 7.1.

(a) (b)

Figure 19. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 19. 3D plots of the exact and the FDM solution vs. x vs. y for (x; y) ∈ Ω, Ω = (0, 1)2 (∆t =
10−4) at times t = 1.0, 2.0, 5.0, 8.0. (a) ∆t = 1.0× 10−4, Time = 1.0; (b) ∆t = 1.0× 10−4, Time = 1.0;
(c) ∆t = 1.0× 10−4, Time = 2.0; (d) ∆t = 1.0× 10−4, Time = 2.0; (e) ∆t = 1.0× 10−4, Time = 5.0;
(f) ∆t = 1.0× 10−4, Time = 5.0; (g) ∆t = 1.0× 10−4, Time = 8.0; (h) ∆t = 1.0× 10−4, Time = 8.0.

Table 4. A comparison between the exact solution and FDM solution at some values of x and y at
times t = 0.10, 1.0, 2.0 (Experiment 4).

t x y Exact Solution FDM Solution Absolute Error Relative Error

0.0 0.0 1.105171 1.105171 0.000000 0.000000

0.2 0.2 1.105171 1.105171 3.272759× 10−9 2.961315× 10−9

0.4 1.083141 1.083141 1.980772× 10−9 1.828729× 10−9

0.6 1.017929 1.017929 2.657259× 10−9 2.610454× 10−9

0.8 9.121369× 10−1 9.121369× 10−1 1.202890× 10−10 1.318760× 10−10
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Table 4. Cont.

t x y Exact Solution FDM Solution Absolute Error Relative Error

0.10 0.4 0.2 1.083141 1.083141 1.980772× 10−9 1.828729× 10−9

0.4 1.105171 1.105171 1.898155× 10−10 1.717522× 10−10

0.6 1.083141 1.083141 2.864586× 10−10 2.644703× 10−10

0.8 1.017929 1.017929 2.278236× 10−9 2.238107× 10−9

0.8 0.2 9.121377× 10−1 9.121369× 10−1 1.202870× 10−10 1.318738× 10−10

0.4 1.017930 1.017929 2.278236× 10−9 2.238107× 10−9

0.6 1.083141 1.083141 1.605688× 10−9 1.482437× 10−9

0.8 1.105171 1.105171 2.971336× 10−9 2.688576× 10−9

1.0 1.0 1.105171 1.105171 0.000000 0.000000

0.0 0.0 2.718282 2.718282 0.000000 0.000000

0.2 0.2 2.718282 2.718282 1.049272× 10−9 3.860057× 10−10

0.4 2.664097 2.664097 2.499563× 10−9 9.382401× 10−10

0.6 2.503703 2.503703 1.876913× 10−9 7.496546× 10−10

0.8 2.243495 2.243495 1.960433× 10−9 8.738300× 10−10

1.0 0.4 0.2 2.664097 2.664097 2.499576× 10−9 9.382449× 10−10

0.4 2.718282 2.718282 6.650187× 10−9 2.446467× 10−9

0.6 2.664097 2.664097 4.694272× 10−9 1.762050× 10−9

0.8 2.503703 2.503703 4.319871× 10−9 1.725393× 10−9

0.8 0.2 2.243495 2.243495 1.960426× 10−9 8.738269× 10−10

0.4 2.503703 2.503703 4.319886× 10−9 1.725398× 10−9

0.6 2.664097 2.664097 3.635933× 10−9 1.364789× 10−9

0.8 2.718282 2.718282 3.871336× 10−9 1.424185× 10−9

1.0 1.0 2.718282 2.718282 0.000000 0.000000

0.2 0.2 7.389056 7.389056 6.118424× 10−9 8.280386× 10−10

0.4 7.241767 7.241767 9.911319× 10−9 1.368633× 10−9

0.6 6.805771 6.805771 9.219519× 10−9 1.354662× 10−9

0.8 6.098451 6.098451 7.290955× 10−9 1.195542× 10−9

2.0 0.4 0.2 7.241767 7.241767 9.911327× 10−9 1.368634× 10−9

0.4 7.389056 7.389056 1.911231× 10−8 2.586570× 10−9

0.6 7.241767 7.241767 1.745360× 10−8 2.410131× 10−9

0.8 6.805771 6.805771 1.382399× 10−8 2.031217× 10−9

0.8 0.2 6.098451 6.098451 7.290940× 10−9 1.1955397× 10−9

0.4 6.805771 6.805771 1.382399× 10−8 2.031217× 10−9

0.6 7.241767 7.241767 1.290455× 10−8 1.781962× 10−9

0.8 7.389056 7.389056 1.218180× 10−8 1.648628× 10−9

1.0 1.0 7.389056 7.389056 0.000000 0.000000

0.0 0.0 2.980958× 103 2.980958× 103 0.000000 0.000000

0.2 0.2 2.980958× 103 2.980958× 103 4.273845× 10−6 1.433715× 10−9

0.4 2.921537× 103 2.9215370× 103 5.325453× 10−6 1.822825× 10−9

0.6 2.745644× 103 2.745644× 103 5.379429× 10−6 1.959259× 10−9

0.8 2.460291× 103 2.460291× 103 3.400780× 10−6 1.382268× 10−9

8.0 0.4 0.2 2.921537× 103 2.921537× 103 5.325440× 10−6 1.822821× 10−9

0.4 2.980958× 103 2.980958× 103 8.472980× 10−6 2.842368× 10−9

0.6 2.921537× 103 2.921537× 103 8.140318× 10−6 2.786313× 10−9

0.8 2.745644× 103 2.745644× 103 5.368224× 10−6 1.955178× 10−9

0.8 0.2 2.460291× 103 2.460291× 103 3.400739× 10−6 1.382251× 10−9

0.4 2.745644× 103 2.745644× 103 5.368230× 10−6 1.955181× 10−9

0.6 2.921537× 103 2.921537× 103 5.316034× 10−6 1.819602× 10−9

0.8 2.980958× 103 2.980958× 103 4.261710× 10−6 1.429644× 10−9

1.0 1.0 2.980958× 103 2.980958× 103 0.000000 0.000000

8. Numerical Experiment 5
8.1. Solution of Numerical Experiment 5 Using VHPM

Let us now rewrite Equation (42) as

Lu +Mu +N u = 0,
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where the differential operators are given by L =
∂

∂t
andM = − ∂3

∂x3 and N = −3
(

∂

∂x

)2
.

Using Equation (5), we write Equation (42) as

∞

∑
i=0

ρiui(t, x) = u0(t, x)− ρ

[ ∫ t

0


3

(
∞

∑
n=0

ρiun,x

)2

+
∞

∑
n=0

ρiun,xxx

dτ

]
, (55)

where ui,x =
∂ui(t, x)

∂x
and ui,xxx =

∂3ui(t, x)
∂x3 . By comparing like terms of ρ on both sides of

Equation (17), we obtain the following components:

ρ(0) : u0(x) = 1
2 sech2

(
1
2 x
)

,

ρ(1) : u1(t, x) = −
∫ t

0
(6u0u0,x(τ, x) + u0,xxx(τ, x))dτ =

1
2

sinh
( x

2
)
t(

cosh
( x

2
))3 ,

ρ(2) : u2(t, x) = −
∫ t

0

[
3(2u0u1)x + u1,xxx(τ, x)

]
dτ =

1
8

(
2
(
cosh

( x
2
))2 − 3

)
t2(

cosh
( x

2
))4

ρ(3) : u3(t, x) = −
∫ t

0

[(
3
(

u2
1 + 2u0u2

)
x

)
+ (u2,xxx(τ, x))

]
dτ =

1
12

sinh
( x

2
)((

cosh
( x

2
))2 − 3

)
t3(

cosh
( x

2
))5 ,

ρ(4) : u4(t, x) = −
∫ t

0

[
3((2u1u2)x + (2u0u3)x + (2u1u2)x) + u2,xxx(τ, x)

]
dτ

=

(
4 (cosh( x

2 ))
6
+42 (cosh( x

2 ))
4−222 (cosh( x

2 ))
2
+189

)
t4

192 (cosh( x
2 ))

8 .



(56)

Thus, the sum of the first five-term approximate solution obtained by VHPM in Equation (56)
takes the form

S4(x, t) =

(
4
(
cosh

( x
2
))6

+ 42
(
cosh

( x
2
))4 − 222

(
cosh

( x
2
))2

+ 189
)

t4

192
(
cosh

( x
2
))8 +

1
2

sinh
( x

2
)
t(

cosh
( x

2
))3 +

1
2

(
cosh

( x
2

))−2

+

(
16
(
cosh

( x
2
))5 sinh

( x
2
)
− 48

(
cosh

( x
2
))3 sinh

( x
2
))

t3

192
(
cosh

( x
2
))8 +

(
48
(
cosh

( x
2
))6 − 72

(
cosh

( x
2
))4
)

t2

192
(
cosh

( x
2
))8 .

In Table 5, the absolute and relative errors are tabulated for some values of x at four different
time values: 0.01, 0.5, 1.0, and 2.0. Figure 20 displays graphically the exact and the VHPM solutions
to Experiment 5.

1 
 

 
Figure 20. 3D plot of the exact and approximate solutions, using n = 4 terms from VHPM vs.
x ∈ [0, 2π] vs t ∈ [0, 1.5]. (a) Solution using VHPM; (b) Exact solution
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Table 5. Absolute and relative errors (VHPM with n = 4) at some values of x ∈ [0, 2π] and t ∈ [0, 2.0].

x t Exact Solution VHPM Solution Absolute Error Relative Error

0.01 0.4317811 0.4317811 1.899052 × 10−10 4.398183 × 10−10

π
4 0.5 0.4899551 0.4885655 1.389585 × 10−3 2.836147 × 10−3

1.0 0.4942872 0.4689259 2.536130 × 10−2 5.130883 × 10−2

2.0 0.3529964 −0.1116201 4.646165 × 10−1 1.316208 × 100

0.01 0.2868378 0.2868378 1.730594 × 10−10 6.033353 × 10−10

π
2 0.5 0.3801965 0.3791079 1.088588×10−3 2.863224 × 10−3

1.0 0.4613875 0.4431495 1.823802 × 10−2 3.952863 × 10−2

2.0 0.4776620 0.1283443 3.493177 × 10−1 7.313072 × 10−1

0.01 0.0801472 0.0801472 4.832666 × 10−11 6.029739 × 10−10

π 0.5 0.1241713 0.1244916 3.203225 × 10−4 2.579683 × 10−3

1.0 0.1881387 0.1936758 5.537052 × 10−3 2.943068 × 10−2

2.0 0.3669010 0.4740549 1.071540 × 10−1 2.920515 × 10−1

0.01 0.0178223 0.0178223 4.102757 × 10−12 2.302041 × 10−10

3π
2 0.5 0.0287635 0.0287870 2.345761 × 10−5 8.155326 × 10−4

1.0 0.0465377 0.0468804 3.427113 × 10−4 7.364171 × 10−3

2.0 0.1167433 0.1217444 5.001064 × 10−3 4.283812×10−2

0.01 0.0082059 0.0082059 9.294671 × 10−13 1.132676 × 10−10

7π
4 0.5 0.0133252 0.0133293 4.150761 × 10−6 3.114977×10−4

1.0 0.0217795 0.0218161 3.658641 × 10−5 1.679852 × 10−3

2.0 0.0570247 0.0565798 4.449361 × 10−4 7.802514 × 10−3

0.01 0.0037582 0.0037582 1.995532 × 10−13 5.309766×10−11

2π 0.5 0.0061200 0.0061204 3.401180 × 10−7 5.557447 × 10−5

1.0 0.0100502 0.0100385 1.164189 × 10−5 1.158376 × 10−3

2.0 0.0268511 0.0259934 8.577236 × 10−4 3.194365 × 10−2

8.2. Solution of Numerical Experiment 5 Using Finite Difference Scheme
Let us consider Equation (42). Equation (18) is discretised, using the Zabusky–Kruskal method [9],

as

Un+1
i −Un−1

i
2∆t

= −6
(Un

i−1 + Un
i + Un

i+1
3

)(Un
i+1 −Un

i−1
2∆x

)
−
(Un

i+2 − 2Un
i+1 + 2Un

i−1 −Un
i−2

2(∆x)3

)
. (57)

The scheme is given by

Un+1
i = Un−1

i − 2 · ∆t
∆x

·
(
Un

i−1 + Un
i + Un

i+1
)(

Un
i+1 −Un

i−1
)
− ∆t

(∆x)3 ·
(
Un

i+2 − 2Un
i+1 + 2Un

i−1 −Un
i−2
)
, (58)

for i = 3, 4, . . . , N− 1 and n = 2, 3, . . . , Itmax− 1. To facilitate the numerical computation, we need to
use another scheme to obtain a solution at the second time level by proposing the following scheme:

U2
j = U1

j −
(∆t)
∆x

(
U1

j−1 + U1
j + U1

j+1

)(
U1

j+1 −U1
j−1

)
− (∆t)

2 (∆x)3

(
U1

j+2 − 2U1
j+1 + 2U1

j−1 −U1
j−2

)
,

for i = 3, 4, . . . , N− 1 and n = 2, 3, . . . , Itmax− 1.
The stability region of the scheme for Equation (14) can be determined by relying on the idea of

frozen coefficients [50] for writing uux as umaxux, together with the von Neumann ansatz

Un
j = ξn eI jω ,

where ω = θh is the phase angle, to obtain the following relation from Equation (58),

ξ2 +Kξ − 1 = 0, (59)

where

K = (12umaxλI sin(ω)) + λ
(∆x)2 (2I sin(2ω)− 4I sin(ω)),

λ = ∆t
∆x , and I =

√
−1

, (60)

with umax the least upper bound on |u(x, t)|.



Mathematics 2022, 10, 4443 31 of 36

Solving Equation (59) gives

ξ =
−K±

√
K2 + 4

2
(61)

where K is given in Equation (60).
A condition for the stability criterion is obtained by finding a condition on ∆t, ∆x so that, for

ω ∈ [−π, π], |ξ| ≤ 1 is true. This gives

4−
(

12λ · |umax|(I sin(ω)) +
λ

(∆x)2 · (2I sin(2ω)− 4I sin(ω))
)2
≥ 0,

which gives ∣∣∣∣∣6λ · |umax|(I sin(ω)) +
λ

(∆x)2 · (I sin(2ω)− 2I sin(ω))

∣∣∣∣∣ ≤ 1. (62)

Since the second expression in the bracket for the above inequality dominates the first for small
values of ∆x, we obtain ω = 2π

3 from the second expression, which gives the maximum value for
the inequality.

On substituting this into the inequality, we obtain the region of stability as [51]

|λ| ≤ 1
|{6umax sin(2ω) + 1

(∆x)2 (sin(2ω)− 2 sin(ω))}|
≤
∣∣∣∣∣ 1

3
√

3umax − 3
√

3
2(∆x)2

∣∣∣∣∣ =
∣∣∣∣∣∣ 1
3
√

3(umax − 1
2(∆x)2 )

∣∣∣∣∣∣. (63)

By considering ∆x = π
10 with umax ≈ 0.50 (using the Maple max function) for x ∈ [0, 2π],

Equation (63) gives

0 < ∆t ≤
∣∣∣∣∣ π

10
3
√

3
2 −

3
√

3
2 ( 100

π2 )

∣∣∣∣∣ = 0.04214796. (64)

Equation (64) is the stability region of the scheme in Equation (58) for ∆x = π
10 .

Consistency of the Numerical Scheme in Equation (42)
We consider Equation (42). The Taylor series expansion about (tn, xi) gives

Ut + 6UUx + Uxxx = − (∆t)2

3
Uttt +

3(∆x)2

2
Uxxxxx + 2(∆x)2UxUxxx +

(∆x)4

3
UxxUxxxx + . . . (65)

The scheme is consistent with the PDE given in Equation (42) and is second-order accurate in
time and space.

The following are plots of the numerical and exact profiles vs. x in Figures 21–24 and the
corresponding plots of the absolute errors vs. x, as follows:
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Figure 21. Plots of initial, numerical and exact solutions vs. x ∈ [0, 2π] at times t = 0.10, 2.0, 4.0, 8.0,

using the classical finite difference scheme with ∆t = 10−2 and ∆x =
π
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Figure 22. Plots of absolute errors vs. x at times t = 0.10, 2.0, 4.0, 8.0, using a classical finite difference

scheme with ∆t = 10−2 and ∆x =
π
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Figure 23. Plots of relative errors vs. x at times t = 0.10, 2.0, 4.0, 8.0, using the classical finite

difference scheme with ∆t = 10−2 and ∆x =
π
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Figure 24. Plot of the maximum error vs. time t ∈ [0, 8.0] and the loglog plot of the maximum error vs.
time t with ∆x = π

10 and ∆t = 1.0× 10−2, using the standard finite difference scheme, respectively.

9. Conclusions
In this paper, the performance of the VHPM and classical finite difference methods were

compared when solving the linear, as well as the non-linear, KdV equation in 1D- and 2D-space for
five different cases:

(i) case 1: 1D linear homogeneous,
(ii) case 2: 1D linear non-homogeneous,
(iii) case 3: 2D linear homogeneous,
(iv) case 4: 2D linear non-homogeneous.
(v) case 5: 1D non-linear homogeneous.

We obtained the stability region of the classical finite difference schemes for the five different
equations considered. The schemes were tested for the five different cases for short, medium and
long time propagation.

For case 1, VHPM produced excellent results for short propagation time and it performed well
for medium propagation time; however, it performed poorly for long time propagation. The standard
finite difference schemes performed well for short, medium and long time propagation.

VHPM faces some dificulties for case 2 for which the source terms consist of sine and cosine
terms; the scheme is quite dissipative even for short propagation time. In contrast, the classical finite
difference scheme resolved case 2 quite efficiently for short, medium and long time propagation.

For case 3, the classical finite difference scheme performed well for short, medium and long time
propagation, with a relative error of order 10−4 to 10−2. VHPM performed excellently for short and
medium time propagation, but its accuracy deteriorated for longer time propagation, for example, at
time 2.0, with a relative error of order 10−1 to 10−0.

With respect to case 4, the classical finite difference scheme performed well for short, medium
and long time propagation with a relative error of order 10−10 to 10−9, as shown in Table 4. Due to
the nature of the source term used for this problem, VHPM quickly converged to the exact solution in
the first two iterations; there was rapid convergence to the exact solution.

For case 5, the VHPM provided a very good result for short time propagation but performed
satisfactorily for medium time propagation. The classical schemes performed well for short, medium
and long time propagation, with a relative error of order 10−3 to 10−1.
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In sum, we conclude that the VHPM was able to efficiently solve numerical Experiments 1, 3, 5
for short and medium time propagation. The VHPM was not effective in solving Experiment 2, but
was effective in solving Experiment 4 for different times of propagation. We can also deduce that
the classical finite difference scheme was quite efficient in solving all the five experiments for short,
medium and long time propagation.

This study provides a basis for constructing numerical methods for more complicated PDEs,
such as time and space fractional KdV, KdV-Burgers and stochastic KdV equations, which model
real world phenomena, such as wave dynamics [43], geophysical flows, tsunami models, tectonic
dynamics [12] and cosmic inflations [11].
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