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Abstract: We introduce three classes of analytic functions with fixed second coefficients that are
defined using the class P of analytic functions with positive real parts. The objective of this paper
is to determine the radii such that the three classes are contained in various subclasses of starlike
functions. The radii estimated in the present investigation are better than the radii obtained earlier.
Furthermore, connections with previously known results are shown.
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1. Introduction

Let ∆ = {z ∈ C : |z| < 1} denote the open unit disc in C and the class A be defined as
the collection of all analytic functions in ∆ satisfying f (0) = 1 and f ′(0) = 1. The class S is
defined to be a collection of univalent functions in class A. The well-known Bieberbach
theorem states that, for a univalent function f (z) = z + a2z2 + . . . , the bound on the second
coefficient, that is, |a2| ≤ 2 plays an important role in the study of univalent function
theory. This bound has attracted the interest of many mathematicians, which led to the
investigation of the class Ab consisting of the functions of the form f (z) = z + a2z2 + . . . ,
|a2| = b for a fixed b with 0 ≤ b ≤ 1. For n ∈ N and 0 ≤ b ≤ 1, let Anb be the class of
analytic functions of the form f (z) = z + nbz2 + ... for z ∈ ∆ such that Ab := A1b.

The study of class Ab was initiated as early as 1920 by Gronwall [1]. He determined
the growth and distortion estimates for the class of univalent functions with fixed second
coefficients. In 2011, Ali et al. [2] obtained various results for the class of functions with
fixed second coefficients by applying the theory of second-order differential subordination.
Later, Lee et al. [3] investigated certain applications of differential subordination for such
functions. Kumar et al. [4] determined the best possible estimates on the initial coefficients
of Ma-Minda type univalent functions; see also [5,6]. Ali et al. [7] obtained sharp radii
of starlikeness for certain classes of functions with fixed second coefficients. A survey on
functions with a fixed initial coefficient can be found in [8].

Let P(α) denote the class of analytic functions p(z) = 1 + b1z + b2z2 + · · · satisfying
the condition Re{p(z)} > α for some α (0 ≤ α < 1) and for all z ∈ ∆. Recall that P = P(0)
is a well-known class of Carathéodory functions having a positive real part. It is well known
that |b1| ≤ 2(1− α); see, for example, [9]. For any two subclasses M and N of family A of
all analytic functions of the form f (z) = z+ a2z2 + · · · (z ∈ ∆), the N-radius for the class M,
denoted by RN(M), is the largest number ρ ∈ (0, 1) such that r−1 f (rz) ∈ N, for all f ∈ M
and for 0 < r < ρ. In [10–12], MacGregor found the radius of starlikeness for the class
of functions f satisfying one of the conditions Re( f (z)/z) > 1/2, Re( f (z)/g(z)) > 0 and
| f ′(z)/g′(z)− 1| > 0 for some univalent function g. Recently, Anand et al. [13] determined
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various radii results for the class of functions f with fixed second coefficients and satisfying
the conditions Re( f (z)/g(z)) > 0, where either g(z) = 1 + z or (1 + z)2. In recent years,
several authors have studied radius problems involving ratios between functions belonging
to two classes where one of them belong to some particular subclass of A; for example,
see [12,14–18]. Motivated by these studies and by making use of the classes A6b, A4c and
P , we define the following classes:

H1
b,c = { f ∈ A6b :

f
g
∈ P and

g
zp
∈ P where g ∈ A4c, p ∈ P}

H2
b,c = { f ∈ A5b :

f
g
∈ P and

g
zp
∈ P(1/2) where g ∈ A3c, p ∈ P}

and
H3

b = { f ∈ A4b :
f

zp
∈ P where p ∈ P}

where b ∈ [0, 1] and c ∈ [0, 1]. By choosing suitable functions p(z) in the class P and letting
b = 1 and c = 1, we may obtain several well-known classes as special cases of our three
classes; for example:

1. For p(z) = 1/(1 + z)2, Anand et al. [13] determined some sharp radius constants for
H3

b .
2. For p(z) = (1− z)/(1 + z), the classes H1

1,1, H2
1,1 and H3

1 yield the classes studied by
Lecko et al. [14].

3. Letting p(z) = 1/(1 − z2), 1 + z/2, 1/(1 − z2) and 1/(1 + z) in H1
1,1 and H3

1 , we
obtain the classes of functions studied in [19–22], respectively, for which various
radius problems have been studied.

4. Ali et al. [23] obtained certain a radius of starlikeness for the classes H1
1,1 and H2

1,1
with p(z) = 1.

In Section 2, we obtain discs centred at 1 that contain the images of the unit disc ∆
under the mapping z f ′(z)/ f (z) where f belongs to each of the classes H1

b,c, H2
b,c and H3

b .
Using the results of Section 2, we then determine extensions of the radii estimates in [14]
along with improved radii constants for functions in the classes H1

b,c, H2
b,c and H3

b to belong
to several subclasses ofA, such as starlike functions of order α, starlike functions associated
with the lemniscate of Bernoulli, thereverse lemniscate, the sine function, the exponential
function, the cardioid, the lune, the nephroid, a particular rational function, the modified
sigmoid function and parabolic starlike functions.

2. Analysis and Mapping of zf′(z)/f(z) for H1
b,c, H2

b,c and H3
b

In this section, we investigate extremal functions for all three classes H1
b,c, H2

b,c and
H3

b , which demonstrate the fact that the classes are non empty. Furthermore, we obtain
discs centred at 1, containing the images of the disc ∆ under the mapping z f ′/ f , where f
belongs to each of these classes. We begin by stating the following lemmas by McCarty:

Lemma 1 ([24]). Let b ∈ [0, 1] and 0 ≤ α < 1. If p ∈ Pb(α), then, for |z| = r < 1,∣∣∣∣ zp′(z)
p(z)

∣∣∣∣ ≤ 2(1− α)r
1− r2

br2 + 2r + b
(1− 2α)r2 + 2b(1− α)r + 1

.

Lemma 2 ([25]). Let b ∈ [0, 1] and 0 ≤ α < 1. If p ∈ Pb(α), then, for |z| = r < 1,

Re
(

zp′(z)
p(z)

)
≥
{ −2(1−α)r

1+2αbr+(2α−1)r2
br2+2r+b
r2+2br+1 if Rα ≤ Rb

2
√

αC1−C1−α
1−α if Rα ≥ Rb

,
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where Rb = Cb − Db, Rα =
√

αC1 and r = |z| < 1;

Cb =
(1 + br)2 − (2α− 1)(b + r)2r2

(1 + 2br + r2)(1− r2)
and Db =

2(1− α)(b + r)(1 + br)r
(1 + 2br + r2)(1− r2)

(1)

Lemma 3. Let d = |6b− 4c| ≤ 2, s = |4c− q| ≤ 2, b ∈ [0, 1] and c ∈ [0, 1]. If f ∈ H1
b,c, then,

for |z| = r < 1,

∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤

r[(dr2 + 4r + d)(r2 + sr + 1)(r2 + qr + 1) + (sr2 + 4r + s)
(r2 + dr + 1)(r2 + qr + 1) + (qr2 + 4r + q)(r2 + dr + 1)(r2 + sr + 1)]

(1− r2)(r2 + dr + 1)(r2 + sr + 1)(r2 + qr + 1)
.

Furthermore, the class H1
b,c is non-empty.

Proof. Let the functions f and g whose Taylor series expansions are given by f (z) = z +
f1z2 + · · · and g(z) = z+ g1z2 + · · · be such that Re{ f /g} > 0 and Re{g/(zp)} > 0, where
p ∈ P is represented by p(z) = 1 + qz + · · · . Now, consider, g/(zp) = 1 + (g1 − q)z + · · · ,
where |g1 − q| ≤ 2 and |q| ≤ 2, which gives |g1| ≤ 4. Furthermore, f /g = 1 + ( f1 −
g1)z + · · · , where | f1 − g1| ≤ 2, and hence | f1| ≤ 6. Thus, for b, c ∈ [0, 1], we consider the
class involving the functions f and g with fixed second coefficients whose Taylor series
expansions are given by f (z) = z + 6bz2 + · · · and g(z) = z + 4cz2 + · · · such that f ∈ A6b
and g ∈ A4c. If the function f ∈ H1

b,c, then there exists an element g ∈ A4c and p ∈ P such
that f /g ∈ P and g/(zp) ∈ P . Define

h(z) =
f (z)
g(z)

= 1 + (6b− 4c)z + · · · and k(z) =
g(z)

zp(z)
= 1 + (4c− q)z + · · · ,

where |6b − 4c| ≤ 2 and |4c − q| ≤ 2. Therefore, we observe that h ∈ P(6b−4c)/2,
k ∈ P(4c−q)/2, p ∈ Pq/2, and f can be expressed as f (z) = zp(z)h(z)k(z). Then, a cal-
culation shows that ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ ∣∣∣∣ zh′(z)

h(z)

∣∣∣∣+ ∣∣∣∣ zk′(z)
k(z)

∣∣∣∣+ ∣∣∣∣ zp′(z)
p(z)

∣∣∣∣. (2)

For d = |6b− 4c| ≤ 2, s = |4c− q| ≤ 2 and α = 0, using Lemma 1, we obtain∣∣∣∣ zh′(z)
h(z)

∣∣∣∣ ≤ r
(1− r2)

(dr2 + 4r + d)
(r2 + dr + 1)

,
∣∣∣∣ zk′(z)

k(z)

∣∣∣∣ ≤ r
(1− r2)

(sr2 + 4r + s)
(r2 + sr + 1)

, (3)

and ∣∣∣∣ zp′(z)
p(z)

∣∣∣∣ ≤ r
(1− r2)

(qr2 + 4r + q)
(r2 + qr + 1)

. (4)

By (2), (3) and (4), it follows that

∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤

r[(dr2 + 4r + d)(r2 + sr + 1)(r2 + qr + 1) + (sr2 + 4r + s)
(r2 + dr + 1)(r2 + qr + 1) + (qr2 + 4r + q)(r2 + dr + 1)(r2 + sr + 1)]

(1− r2)(r2 + dr + 1)(r2 + sr + 1)(r2 + qr + 1)
.

(5)
Define the functions f1, g1 and p1 : ∆→ C by

f1(z) =
z(1− qz + z2)(1− (4c− q)z + z2)(1− (6b− 4c)z + z2)

(1− z2)3 , (6)

g1(z) =
z(1− qz + z2)(1− (4c− q)z + z2)

(1− z2)2 , and p1(z) =
(1− qz + z2)

(1− z2)
, (7)

where |6b− 4c| ≤ 2, |4c− q| ≤ 2 and |q| ≤ 2.
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By (6) and (7), we have

f1(z)
g1(z)

=
(1− (6b− 4c)z + z2)

(1− z2)
=

1 + w1(z)
1− w1(z)

,

g1(z)
zp1(z)

=
(1− (4c− q)z + z2)

(1− z2)
=

1 + w2(z)
1− w2(z)

and p1(z) =
(1− qz + z2)

(1− z2)
=

1 + w3(z)
1− w3(z)

,

where

w1(z) =
z(z− (6b− 4c)/2)
(1− z(6b− 4c)/2)

, w2(z) =
z(z− (4c− q)/2)
(1− z(4c− q)/2)

and w3(z) =
z(z− q/2)
(1− zq/2)

,

which are analytic functions satisfying the conditions of the Schwarz lemma in ∆; hence,
Re( f1/g1) > 0, Re(g1/(zp1)) > 0, and Re(p1) > 0. Thus, f1/g1 ∈ P(6b−4c)/2, g1/(zp1) ∈
P(4c−q)/2 and p1 ∈ P(q/2). Thus, the function f1 ∈ H1

b,c, and the class H1
b,c is non-empty.

The functions

F1(z) =
z(1− z2)3

(1− qz + z2)(1− (4c− q)z + z2)(1− (6b− 4c)z + z2)
(8)

and f1 are extreme functions for the class H1
b,c provided q ≤ 2, c ≥ q/4 and b ≥ 2c/3.

Lemma 4. Let m = |5b− 3c| ≤ 2, n = |3c− q| ≤ 1, b ∈ [0, 1] and c ∈ [0, 1]. If f ∈ H2
b,c, then,

for |z| = r < 1,∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ r

(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
.

Furthermore, the class H2
b,c is non-empty.

Proof. Let f and g be functions given by f (z) = z + f1z2 + · · · and g(z) = z + g1z2 + · · ·
such that Re{ f /g} > 0 and Re{g/(zp)} > 1/2, where p ∈ P is represented by p(z) =
1 + qz + · · · . Now, consider g/zp = 1 + (g1 − q)z + · · · , where |g1 − q| ≤ 1 (Lemma 2, pg
33 et al. [26]) and |q| ≤ 2, which gives |g1| ≤ 3. Furthermore, f /g = 1 + ( f1 − g1)z + · · · ,
where | f1 − g1| ≤ 2, and hence | f1| ≤ 5. Therefore, we consider the class involving the
functions f and g with fixed second coefficients whose Taylor series expansions are given
by f (z) = z + 5bz2 + · · · and g(z) = z + 3cz2 + · · · where b ∈ [0, 1] and c ∈ [0, 1] such that
f ∈ A5b and g ∈ A3c. If the function f ∈ H2

b,c, then there exists an element g ∈ A3c and
p ∈ P such that f /g ∈ P and g/(zp) ∈ P(1/2). Define

h(z) =
f (z)
g(z)

= 1 + (5b− 3c)z + · · ·

and

k(z) =
g(z)

zp(z)
= 1 + (3c− q)z + · · · .

It is easy to see that h ∈ P(5b−3c)/2, k ∈ P(3c−q), p ∈ Pq/2, and f (z) = zp(z)h(z)k(z). Then,
a calculation shows that

z f ′(z)
f (z)

= 1 +
zh′(z)
h(z)

+
zk′(z)
k(z)

+
zp′(z)
p(z)

(9)

so that ∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ ∣∣∣∣ zh′(z)

h(z)

∣∣∣∣+ ∣∣∣∣ zk′(z)
k(z)

∣∣∣∣+ ∣∣∣∣ zp′(z)
p(z)

∣∣∣∣. (10)
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Let m = |5b− 3c| ≤ 2, n = |3c− q| ≤ 1 and α = 0. Using Lemma 1 for the functions h, p
and k, we have∣∣∣∣ zh′(z)

h(z)

∣∣∣∣ ≤ r
(1− r2)

(mr2 + 4r + m)

(r2 + mr + 1)
,
∣∣∣∣ zk′(z)

k(z)

∣∣∣∣ ≤ r
(1− r2)

(nr2 + 2r + n)
(nr + 1)

, (11)

and ∣∣∣∣ zp′(z)
p(z)

∣∣∣∣ ≤ r
(1− r2)

(qr2 + 4r + q)
(r2 + qr + 1)

. (12)

Inequality (10) together with (11) and (12) gives∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ r

(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
. (13)

Define the functions f2, g2 : ∆→ C by

f2(z) =
z(1− qz + z2)(1− (3c− q)z)(1− (5b− 3c)z + z2)

(1− z2)3 , (14)

and

g2(z) =
z(1− qz + z2)(1− (3c− q)z)

(1− z2)2 , where |5b− 3c| ≤ 2 and |3c− q| ≤ 1. (15)

It follows from (7), (14) and (15) that

f2(z)
g2(z)

=
(1− (5b− 3c)z + z2)

(1− z2)
=

1 + w4(z)
1− w4(z)

,

and
g2(z)

zp1(z)
=

(1− (3c− q)z)
(1− z2)

=
1 + w5(z)
1− w5(z)

,

where

w4(z) =
z(z− (5b− 3c)/2)
(1− z(5b− 3c)/2)

and w5(z) =
z(z− (3c− q))

(2− (3c− q)z− z2)

are Schwarz functions in the unit disc ∆, and hence Re( f2/g2) > 0, Re(g2/(zp1)) > 1/2
and Re(p1) > 0 (as shown for class H1

b,c). Thus, f2/g2 ∈ P(5b−3c)/2, g2/(zp1) ∈ P(3c−q),
and p1 ∈ P(q/2). Hence, f2 ∈ H2

b,c, and the class H2
b,c is non-empty. Furthermore, the

function f2 is an extreme function for the class H2
b,c provided q ≤ 2, c ≥ q/3 and b ≥

3c/5.

Lemma 5. Let l = |4b− q| ≤ 2, |q| ≤ 2 and b ∈ [0, 1]. If f ∈ H3
b , then, for |z| = r < 1,∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ r[(lr2 + 4r + l)(qr2 + 4r + q) + (qr2 + 4r + q)(r2 + lr + 1)]

(1− r2)(r2 + lr + 1)(r2 + qr + 1)
.

Furthermore, the class H3
b is non-empty.

Proof. Let the functions f and g whose Taylor series expansions are given by f (z) = z +
f1z2 + .. be such that Re{ f /(zp)} > 0, where p ∈ P is represented by p(z) = 1 + qz + · · · .
Now, consider f /(zp) = 1 + ( f1 − q)z + · · · , where | f1 − q| ≤ 2 and |q| ≤ 2, which gives
| f1| ≤ 4. Therefore, we consider the function f with a fixed second coefficient whose Taylor
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series expansion is given by f (z) = z + 4bz2 + · · · where b ∈ [0, 1] such that f ∈ A4b. If
the function f ∈ H3

b , then there exists p ∈ P such that f /(zp) ∈ P . Define the function

h(z) =
f

zp
(z) = 1 + (4b− q)z + · · ·

so that h ∈ P(4b−q)/2, p ∈ Pq/2 and f can be expressed as f (z) = zp(z)h(z). Then, a
calculation shows that ∣∣∣∣ z f ′(z)

f (z)
− 1
∣∣∣∣ ≤ ∣∣∣∣ zh′(z)

h(z)

∣∣∣∣+ ∣∣∣∣ zp′(z)
p(z)

∣∣∣∣. (16)

From Lemma 1, for l = |4b− q| ≤ 2, |q| ≤ 2 and α = 0, we obtain∣∣∣∣ zh′(z)
h(z)

∣∣∣∣ ≤ r
(1− r2)

(lr2 + 4r + l)
(r2 + lr + 1)

and
∣∣∣∣ zp′(z)

p(z)

∣∣∣∣ ≤ r
(1− r2)

(qr2 + 4r + q)
(r2 + qr + 1)

. (17)

Using (16) and (17), it is easy to show that∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ r[(lr2 + 4r + l)(qr2 + 4r + q) + (qr2 + 4r + q)(r2 + lr + 1)]

(1− r2)(r2 + lr + 1)(r2 + qr + 1)
. (18)

Define the functions f3 : ∆→ C by

f3(z) =
z(1− qz + z2)(1− (4b− q)z + z2)

(1− z2)2 , |4b− q| ≤ 2. (19)

Then, (17) together with (7) gives

f3(z)
zp1(z)

=
(1− (4b− q)z + z2)

(1− z2)
=

1 + w6(z)
1− w6(z)

, where w6(z) =
z(z− (4b− q)/2)
(1− z(4b− q)/2)

,

which is an analytic function satisfying the conditions of the Schwarz lemma in ∆, and hence
Re( f3/(zp1)) > 0 and Re(p1) > 0 (shown above in class H1

b,c). Thus, f3/(zp1) ∈ P(6b−q)/2

and p1 ∈ P(q/2). Thus, the function f3 ∈ H3
b , and the class H3

b is non-empty. Furthermore,
the functions given by

F3(z) =
z(1− z2)2

(1− qz + z2)(1− (4b− q)z + z2)
, |4b− q| ≤ 2 (20)

and f3 are extreme functions for the class H3
b provided q ≤ 2 and b ≥ q/4.

3. Radius of Starlikeness

Using the information in the previous sections, we now investigate several radius
problems associated with the functions in the classes H1

b,c, H2
b,c and H3

b . In particular, we
determine sharp estimates of the radii constants RN(H1

b,c), RN(H2
b,c) and RN(H3

b ), where
N is one of the classes of starlike functions mentioned in Section 1 that can be obtained
from the Ma and Minda [10] class S∗(ψ) given by

S∗(ψ) = { f ∈ A : z f ′(z)/ f (z) ≺ ψ(z)}.

Here, ≺ is the usual notation for subordination, and ψ is an analytic and univalent function
with a positive real part in ∆ with ψ(0) = 1. ψ′(0) > 0 and ψ maps ∆ onto a region
that is starlike with respect to 1 and symmetric with respect to the real axis. Recently,
Anand et al. [27] obtained results for a class of analytic functions defined using the
function ψ. Throughout this section, we assume that d = |6b− 4c| ≤ 2, s = |4c− q| ≤ 2,
m = |5b− 3c| ≤ 2, n = |3c− q| ≤ 1, and l = |4b− q| ≤ 2.
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For 0 ≤ α ≤ 1, the class S∗(α) = S∗[1− 2α,−1] = { f ∈ A : Re(z f ′(z)/ f (z)) > α} is
the class of starlike functions of order α. In our first main theorem, we determine sharp
estimates of the radii constants RS∗(α)(H1

b,c), RS∗(α)(H2
b,c) and RS∗(α)(H3

b ).

Theorem 1. The sharp S∗(α) radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗(α) radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = α − 1 + α(d + s + q)r + (10 + 2α + ds + αds + (1 + α)(d + s)q)r2 + ((10 +
α)(s + q) + d(10+ α + (2+ α)sq))r3 + 8(3+ sq + d(s + q))r4 + (−(−12+ α)(s + q)−
d(−12+ α+ (−4+ α)sq))r5 + (14+ 3sq+ 3d(s+ q)− α(2+ sq+ d(s+ q)))r6− (−2+
α)(d + s + q)r7 + (1− α)r8.

2. For the class H2
b,c, the sharp S∗(α) radius ρ2 ∈ (0, 1) is the smallest root of the equation

x2(r) = 0, where

x2(r) = −
4

1− r2 −
1

1 + nr
+

2 + 2nr
1 + 2nr + r2 +

2 + mr
1 + r(m + r)

+
2 + qr

1 + r(q + r)
− α.

3. For the class H3
b , the sharp S∗(α) radius ρ3 ∈ (0, 1) is the smallest root of the equation

x3(r) = 0, where
x3(r) = α − 1 + α(l + q)r + (7 + α + (1 + α)lq)r2 + 6(l + q)r3 + (9 + 3lq − α(1 +
lq))r4 − (−2 + α)(l + q)r5 + (1− α)r6.

Proof. The radii estimates for their respective classes are found as follows:

1. Note that x1(0) = (α− 1) < 0 and x1(1) = 6(2 + d)(2 + e)(2 + q) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in the
interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0. For
f ∈ H1

b,c, using (5), we have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ r

(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
, (21)

which yields

Re
(

z f ′(z)
f (z)

)
≥ 1− r

(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
(22)

≥ α

whenever x1(r) ≤ 0. This shows that Re(z f ′(z)/ f (z)) ≥ α for |z| = r ≤ ρ1.
For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (22), the function F1(z), defined for the
class H1

b,c in (8) at z = −ρ1, satisfies the equality

Re
(

zF′1(z)
F1(z)

)
= 1− ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

)
= α.

This proves that the radius is sharp.
2. A calculation shows that x2(0) = 1− α > 0 and x2(1/3) = −(−60(−5 + (−12 +

n)n) + 6(135 + n(148 + 21n))q + 3m(9(30 + 17q) + n(296 + 42n + 156q + 27nq)) +
2(10 + 3m)(3 + n)(5 + 3n)(10 + 3q)α)/(2(10 + 3m)(3 + n)(5 + 3n)(10 + 3q)) < 0.
By the Intermediate Value Theorem, there exists a root r ∈ (0, 1/3) of the equation
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x2(r) = 0. Let ρ2 ∈ (0, 1/3) be the smallest root of the equation x2(r) = 0 and f ∈ H2
b,c.

An easy calculation shows that, for 0 < r < 1/3,

Cb − Db −
√

C1/2 =
−1 + 4r2 + 2b2r2 + 8br3 + r4 + 2b2r4

2(−1 + r)(1 + r)(1 + 2br + r2)
2 > 0, (23)

where Cb and Db are given by (1). From (9) and (11) and using Lemma 2 together with
(23), we have

Re
(

z f ′(z)
f (z)

)
(24)

≥ 1−
(

r
1− r2

)(
mr2 + 4r + m
r2 + mr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
−

r
(
n + 2r + nr2)

(1 + nr)(1 + 2nr + r2)
≥ α

whenever x2(r) ≤ 0. Thus, Re(z f ′(z)/ f (z)) ≥ α for |z| = r ≤ ρ2. To prove the
sharpness, consider the function F2, G2 : ∆→ C defined by

F2(z) =
z(1 + 3cz− qz)(1− z2)2

(1 + 5bz− 3cz + z2)(1 + 6cz− 2qz + z2)(1 + qz + z2)

and

G2(z) = z
1− z2

(1 + qz + z2)(1 + 3cz− qz)
,

where |5b− 3c| ≤ 2 and |3c− q| ≤ 1. Note that, for c = (1 + q)/3,

F2(z)
G2(z)

=
(1− z2)

1− (1− 5b + q)z + z2 =
1 + w1(z)
1− w1(z)

and
G2(z)
zp1(z)

=
1

1 + 3cz− qz
=

1 + w2(z)
1− w2(z)

,

where

w1(z) =
(1− 5b + q− 2z)z
2 + (−1 + 5b− q)z

and w2(z) =
(q− 3c)z

2 + (3c− q)z

are Schwarz functions; hence, Re(F2/G2) > 0, Re(G2/(zp1)) > 0, and Re(p1) > 0.
For 5b− 3c ≥ 0, 3c− q = 1 and z = ρ2, it follows from (24) that

Re
(

zF′2(z)
F2(z)

)
= 1−

(
ρ2

1− ρ2
2

)(
mρ2

2 + 4ρ2 + m
ρ2

2 + mρ2 + 1
+

qρ2
2 + 4ρ2 + q

ρ2
2 + qρ2 + 1

)
−

ρ2
(
n + 2ρ2 + nρ2

2
)

(1 + nρ2)
(
1 + 2nρ2 + ρ2

2
)

= α.

3. It is easy to see that x3(0) = α − 1 < 0 and x3(1) = 4(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. From (18), it follows that,
for any f ∈ H3

b ,

Re
(

z f ′(z)
f (z)

)
≥ 1− r

1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≥ α (25)
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whenever x3(r) ≤ 0. This proves that Re(z f ′(z)/ f (z)) ≥ α for |z| = r ≤ ρ3. The
result is sharp for the function F3 defined for the class H3

b in (20). At z = −ρ3 and for
u = 4b− q ≥ 0, it follows from (25) that

Re
(

zF′3(z)
F3(z)

)
= 1− ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

)
= α.

Remark 1. Figure 1 represents that the S∗( 1
2 ) radii estimated for all three classes are sharp.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(a) ρ1 = 0.0827625 for
H1

b,c

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(b) ρ2 = 0.101021 for
H2

b,c

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(c) ρ3 = 0.123106 for
H3

b
Figure 1. Sharp radii constants for RS∗( 1

2 )
(H1

1,1), RS∗( 1
2 )
(H2

1,1) and RS∗( 1
2 )
(H3

1) for q = 2.

Remark 2. For b = 1, c = 1 and q = 2, Theorem 1 yields the corresponding result determined in
(Theorem 1, p. 6, [14]).

Placing α = 0 in Theorem 1, we obtain the radius of starlikeness for the classes H1
b,c, H2

b,c
and H3

b .

Corollary 1. The sharp S∗ := S∗(0) radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗ radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = −1 + (10 + qs + d(q + s))r2 + 2(5(q + s) + d(5 + qs))r3 + 8(3 + qs + d(q +
s))r4 + 4(3(q + s) + d(3 + qs))r5 + (14 + 3qs + 3d(q + s))r6 + 2(d + q + s)r7 + r8.

2. For the class H2
b,c, the sharp S∗ radius ρ2 ∈ (0, 1) is the smallest root of the equation

x2(r) = 0, where

x2(r) = −
4

1− r2 −
1

1 + nr
+

2 + 2nr
1 + 2nr + r2 +

2 + mr
1 + r(m + r)

+
2 + qr

1 + r(q + r)
.

3. For the class H3
b , the sharp S∗ radius ρ3 ∈ (0, 1) is the smallest root of the equation x3(r) = 0,

where
x3(r) = −1 + (7 + lq)r2 + 6(l + q)r3 + (9 + 3lq)r4 + 2(l + q)r5 + r6.

The class S∗L=S∗(
√

1 + z) is another class that can be obtained from the Ma-Minda
class. It represents the collection of functions in the class A whose z f ′(z)/ f (z) lies in the
region bounded by the lemniscate of Bernoulli |w2 − 1| = 1. Various studies on S∗L can
be seen in [28,29]. In the following result, we obtain the sharp radii constants RS∗L (H1

b,c),
RS∗L (H2

b,c) and RS∗L (H3
b ).

Theorem 2. The sharp S∗L radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗L radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = (1−

√
2)− (−2 +

√
2)(d + s + q)r + (−2(−7 +

√
2)− (−3 +

√
2)(sq + d(s +

q)))r2 + (−(−12 +
√

2)(s + q)− d(−12 +
√

2 + (−4 +
√

2)sq))r3 + 8(3 + sq + d(s +
q))r4 +((10+

√
2)(s+ q)+ d(10+

√
2+(2+

√
2)sq))r5 +(2(5+

√
2)+ (1+

√
2)(sq+

d(s + q)))r6 +
√

2(d + s + q)r7 + (−1 +
√

2)r8.
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2. For the class H2
b,c, the sharp S∗L radius ρ2 ∈ (0, 1) is the smallest root of the equation

x2(r) = 0, where
x2(r) = (1 −

√
2) − (−2 +

√
2)(m + n + q)r + (11 −

√
2 − (−3 +

√
2)(nq + m(n +

q)))r2 + (8(m + q) − n(−12 +
√

2 + (−4 +
√

2)mq))r3 + (11 +
√

2 + (3 +
√

2)mq +
8n(m + q))r4 + ((10 +

√
2)n + (2 +

√
2)q + (2 +

√
2)m(1 + nq))r5 + (1 +

√
2)(1 +

n(m + q))r6 +
√

2nr7.
3. For the class H3

b , the sharp S∗L radius ρ3 ∈ (0, 1) is the smallest root of the equation x3(r) = 0,
where
x3(r) = (1−

√
2) − (−2 +

√
2)(l + q)r + (9−

√
2− (−3 +

√
2)lq)r2 + 6(l + q)r3 +

(7 +
√

2 + (1 +
√

2)lq)r4 +
√

2(l + q)r5 + (−1 +
√

2)r6.

Proof.

1. Note that x1(0) = (1−
√

2) < 0 and x1(1) = 6(2 + d)(2 + q)(2 + s) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in the
interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0. Ali et
al. [30] (Lemma 2.2) proved that, for 2

√
2/3 < C <

√
2,{

w ∈ C : |w− C| <
√

2− C
}
⊂
{

w ∈ C : |w2 − 1| < 1
}

. (26)

In view of (26) and the fact that the centre of the disc in (21) is 1, f ∈ S∗L if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤
√

2− 1, (27)

which is equivalent to f ∈ S∗L if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this
f ∈ S∗L for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (27), the function
f1(z) defined for the class H1

b,c in (6) at z = −ρ1 satisfies the following equality∣∣∣∣∣
(

z f ′1(z)
f1(z)

)2

− 1

∣∣∣∣∣
=

∣∣∣∣∣∣
(

1− ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

))2

− 1

∣∣∣∣∣∣ = 1.

Thus, the radius is sharp.
2. A calculation shows that x2(0) = 1−

√
2 < 0 and x2(1) = 6(2+m)(1+ n)(2+ q) > 0.

By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation
x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of the equation x2(r) = 0, and f ∈ H2

b,c.
As the centre of the disc in (13) is 1, by (26), f ∈ S∗L if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤
√

2− 1, (28)

which is equivalent to f ∈ S∗L if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗L for
|z| = r ≤ ρ2. To prove the sharpness, consider the function f2 defined in (14). For
u = 5b− 3c ≥ 0, v = 3c− q ≥ 0 and z = −ρ2, it follows from (28) that∣∣∣∣∣
(

z f ′2(z)
f2(z)

)2

− 1

∣∣∣∣∣
=

∣∣∣∣∣∣
(

1− ρ2

(1− ρ2
2)

(
uρ2

2 + 4ρ2 + u
ρ2

2 + uρ2 + 1
+

vρ2
2 + 2ρ2 + v
vρ2 + 1

+
qρ2

2 + 4ρ2 + q
ρ2

2 + qρ2 + 1

))2

− 1

∣∣∣∣∣∣ = 1.
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3. It is easy to see that x3(0) = 1−
√

2 < 0 and x3(1) = 4(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. From (16) and (17) it
follows that, for any f ∈ H3

b∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ r

1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
. (29)

As the centre of the disc in (29) is 1, by (26), f ∈ S∗L if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤
√

2− 1, (30)

which is equivalent to f ∈ S∗L if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗L for |z| = r ≤ ρ3.
The result is sharp for the function f3 defined for the class H3

b in (19). At z = −ρ3 and
for u = 4b− q ≥ 0, it follows from (30) that∣∣∣∣∣

(
z f ′3(z)
f3(z)

)2

− 1

∣∣∣∣∣ =
∣∣∣∣∣∣
(

ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

))2

− 1

∣∣∣∣∣∣ = 1.

Remark 3. Figure 2 represents extreme S∗L radii estimated for all three classes.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(a) ρ1 = 0.0687097 for
H1

b,c

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(b) ρ2 = 0.0809876 for
H2

b,c

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(c) ρ3 = 0.102466 for
H3

b
Figure 2. Sharp radii constants for RS∗L (H1

1,1), RS∗L (H2
1,1) and RS∗L (H3

1) (q = 2).

Remark 4. For b = 1, c = 1 and q = 2, Theorem 2 yields the corresponding result determined in
(Theorem 2, p. 8, [14]).

For φPAR = 1 + 2
π2

(
log
(

1 +
√

z
1−
√

z

))2

, the class S∗p := S∗(φPAR) is the class of

parabolic starlike functions. A function f ∈ S∗p provided z f ′(z)/ f (z) lies in the parabolic
region given by {w ∈ C : Re(w) > |w− 1|}. For further reading, refer to [11,31–33]. The
following theorem gives the sharp radii constants RS∗p (H1

b,c), RS∗p (H2
b,c) and RS∗p (H3

b ).

Theorem 3. The sharp S∗p radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗p radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = −1 + (d + s + q)r + (22 + 3sq + 3d(s + q))r2 + (21(s + q) + d(21 + 5sq))r3 +
16(3+ sq+ d(s+ q))r4 +(23(s+ q)+ d(23+ 7sq))r5 +(26+ 5sq+ 5d(s+ q))r6 + 3(d+
s + q)r7 + r8.

2. For the class H2
b,c, S∗p radius ρ2 ∈ (0, 1) is the smallest root of the equation x2(r) = 0, where

x2(r) = −1 + (m + q)r + (18 + 4mn + 3mq + 4nq)r2 + (17m + 36n + 17q + 8mnq)r3 +
(40 + 28mn + 12mq + 28nq)r4 + (19m + 40n + 19q + 12mnq)r5 + (22 + 8mn + 5mq +
8nq)r6 + (3m + 4n + 3q)r7 + r8.
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3. For the class H3
b , the sharp S∗p radius ρ3 ∈ (0, 1) is the smallest root of the equation x3(r) = 0,

where
x3(r) = −1 + (l + q)r + 3(5 + lq)r2 + 12(l + q)r3 + (17 + 5lq)r4 + 3(l + q)r5 + r6.

Proof.

1. Note that x1(0) = −1 < 0 and x1(1) = 12(2 + d)(2 + q)(2 + s) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in
the interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0.
Shanmughan and Ravichandran (p. 321, [34]) proved, for 1/2 < C < 3/2, that

{w ∈ C : |w− C| < C− 1/2} ⊂ {w ∈ C : Re(w) > |w− 1|}. (31)

As the centre of the disc in (21) is 1, by (31), f ∈ S∗p if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 1

2
, (32)

which is equivalent to f ∈ S∗p if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this,
f ∈ S∗p for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (32), the function
F1(z) defined for the class H1

b,c in (8) at z = −ρ1, satisfies the following equality

Re
(

zF′1(z)
F1(z)

)
=

∣∣∣∣∣1− ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

)∣∣∣∣∣
=

∣∣∣∣ zF′1(z)
F1(z)

− 1
∣∣∣∣.

This proves that the radius is sharp.
2. A calculation shows that x2(0) = −1 < 0 and

x2

(
1
3

)
=

4(9m(190 + 89q + n(146 + 63q)) + 2(1250 + 855q + 3n(410 + 219q)))
6561

, which is greater than 0. By the Intermediate Value Theorem, there exists a root
r ∈ (0, 1/3) of the equation x2(r). Let ρ2 ∈ (0, 1/3) be the smallest root of the
equation x2(r) = 0 and f ∈ H2

b,c. From (9) and (11) and using Lemma 2 together with
(23), we have

Re
(

z f ′(z)
f (z)

)
≥ 1−

(
r

1− r2

)(
mr2 + 4r + m
r2 + mr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
−

r
(
n + 2r + nr2)

(1 + nr)(1 + 2nr + r2)

≥ r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≥
∣∣∣∣ z f ′2(z)

f2(z)
− 1
∣∣∣∣

whenever x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root of the equation
x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗p for |z| = r ≤ ρ2.

3. It is easy to see that x3(0) = 1 < 0 and x3(1) = 8(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. In view of (31) and the
fact that the centre of the disc in (29) is 1, f ∈ S∗p if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 1

2
, (33)
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which is equivalent to f ∈ S∗p if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗p for |z| = r ≤ ρ3.
The result is sharp for the function F3 defined for the class H3

b in (20). At z = −ρ3 and
for u = 4b− q ≥ 0, it follows from (33) that

Re
(

zF′3(z)
F3(z)

)
=

∣∣∣∣∣1− ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

)∣∣∣∣∣ =
∣∣∣∣ zF′3(z)

F3(z)
− 1
∣∣∣∣.

Remark 5. Placing b = 1, c = 1 and q = 2 in Theorem 3, we obtain the result (Theorem 3, p. 9,
[14]) with the part(ii) having an improved radius (= 0.0990195 > 0.0972).

In 2015, the class of starlike functions associated with the exponential function as S∗e =
S∗(ez) was introduced by Mendiratta et al. [35]. It satisfies the condition | log(z f ′(z)/ f (z))|
< 1. Our next theorem gives the sharp radii constants RS∗e (H1

b,c), RS∗e (H2
b,c) and RS∗e (H3

b ).

Theorem 4. The S∗e radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗e radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = (1− e) + (d + q + s)r + (2 + 10e + dq + deq + (1 + e)(d + q)s)r2 + (q + s +
10e(q+ s) + d(1+ qs+ 2e(5+ qs)))r3 + 8e(3+ qs+ d(q+ s))r4 + ((−1+ 12e)(q+ s) +
d(−1− qs + 4e(3 + qs)))r5 + (−2 + 14e− dq + 3deq + (−1 + 3e)(d + q)s)r6 + (−1 +
2e)(d + q + s)r7 + (−1 + e)r8.

2. For the class H2
b,c, S∗e radius ρ2 ∈ (0, 1) is the smallest root of the equation x2(r) = 0, where

x2(r) = (1− e) + (m + n + q)r + (1 + 9e + (1 + e)(nq + m(n + q)))r2 + (8e(m + q) +
n(1 + mq + 2e(5 + mq)))r3 + (−1− mq + e(13 + 8mn + 5mq + 8nq))r4 + (−n− q +
4e(3n + q) + m(−1 + 4e)(1 + nq))r5 + (−1 + 3e)(1 + n(m + q))r6 + n(−1 + 2e)r7.

3. For the class H3
b , the sharp S∗e radius ρ3 ∈ (0, 1) is the smallest root of the equation x3(r) = 0,

where
x3(r) = (1− e) + (l + q)r + (1 + 7e + (1 + e)lq)r2 + 6e(l + q)r3 + (−1 + 9e + (−1 +
3e)lq)r4 + (−1 + 2e)(l + q)r5 + (−1 + e)r6.

Proof.

1. Note that x1(0) = 1− e < 0 and x1(1) = 6e(2 + d)(2 + q)(2 + s) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in
the interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0.
Mendiratta et al. [35] proved, for e−1 ≤ C ≤ (e + e−1)/2), that

{w ∈ C : |w− C| < C− e−1} ⊂ {w ∈ C : | log(w)| < 1}. (34)

As the centre of the disc in (21) is 1, by (34), f ∈ S∗e if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 1− 1

e
, (35)

which is equivalent to f ∈ S∗e if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this,
f ∈ S∗e for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (35), the function
F1(z) defined for the class H1

b,c in (8) at z = −ρ1, satisfies the following equality,
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∣∣∣∣log
(

zF′1(z)
F1(z)

)∣∣∣∣
=

∣∣∣∣∣log

(
1− ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

))∣∣∣∣∣
=

∣∣∣∣log
(

1
e

)∣∣∣∣ = 1.

Thus, the radius is sharp.
2. A calculation shows that x2(0) = 1− e < 0 and x2(1) = 6e(2 + m)(1 + n)(2 + q) > 0.

By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation
x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of the equation x2(r) = 0 and f ∈ H2

b,c.
In view of (34) and the fact that the centre of the disc in (13) is 1, f ∈ S∗e if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤ 1− 1

e
,

which is equivalent to f ∈ S∗e if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗e for
|z| = r ≤ ρ2.

3. It is easy to see that x3(0) = 1− e < 0 and x3(1) = 4e(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. Since the centre of the
disc in (29) is 1, by (34), f ∈ S∗e if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 1− 1

e
, (36)

which is equivalent to f ∈ S∗e if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗e for |z| = r ≤ ρ3.
The result is sharp for the function F3 defined for the class H3

b in (20). At z = −ρ3 and
for u = 4b− q ≥ 0, it follows from (36) that∣∣∣∣log

(
zF′3(z)
F3(z)

)∣∣∣∣ =
∣∣∣∣∣log

(
1− ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

))∣∣∣∣∣
=

∣∣∣∣log
(

1
e

)∣∣∣∣ = 1.

Remark 6. For b = 1, c = 1 and q = 2, Theorem 4 reduces to the result (Theorem 4, p. 10, [14]).

The class S∗c = S∗(1 + (4/3)z + (2/3)z2) is the class of starlike functions f ∈ A such
that z f ′(z)/ f (z) lies in the region bounded by the cardioid Ωc = {u + iv : (9u2 + 9v2 −
18u + 5)2 − 16(9u2 + 9v2 − 6u + 1) = 0}. Sharma et al. [36] studied various properties
of the class S∗c . The following theorem determines the sharp radii constants RS∗c (H1

b,c),
RS∗c (H2

b,c) and RS∗c (H3
b ).

Theorem 5. The S∗c radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗c radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = −2 + (d + q + s)r + 4(8 + qs + d(q + s))r2 + (31(q + s) + d(31 + 7qs))r3 +
24(3+ qs+ d(q+ s))r4 + (35(q+ s) + d(35+ 11qs))r5 + 8(5+ qs+ d(q+ s))r6 + 5(d+
q + s)r7 + 2r8.
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2. For the class H2
b,c, the S∗c radius ρ2 ∈ (0, 1) is the smallest root of the equation x2(r) = 0,

where
x2(r) = −2+ (m+ n+ q)r + 4(7+ nq+m(n+ q))r2 + (31n+ 24q+m(24+ 7nq))r3 +
(38 + 24mn + 24nq + 14mq)r4 + (35n + 11q + 11m(1 + nq))r5 + 8(1 + n(m + q))r6 +
5nr7.

3. For the class H3
b , the sharp S∗c radius ρ3 ∈ (0, 1) is the smallest root of the equation x3(r) = 0,

where
x3(r) = −2 + (l + q)r + (22 + 4lq)r2 + 18(l + q)r3 + (26 + 8lq)r4 + 5(l + q)r5 + 2r6.

Proof.

1. Note that x1(0) = −2 < 0 and x1(1) = 18(2 + d)(2 + q)(2 + s) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in
the interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0.
Sharma et al. [36] proved that, for 1/3 < C ≤ 5/3,

{w ∈ C : |w− C| < (3C− 1)/3} ⊆ Ωc. (37)

As the centre of the disc in (21) is 1, by (37), f ∈ S∗c if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 2

3
, (38)

which is equivalent to f ∈ S∗c if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this
f ∈ S∗c for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (38), the function
F1(z) defined for the class H1

b,c in (8) at z = −ρ1, satisfies the following equality

∣∣∣∣ zF′1(z)
F1(z)

∣∣∣∣ =
∣∣∣∣∣1− ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

)∣∣∣∣∣ = 1
3

,

which belongs to boundary of the region Ωc. Thus, the radius is sharp.
2. A calculation shows that x2(0) = −2 < 0 and x2(1) = 18(2 + m)(1 + n)(2 + q) > 0.

By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation
x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of the equation x2(r) = 0 and f ∈ H2

b,c.
In view of (37) and the fact that the centre of the disc in (13) is 1, f ∈ S∗c if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤ 2

3
,

which is equivalent to f ∈ S∗c if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗c for
|z| = r ≤ ρ2.

3. It is easy to see that x3(0) = −2 < 0 and x3(1) = 12(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. In view of the fact that
the centre of the disc in (29) is 1, by (37), f ∈ S∗c if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 2

3
, (39)

which is equivalent to f ∈ S∗e if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗c for |z| = r ≤ ρ3.
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The result is sharp for the function F3 defined for the class H3
b in (20). At z = −ρ3 and

for u = 4b− q ≥ 0, it follows from (39) that∣∣∣∣ zF′3(z)
F3(z)

∣∣∣∣ =
∣∣∣∣∣1− ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

)∣∣∣∣∣ = 1
3

.

Remark 7. Placing b = 1, c = 1 and q = 2 in Theorem 5, we obtain the result (Theorem 5, p. 11,
[14]).

In 2019, Cho et al. [37] considered the class of starlike functions S∗sin = { f ∈ A :
z f ′(z)/ f (z) ≺ 1 + sin(z) := q0(z)} associated with the sine function. Note that S∗sin =
S∗(1+ sin(z)). In next theorem, we determine sharp estimates of radii constants RS∗sin

(H1
b,c),

RS∗sin
(H2

b,c) and RS∗sin
(H3

b ).

Theorem 6. The sharp S∗sin radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗sin radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = − sin(1)− (d+ q+ s)(−1+ sin(1))r− 2(−6+ sin(1)− (qs+ d(q+ s))(sin(1)−
2))r2 +(11(q+ s)+ d(11+ 3qs)− (d+ q+ s+ dqs) sin(1))r3 + 8(3+ qs+ d(q+ s))r4 +
((q+ s)(11+ sin(1))+ d(11+ sin(1)+ qs(3+ sin(1))))r5 +((qs+ d(q+ s))(2+ sin(1))+
2(6 + sin(1)))r6 + (d + q + s)(1 + sin(1))r7 + sin(1)r8.

2. For the class H2
b,c, the sharp S∗sin radius ρ2 ∈ (0, 1) is the smallest root of the equation

x2(r) = 0, where
x2(r) = − sin(1)− (m + n + q)(sin(1)− 1)r + (10− (nq + m(n + q))(−2 + sin(1))−
sin(1))r2 +(8m+ 11n+ 8q+ 3mnq−n(1+mq) sin(1))r3 +(12+ 8nq+ sin(1)+m(8n+
q(4 + sin(1))))r4 + (q(3 + sin(1)) + m(1 + nq)(3 + sin(1)) + n(11 + sin(1)))r5 + (1 +
n(m + q))(2 + sin(1))r6 + n(1 + sin(1))r7.

3. For the class H3
b , the sharp S∗sin radius ρ3 ∈ (0, 1) is the smallest root of the equation

x3(r) = 0, where
x3(r) = − sin(1) − (l + q)(sin(1) − 1)r + (8 − lq(−2 + sin(1)) − sin(1))r2 + 6(l +
q)r3 + (8 + sin(1) + lq(2 + sin(1)))r4 + (l + q)(1 + sin(1))r5 + sin(1)r6.

Proof.

1. Note that x1(0) = − sin(1) < 0 and x1(1) = 6(2 + d)(2 + q)(2 + s) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in the
interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0. For
|C− 1| ≤ sin(1), Cho et al. [37] established the following inclusion property,

{w ∈ C : |w− C| < sin(1)− |C− 1|} ⊆ Ωs, (40)

where Ωs := q0(∆) is the image of the unit disc ∆ under the mappings q0(z) =
1 + sin(z). As the centre of the disc in (21) is 1, by (40), f ∈ S∗sin if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ sin(1), (41)

which is equivalent to f ∈ S∗sin if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this
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f ∈ S∗sin for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (41), the function
f1(z) defined for class H1

b,c in (6) at z = −ρ1, satisfies the following equality

∣∣∣∣ z f ′1(z)
f1(z)

∣∣∣∣ =
∣∣∣∣∣1 + ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

)∣∣∣∣∣
= 1 + sin 1 = q0(1),

which belongs to the boundary of region Ωs. This proves the radius is sharp.
2. A calculation shows that x2(0) = − sin(1) < 0 and x2(1) = 6(2 + m)(1 + n)(2 + q) >

0. By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation
x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of equation x2(r) = 0 and f ∈ H2

b,c. In
view of (40) and the fact that centre of the disc in (13) is 1, f ∈ S∗sin if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤ sin(1), (42)

which is equivalent to f ∈ S∗sin if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗sin
for |z| = r ≤ ρ2. To prove sharpness, consider the function f2 defined in (14). For
u = 5b− 3c ≥ 0, v = 3c− q ≥ 0 and z := −ρ2, it follows from (42) that∣∣∣∣ z f ′2(z)

f2(z)

∣∣∣∣ =
∣∣∣∣∣1 + ρ2

(1− ρ2
2)

(
uρ2

2 + 4ρ2 + u
ρ2

2 + uρ2 + 1
+

vρ2
2 + 2ρ2 + v
vρ2 + 1

+
qρ2

2 + 4ρ2 + q
ρ2

2 + qρ2 + 1

)∣∣∣∣∣
= 1 + sin(1),

which illustrates the sharpness.
3. It is easy to see that x3(0) = − sin(1) < 0 and x3(1) = 4(2 + l)(2 + q) > 0. By the

Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. Since the centre of the
disc in (29) is 1, by (40), f ∈ S∗sin if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ sin(1), (43)

which is equivalent to f ∈ S∗sin if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗sin for |z| = r ≤ ρ3.
The result is sharp for function f3 defined for the class H3

b in (19). At z = −ρ3 and for
u = 4b− q ≥ 0, it follows from (43) that∣∣∣∣ z f ′3(z)

f3(z)

∣∣∣∣ =
∣∣∣∣∣1 + ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

)∣∣∣∣∣ = 1 + sin(1).

Remark 8. Figure 3 represents sharp S∗sin radii estimated for all three classes.
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Figure 3. Sharp S∗sin radii for H1

b,c, H2
b,c and H3

b (b = 1, c = 1, q = 2).

Remark 9. Substituting b = 1, c = 1 and q = 2 in Theorem 6, we obtain the result (Theorem 6, p.
13, [14]).

In 2015, Raina and Sokól [38] introduced the class S∗$ = S∗(z +
√

1 + z2). Geometri-
cally, a function f ∈ S∗$ if and only if z f ′(z)/ f (z) lies in the region bounded by the lune
shaped region {w ∈ C : |w2 − 1| < 2|w|}.

Theorem 7. The S∗$ radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗$ radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) =

√
2− 2 + (

√
2− 1)(d + q + s)r + (2(4 +

√
2) +

√
2(qs + d(q + s)))r2 + ((9 +√

2)(q+ s)+ d(9+
√

2+(1+
√

2)qs))r3 + 8(3+ qs+ d(q+ s))r4 +(−(−13+
√

2)(q+
s)− d(−13+

√
2+(−5+

√
2)qs))r5 +(−2(−8+

√
2)− (−4+

√
2)(qs+ d(q+ s)))r6−

(−3 +
√

2)(d + q + s)r7 + (2−
√

2)r8.
2. For the class H2

b,c, the S∗$ radius ρ2 ∈ (0, 1) is the smallest root of the equation x2(r) = 0,
where
x2(r) =

√
2− 2 + (

√
2− 1)(m + n + q)r + (8 +

√
2+
√

2(nq + m(n + q)))r2 + (8(m +
q)+n(9+

√
2+(1+

√
2)mq))r3 +(14−

√
2+ 6mq−

√
2mq+ 8n(m+ q))r4 +(−(−5+√

2)(m+ q)−n(−13+
√

2+(−5+
√

2)mq))r5− (−4+
√

2)(1+n(m+ q))r6− (
√

2−
3)nr7.

3. For the class H3
b , the sharp S∗$ radius ρ3 ∈ (0, 1) is the smallest root of the equation x3(r) = 0,

where
x3(r) =

√
2− 2 + (

√
2− 1)(l + q)r + (6 +

√
2 +
√

2lq)r2 + 6(l + q)r3 + (10−
√

2−
(−4 +

√
2)lq)r4 − (−3 +

√
2)(l + q)r5 + (2−

√
2)r6.

Proof.

1. Note that x1(0) =
√

2− 2 < 0 and x1(1) = 6(2 + d)(2 + q)(2 + s) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in
the interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0.
Gandhi and Ravichandran [39] (Lemma 2.1) proved that, for

√
2− 1 < C ≤

√
2 + 1,

{w ∈ C : |w− C| < 1− |
√

2− C|} ⊆ {w ∈ C : |w2 − 1| < 2|w|}. (44)

As the centre of the disc in (21) is 1, by (44), f ∈ S∗$ if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 2−

√
2, (45)
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which is equivalent to f ∈ S∗$ if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this
f ∈ S∗$ for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (45), the function
F1(z) defined for the class H1

b,c in (8) at z = −ρ1, satisfies the following equality∣∣∣∣∣
(

z f ′1(z)
f1(z)

)2

− 1

∣∣∣∣∣
=

∣∣∣∣∣∣
(

1− ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

))2

− 1

∣∣∣∣∣∣
= |1− (2−

√
2)2 − 1| = 2(1−

√
2) = 2

∣∣∣∣ z f ′1(z)
f1(z)

∣∣∣∣.
This proves the sharpness.

2. A calculation shows that x2(0) =
√

2− 2 < 0 and x2(1) = 6(2+m)(1+ n)(2+ q) > 0.
By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation
x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of the equation x2(r) = 0 and f ∈ H2

b,c.
In view of (44) and the fact centre of the disc in (13) is 1, f ∈ S∗$ if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤ 2−

√
2,

which is equivalent to f ∈ S∗$ if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗$ for
|z| = r ≤ ρ2.

3. It is easy to see that x3(0) =
√

2− 2 < 0 and x3(1) = 4(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. Since the centre of the
disc in (29) is 1, by (44), f ∈ S∗$ if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 2−

√
2, (46)

which is equivalent to f ∈ S∗$ if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗$ for |z| = r ≤ ρ3.
The result is sharp for the function F3 defined for the class H3

b in (20). At z = −ρ3 and
for u = 4b− q ≥ 0, it follows from (46) that∣∣∣∣∣

(
zF′3(z)
F3(z)

)2

− 1

∣∣∣∣∣ =
∣∣∣∣∣∣
(

1− ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

))2

− 1

∣∣∣∣∣∣
= 2

∣∣∣∣ zF′3(z)
F3(z)

∣∣∣∣.
Remark 10. For b = 1, c = 1 and q = 2, Theorem 7 yields the result (Theorem 7, p. 14, [14]).

Kumar et al. [40] introduced the class of starlike functions, defined by S∗R = S∗(ψ(z)),
consisting of functions associated with a rational function ψ(z) = 1 + z(k + z)/(k(k− z)),
where k =

√
2 + 1. The following theorem yields the radii constants RS∗R(H1

b,c), RS∗R(H2
b,c)

and RS∗R(H3
b ).

Theorem 8. The S∗R radii for the classes H1
b,c, H2

b,c and H3
b are as follows:
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1. For the class H1
b,c, the sharp S∗R radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = (2

√
2− 3)+ 2(

√
2− 1)(d+ q+ s)r+(6+ 4

√
2+(2

√
2− 1)(qs+ d(q+ s)))r2 +

2((4+
√

2)(q+ s) + d(4+
√

2+
√

2qs))r3 + 8(3+ qs+ d(q+ s))r4− 2((−7+
√

2)(q+
s) + d(−7 +

√
2 + (−3 +

√
2)qs))r5 + (18 − 4

√
2 + (5 − 2

√
2)(qs + d(q + s)))r6 −

2((−2 +
√

2)(d + q + s))r7 + (3− 2
√

2)r8.
2. For the class H2

b,c, the S∗R radius ρ2 ∈ (0, 1) is the smallest root of the equation x2(r) = 0,
where
x2(r) = (2

√
2 − 3) + 2(

√
2 − 1)(m + n + q)r + (7 + 2

√
2 + (2

√
2 − 1)(nq + m(n +

q)))r2 + (8(m + q) + 2n(4 +
√

2 +
√

2mq))r3 + (15− 2
√

2 + 7mq− 2
√

2mq + 8n(m +
q))r4− 2((−7+

√
2)n+(−3+

√
2)q+(−3+

√
2)m(1+nq))r5 +(5− 2

√
2)(1+n(m+

q))r6 − 2((−2 +
√

2)n)r7.
3. For the class H3

b , the sharp S∗R radius ρ3 ∈ (0, 1) is the smallest root of the equation x3(r) = 0,
where
x3(r) = (2

√
2− 3) + 2(

√
2− 1)(l + q)r + (5 + 2

√
2 + (−1 + 2

√
2)lq)r2 + 6(l + q)r3 +

(11− 2
√

2 + (5− 2
√

2)lq)r4 − 2((−2 +
√

2)(l + q))r5 + (3− 2
√

2)r6.

Proof.

1. Note that x1(0) = 2
√

2− 3 < 0 and x1(1) = 6(2 + d)(2 + q)(2 + s) > 0; thus, in view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in the
interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0. For
2(
√

2− 1) < C ≤
√

2, Kumar et al. [40] proved that

{w ∈ C : |w− C| < C− 2(
√

2− 1)} ⊆ ψ(∆). (47)

As the centre of the disc in (21) is 1, by (47) f ∈ S∗R if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 3− 2

√
2, (48)

which is equivalent to f ∈ S∗R if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this
f ∈ S∗R for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (48), the function
F1(z) defined for the class H1

b,c in (8) at z = −ρ1, satisfies the following equality

∣∣∣∣ zF′1(z)
F1(z)

∣∣∣∣ =
∣∣∣∣∣1− ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

)∣∣∣∣∣
= 2(
√

2− 1) = ψ(−1).

This proves the sharpness.
2. A calculation shows that x2(0) = 2

√
2− 3 < 0 and x2(1) = 6(2+m)(l + n)(2+ q) > 0.

By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation
x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of the equation x2(r) = 0 and f ∈ H2

b,c.
In view of (47) and the fact that the centre of the disc in (13) is 1, f ∈ S∗R if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤ 3− 2

√
2,

which is equivalent to f ∈ S∗R if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗R for
|z| = r ≤ ρ2.

3. It is easy to see that x3(0) = 2
√

2− 3 < 0 and x3(1) = 4(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
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Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. Since the centre of the
disc in (29) is 1, by (47), f ∈ S∗R if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 3− 2

√
2, (49)

which is equivalent to f ∈ S∗R if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗R for |z| = r ≤ ρ3.
The result is sharp for the function F3 defined for the class H3

b in (20). At z = −ρ3 and
for u = 4b− q ≥ 0, it follows from (49) that∣∣∣∣ zF′3(z)

F3(z)

∣∣∣∣ =
∣∣∣∣∣1− ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

)∣∣∣∣∣ = ψ(−1).

Remark 11. Substituting b = 1, c = 1 and q = 2 in Theorem 8, we obtain the result (Theorem 8,
p. 15, [14]).

In 2020, Wani and Swaminathan [41] (Lemma 2.2) introduced the class S∗Ne = S∗(1 +
z− (z3/3)) consisting of functions associated with a nephroid. Thus, as per definition, a
function f ∈ S∗Ne if and only if z f ′/ f maps the open unit disc ∆ onto the interior of a two
cusped kidney shaped curve ΩNe := {u + iv : ((u− 1)2 + v2 − 4/9)3 − 4v2/3 < 0}. In
next theorem, we find the sharp radii constants RS∗Ne

(H1
b,c), RS∗Ne

(H2
b,c) and RS∗Ne

(H3
b ).

Theorem 9. The sharp S∗Ne radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗Ne radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = −2 + (d + q + s)r + 4(8 + qs + d(q + s))r2 + (31(q + s) + d(31 + 7qs))r3 +
24(3+ qs+ d(q+ s))r4 + (35(q+ s) + d(35+ 11qs))r5 + 8(5+ qs+ d(q+ s))r6 + 5(d+
q + s)r7 + 2r8.

2. For the class H2
b,c, the sharp S∗Ne radius ρ2 ∈ (0, 1) is the smallest root of the equation

x2(r) = 0, where
x2(r) = −2+ (m+ n+ q)r + 4(7+ nq+m(n+ q))r2 + (31n+ 24q+m(24+ 7nq))r3 +
(38 + 24mn + 14mq + 24nq)r4 + (35n + 11q + 11m(1 + nq))r5 + 8(1 + n(m + q))r6 +
5nr7.

3. For the class H3
b , the sharp S∗Ne radius ρ3 ∈ (0, 1) is the smallest root of the equation

x3(r) = 0, where
x3(r) = −2 + (2 + l)r + (22 + 8l)r2 + 18(2 + l)r3 + (26 + 16l)r4 + 5(2 + l)r5 + 2r6.

Proof.

1. Note that x1(0) = −2 < 0 and x1(1) = 18(2 + d)(2 + q)(2 + s) > 0; thus, in view of
the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in the
interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0. For
1 ≤ C < 5/3, Wani and Swaminathan [41] (Lemma 2.2) had proved that

{w ∈ C : |w− C| < 5/3− C} ⊆ ΩNe. (50)

As the centre of the disc in (21) is 1, by (50), f ∈ S∗Ne if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 2

3
, (51)

which is equivalent to f ∈ S∗Ne if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this
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f ∈ S∗Ne for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (51), the function
f1(z) defined for the class H1

b,c in (6) at z = −ρ1, satisfies the following equality

∣∣∣∣ z f ′1(z)
f1(z)

∣∣∣∣ =
∣∣∣∣∣1 + ρ1

(1− ρ2
1)

(
uρ2

1 + 4ρ1 + u
ρ2

1 + uρ1 + 1
+

vρ2
1 + 4ρ1 + v

ρ2
1 + vρ1 + 1

+
qρ2

1 + 4ρ1 + q
ρ2

1 + qρ1 + 1

)∣∣∣∣∣
=

5
3

,

which belongs to the boundary of the region ΩNe. This proves sharpness.
2. A calculation shows that x2(0) = −2 < 0 and x2(1) = 18(2 + m)(l + n)(2 + q) > 0.

By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation
x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of the equation x2(r) = 0 and f ∈ H2

b,c.
In view of (50) and the fact that centre of the disc in (13) is 1, f ∈ S∗Ne if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤ 2

3
, (52)

which is equivalent to f ∈ S∗Ne if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗Ne
for |z| = r ≤ ρ2. To prove the sharpness, consider the function f2 defined in (14). For
u = 5b− 3c ≥ 0, v = 3c− q ≥ 0 and z = −ρ2, it follows from (52) that

∣∣∣∣ z f ′2(z)
f2(z)

∣∣∣∣ =
∣∣∣∣∣1 + ρ2

(1− ρ2
2)

(
uρ2

2 + 4ρ2 + u
ρ2

2 + uρ2 + 1
+

vρ2
2 + 2ρ2 + v
vρ2 + 1

+
qρ2

2 + 4ρ2 + q
ρ2

2 + qρ2 + 1

)∣∣∣∣∣
=

5
3

,

which illustrates the sharpness.
3. It is easy to see that x3(0) = −2 < 0 and x3(1) = 12(2 + l)(2 + q) > 0. By the

Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. Since the centre of the
disc in (29) is 1, by (50), f ∈ S∗Ne if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ 2

3
, (53)

which is equivalent to f ∈ S∗Ne if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest root
of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves that
f ∈ S∗Ne for |z| = r ≤ ρ3.
The result is sharp for the function f3 defined for the class H3

b in (19). At z = −ρ3 and
for u = 4b− q ≥ 0, it follows from (53) that∣∣∣∣ z f ′3(z)

f3(z)

∣∣∣∣ =
∣∣∣∣∣1− ρ3

1− ρ2
3

(
uρ2

3 + 4ρ3 + u
ρ2

3 + uρ3 + 1
+

qρ2
3 + 4ρ3 + q

ρ2
3 + qρ3 + 1

)∣∣∣∣∣ = 5
3

.

Remark 12. Figure 4 represents sharp S∗Ne radii estimated for all three classes.
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Figure 4. Sharp S∗Ne radii for H1

b,c, H2
b,c and H3

b (b = 1, c = 1, q = 2).

Remark 13. For b = 1, c = 1 and q = 2, Theorem 9 reduces to the corresponding results in
(Theorem 10, p. 18, [14]).

In 2020, the class S∗SG = S∗(2/(1+ e−z)) that maps the open unit disc ∆ onto a domain
∆SG := {w ∈ C : | log(w/(2− w))| < 1} was introduced by Goel and Kumar [42]. Some
results for the class S∗SG can be seen in [43]. The following theorem gives the sharp radii
constants RS∗SG

(H1
b,c), RS∗SG

(H2
b,c) and RS∗SG

(H3
b ).

Theorem 10. The sharp S∗SG radii for the classes H1
b,c, H2

b,c and H3
b are as follows:

1. For the class H1
b,c, the sharp S∗SG radius ρ1 ∈ (0, 1) is the smallest root of the equation

x1(r) = 0, where
x1(r) = (1− e)+ 2(d+ q+ s)r+(2(7+ 5e)+ (3+ e)(qs+ d(q+ s)))r2 +(2(6+ 5e)(q+
s) + 2d(6 + 5e + (2 + e)qs))r3 + 8(1 + e)(3 + qs + d(q + s))r4 + 2((5 + 6e)(q + s) +
d(5 + qs + 2e(3 + qs)))r5 + (2(5 + 7e) + (1 + 3e)(qs + d(q + s)))r6 + 2e(d + q + s)r7 +
(−1 + e)r8.

2. For the class H2
b,c, the sharp S∗SG radius ρ2 ∈ (0, 1) is the smallest root of the equation

x2(r) = 0, where
x2(r) = (1 − e) + 2(m + n + q)r + (11 + 9e + (3 + e)(nq + m(n + q)))r2 + 2(4(1 +
e)m+ (6+ 5e)n+ 4(1+ e)q+ (2+ e)mnq)r3 + (11+ 8mn+ 3mq+ 8nq+ e(13+ 8mn+
5mq + 8nq))r4 + 2((5 + 6e)n + q + 2eq + (1 + 2e)m(1 + nq))r5 + (1 + 3e)(1 + n(m +
q))r6 + 2enr7.

3. For the class H3
b , the sharp S∗SG radius ρ3 ∈ (0, 1) is the smallest root of the equation

x3(r) = 0, where
x3(r) = (1 − e) + 2(l + q)r + (9 + 7e + (3 + e)lq)r2 + 6(1 + e)(l + q)r3 + (7 + lq +
3e(3 + lq))r4 + 2e(l + q)r5 + (−1 + e)r6.

Proof.

1. Note that x1(0) = 1− e < 0 and x1(1) = 6(1 + e)(2 + d)(2 + q)(2 + s) > 0. In view
of the Intermediate Value Theorem, there exists a root of the equation x1(r) = 0 in
the interval (0, 1). Let r = ρ1 ∈ (0, 1) be the smallest root of the equation x1(r) = 0.
For 2/(1 + e) < C < 2e/(1 + e), Goel and Kumar [42] proved the following inclusion
property,

{w ∈ C : |w− C| < rSG} ⊂ ∆SG, where rSG =

(
e− 1
e + 1

)
− |C− 1|. (54)
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As the centre of the disc in (21) is 1, by (54), f ∈ S∗SG if

r
(1− r2)

(
dr2 + 4r + d
r2 + dr + 1

+
sr2 + 4r + s
r2 + sr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ e− 1

e + 1
, (55)

which is equivalent to f ∈ S∗SG if x1(r) ≤ 0. Since x1(0) < 0 and ρ1 is the smallest root
of the equation x1(r) = 0, x1(r) is an increasing function on (0, ρ1). In view of this
f ∈ S∗SG for |z| = r ≤ ρ1. For u = 6b− 4c ≥ 0, v = 4c− q ≥ 0, using (55), the function
f1(z) defined for the class H1

b,c in (6) at z = −ρ1, satisfies the following equality∣∣∣∣∣∣log

 z f ′1(z)
f1(z)

2− z f ′1(z)
f1(z)

∣∣∣∣∣∣ =
∣∣∣∣∣∣log

 1 + e−1
e+1

2−
(

1 + e−1
e+1

)
∣∣∣∣∣∣ = |log(e)| = 1. (56)

It follows that the radius is sharp.
2. A calculation shows that x2(0) = 1− e < 0 and x2(1) = 6(1 + e)(2 + m)(l + n)(2 +

q) > 0. By the Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the
equation x2(r) = 0. Let ρ2 ∈ (0, 1) be the smallest root of the equation x2(r) = 0 and
f ∈ H2

b,c. In view of (54) and the fact that the centre of the disc in (13) is 1, f ∈ S∗SG if

r
(1− r2)

(
mr2 + 4r + m
r2 + mr + 1

+
nr2 + 2r + n

nr + 1
+

qr2 + 4r + q
r2 + qr + 1

)
≤ e− 1

e + 1
, (57)

which is equivalent to f ∈ S∗SG if x2(r) ≤ 0. Since x2(0) < 0 and ρ2 is the smallest root
of the equation x2(r) = 0, x2(r) is an increasing function on (0, ρ2). Thus, f ∈ S∗SG
for |z| = r ≤ ρ2. To prove the sharpness, consider the function f2 defined in (14).
For u = 5b− 3c ≥ 0, v = 3c− q ≥ 0 and z = −ρ2, the similar calculations as in (56)
together with (57) proves that the result is sharp.

3. It is easy to see that x3(0) = 1− e < 0 and x3(1) = 4(1 + e)(2 + l)(2 + q) > 0. By the
Intermediate Value Theorem, there exists a root r ∈ (0, 1) of the equation x3(r) = 0.
Let ρ3 ∈ (0, 1) be the smallest root of the equation x3(r) = 0. Since the centre of the
disc in (29) is 1, by (54), f ∈ S∗SG if

r
1− r2

(
lr2 + 4r + l
r2 + lr + 1

+
qr2 + 4r + q
r2 + qr + 1

)
≤ e− 1

1 + e
,

which is equivalent to f ∈ S∗SG if x3(r) ≤ 0. Since x3(0) < 0 and ρ3 is the smallest
root of the equation x3(r) = 0, x3(r) is an increasing function on (0, ρ3). This proves
that f ∈ S∗SG for |z| = r ≤ ρ3.
At z = −ρ3 and for u = 4b− q ≥ 0, a calculation as in part(i) shows that the result is
sharp for the function F3 defined for the class H3

b in (20)

Remark 14. Figure 5 represents sharp S∗SG radii estimated for all three classes.
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Figure 5. Sharp S∗SG radii for H1

b,c, H2
b,c and H3

b (b = 1, c = 1, q = 2).
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Remark 15. Placing b = 1, c = 1 and q = 2 in Theorem 10, we obtain the result (Theorem 11, p.
19, [14]).

4. Conclusions

The well-known classes as particular cases can be obtained from the newly defined
classes H1

b,c, H2
b,c and H3

b . In Section 3, we found the sharp radii constants RN(H1
b,c),

RN(H2
b,c) and RN(H3

b ), where N is any one of the subclasses, as mentioned in Section 1, of
Ma-Minda class S∗(ψ). However, it is challenging to investigate the following open prob-
lem: Find sharp estimates of radii constants RS∗(ψ)(H1

b,c), RS∗(ψ)(H2
b,c) and RS∗(ψ)(H3

b,c).

Remark 16. If this open problem is solved, then Theorem 1 to Theorem 10 may become special cases
of this new theorem.
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