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Abstract: Given several nonnegative matrices with a single pattern of allocation among their
zero/nonzero elements, the average matrix should have the same pattern as well. This is the
first tenet of the pattern-multiplicative average (PMA) concept, while the second one suggests the
multiplicative nature of averaging. The concept of PMA was motivated in a number of application
fields, of which we consider the matrix population models and illustrate solving the PMA problem
with several sets of model matrices calibrated in particular botanic case studies. The patterns of those
matrices are typically nontrivial (they contain both zero and nonzero elements), the PMA problem
thus having no exact solution for a fundamental reason (an overdetermined system of algebraic
equations). Therefore, searching for the approximate solution reduces to a constrained minimization
problem for the approximation error, the loss function in optimization terms. We consider two alter-
native types of the loss function and present a general algorithm of searching the optimal solution:
basin-hopping global search, then local descents by the method of conjugate gradients or that of
penalty functions. Theoretical disadvantages and practical limitations of both loss functions are
discussed and illustrated with a number of practical examples.

Keywords: matrix population model; population projection matrices; life cycle graph; loss functions;
basin-hopping global search; matrix derivatives
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1. Introduction

The concept of pattern-multiplicative average (PMA), or pattern-geometric mean, was
proposed with regard to matrix population models (MPMs) for the dynamics of discrete-
structured populations [1] in order to summarize the outcome of monitoring a local popu-
lation of a biological species over several years and to calculate the ensuing measure for
assessing the population viability.

1.1. Matrix Population Models

The MPM is represented by a system of difference equations,

x(t + 1) = L(t) x(t), t = 0, 1, 2, . . . (1)

for the vector of population structure, x(t) ∈ Rn
+, with a nonnegative n × n matrix, L(t), called

the population projection matrix (PPM) [1]. Each component of x(t) is the (absolute or relative)
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number of individuals in the corresponding status-specific group at the observation year
t, while the elements of L, called vital rates (ibidem), bear information about the rates of
demographic processes in the population.

The pattern of matrix L shows the allocation of zero/nonzero elements in the matrix.
It corresponds to the associated directed graph [2] called the life cycle graph (LCG) [1] as it
represents graphically the knowledge of life histories involved into the model in combina-
tion with the way the population structure is observed in the field or laboratory (Figure 1
gives an example). If matrix L is positive or L = 0, then its pattern is trivial. When the LCG
is strongly connected [2], it signifies a certain integrity of the individuals’ life history and
provides for the PPM being irreducible [3,4]. However, the LCG ceases to be strong when it
includes post-reproductive stages (a further, more complicated sample follows).
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Figure 1. Life cycle graph for a local population of Androsace albana, an alpine short-lived perennial
species, observed once a year. Ontogenetic stage notations: pl, seedlings; j, juvenile plants; im,
immature plants; v, adult vegetative plants; g, generative plants, the stages being distinguishable in
the field. Solid arrows indicate transitions occurring for one year (no transition, in particular); dashed
arrows correspond to the annual population recruitment [5].

In theoretical layouts and practical applications, it is convenient to consider the PPM
as the sum,

L = T + F, (2)

of its parts that are responsible for the transitions (T) between individual statuses and
population recruitment (F) [1,6]. In particular, if we number the graph nodes in Figure 1
from left to right, then we have
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associated with the LCG shown in Figure 1. Matrix T is always column substochastic, i.e.,
its column sums do not exceed 1 according to their biological sense.

“When calibrated reliably from data, matrix L(t) gives rise to a rich repertoire of
qualitative properties and quantitative indices characterizing the population under study
at the place where and the time when the data were mined” ([7], p. 2/15). In particular, the
dominant eigenvalue, λ1(L) > 0, of matrix L, which coincides with ρ(L) (the spectral radius of
L) and exists by the classical Perron–Frobenius theorem for nonnegative matrices [3,8,9],
“gives a quantitative measure of how the local population is adapted to its environment [9],
thus serving as an efficient tool of comparative demography [1] and enabling a forecast
of population viability. This ability ensues from the dynamics of trajectory x(t) as t tends
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to +∞ when (a primitive [4]) L(t) = L does not change with time” ([7], p. 2/15). In formal
terms, we have

x(t) ∼ λ1
t x∗, ∀ x(0) ∈ Rn

+, (4)

where x* is a positive eigenvector corresponding to λ1, with a norm depending on x(0) [1].
Thus,

x(t) →


0, if λ1 < 1;
x∗, if λ1 = 1;
∞, if λ1 > 1,

(5)

and the location of λ1 relative to 1 may serve as a forecast of population viability if we
believe that the vital rates do not change with t.

In practice, however, they do change quantitatively (yet retaining their single pattern)
with time when t > 2. Each pair of consecutive years of observation generate a particular
annual PPM L(t) obeying Equation (1) [1,5,10], and we have a finite set, L(0), L(1), . . . ,
L(M − 1), of M annual PPMs as a result of M + 1 observation years. Different PPMs
generate different or even controversial (Table 3 in [9]) forecasts of population viability,
and these motivate a task to average the set of PPMs in order to summarize all the years
of observation.

1.2. Pattern-Multiplicative Average of Several PPMs

The logic behind averaging may be implicit or explicit and vary in complexity from
the ordinariness of the arithmetic mean [11,12] through the weighted mean values of matrix
elements [13] to the PMA concept [14] explained below.

Given a vector x(0) at the initial year of observation and a vector x(M) at the final year,
it follows from (1) that

x(M) = L(M − 1) L(M − 2) . . . L(1) L(0) x(0), (6)

i.e., the product of M annual PPMs (in the chronological order) transforms x(0) exactly to
x(M). The logic of PMA suggests that the average matrix G should do exactly the same
when raised to the Mth power. This is supposedly true for any observed vectors, whereby
we conclude that

GM = L(M − 1) L(M − 2) . . . L(1) L(0). (7)

One more natural constraint on G consists in the pattern of G coinciding with that of
the PPMs to be averaged.

Definition 1. Let L(0), L(1), . . . , L(M − 1) be nonnegative square matrices with a single
nontrivial pattern. Matrix G = G{L(0), L(1), . . . , L(M − 1)} is called the pattern-multiplicative
average (or pattern-geometric average) of the M given matrices if it has the same pattern and
obeys the averaging Equation (7).

Note that the vector-matrix Equation (7) with an n × n matrix G is equivalent to a
system of n2 scalar algebraic equations, and the question is how many unknown elements
of G the system has to contain. When the pattern of G is trivially complete, i.e., when all the
nonnegative matrices L(t) are actually positive, the number of unknowns equals n2 as well,
so that Equation (7) may have a nontrivial exact solution (Table 3 in [15]). However, when
the pattern of L(t) is nontrivial, matching a real LCG, the number (k) of unknown positive
entries in G is less than n2, so that system (7) becomes an overdetermined system of algebraic
equations (see, e.g., [16]). There is no reason to consider the remaining (n2 − k) equations
as a linear combination of the former k ones, so that the overdetermined system (7) is
inconsistent and has no exact solutions.

The task to average M given PPMs can therefore be accomplished as an approximate
solution to system (7), with a logical requirement to minimize the approximation error,
which is measured in some reasonable way.
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Definition 2. Let L(0), L(1), . . . , L(M − 1) be nonnegative square matrices with a single
nontrivial pattern. Matrix G = G{L(0), L(1), . . . , L(M − 1)} is called an approximate pattern-
multiplicative average (APMA) of the M given matrices if it has the same pattern and
represents a solution to a constrained minimization problem for the approximation error in
solving system (7).

In what follows, we use the same notation G for the APMA matrix.

1.3. Minimization Problem for the Approximation Error

Equation (7) is obviously equivalent to

GM − L(M − 1)L(M − 2) . . . L(1) L (0) = 0, (8)

so that a norm of the left-hand side can be considered as the approximation error when G
is an approximate solution rather than the exact one. When the matrix size (n × n) and the
number of cofactors (M) are not too high, e.g., n = 5, M = 7 in Figure 1 and Equation (3), the
APMA problem can be solved numerically by means of a modern software system such as
MATLAB® with an acceptable accuracy (Tables 3 and 4 and Appendix A in [5]).

However, the standard MATLAB tools return very rough estimates for higher dimen-
sions n. This is seen, for example, in the sample calculations with n = 11 and M = 12.
This phenomenon is quite natural since the error function is highly non-convex, in which
case the optimization problem is notoriously hard. The number of local minima can grow
exponentially with n. Therefore, the standard computer optimization software suffers when
n is relatively large. In this case, one needs to choose special mathematical tools suitable for
a particular problem. We find those tools as combinations of modern algorithms for local
and global optimization.

2. Objects and Methods
2.1. A. albana Annual PPMs

Note that annual PPMs (3) contain 10 nontrivial elements a, b, . . . , l, m (called vital
rates [1]), and if we consider them as a row vector, then the 12 annual PPMs of A. albana can
be presented as a single table (Table 1). Those rates take on the form of rational numbers
according to the way they were mined in the field [5].

Table 1. Vital rates of A. albana as the entries of 12 annual PPMs (extracted from Table 3 in [10]).

Year a b c d e f h k l m

2009 30/13 40/13 3/13 8/37 2/37 22/110 28/29 7/99 19/35 1/35

2010 19/1 31/1 0/1 14/30 4/30 22/48 17/55 34/55 23/26 1/26

2011 49/1 85/1 25/1 1/19 6/19 35/45 21/43 10/43 48/57 7/57

2012 19/4 136/4 1/4 1/49 10/49 45/86 39/87 28/87 45/58 6/58

2013 16/6 98/6 2/6 0 2/19 16/137 14/95 6/95 64/73 3/73

2014 4/3 19/3 0/3 0 2/16 2/98 6/34 4/34 16/50 4/50

2015 10/4 29/4 0/4 0 0 10/19 3/10 5/10 17/20 1/10

2016 3/2 8/2 0 0 2/10 5/29 5/13 8/13 20/22 1/22

2017 12/1 23/1 0 0 3/3 2/8 8/12 2/12 21/28 2/28

2018 13/2 38/2 0 0 1/12 1/23 0/13 1/13 22/23 1/23

2019 8/2 9/9 0 1/3 2/3 2/3 4/4 2/4 19/19 5/19

2020 8/2 9/2 0 1/3 2/3 2/3 4/4 1/13 19/19 5/15
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We consider solving the APMA problem for the first 7 PPMs (2009–2015) as Example 1
and for all the 12 ones as Example 4. Example 2 will refer to the seven matrices modified in
some elements as marked in Table 2 with bold.

Table 2. Example 2: modified Example 1 for testing the column substochastic property.

“Year” a b c d e f h k l m

1 30/13 4/13 3/13 8/37 2/37 22/110 28/29 7/99 9/35 11/35

2 19/1 31/1 0/1 14/30 4/30 22/48 17/55 34/55 25/26 1/26

3 49/1 85/1 25/1 1/19 6/19 35/45 21/43 10/43 48/57 7/57

4 19/4 136/4 1/4 1/49 10/49 45/86 39/87 28/87 45/58 8/58

5 16/6 98/6 2/6 0 2/19 16/137 14/95 6/95 64/73 3/73

6 4/3 19/3 0/3 0 2/16 2/98 6/34 4/34 16/50 26/50

7 10/4 29/4 0/4 0 0 10/19 3/10 5/10 17/20 1/10

2.2. Calamagrostis epigeios PPM and Its Perturbations

C. epigeios is a long-rhizome perennial graminoid actively colonizing open areas in the
temperate zone [17]. Its biology is well studied, and the life cycle graph was constructed in
terms of both ontogenetic stage and chronological age (Figure 2). In contrast to Figure 1, the
C. epigeios digraph is not strongly connected, but it contains what was called the reproductive
core of the LCG, the maximal connected subgraph [13].
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Figure 2. LCG for Calamagrostis epigeios according to the excavation data of a 3-year-old colony in
2015: v denotes the stage of adult vegetative plants; gi (i = 1, 2, 3), generative plans with i generative
shoots; ss and s, subsenile and senile stages, respectively. Solid arrows indicate the ontogenetic
transitions that have occurred for 1 year: numbers at the arrows indicate proportions of the tufts
outgoing from an initial status in 2014 and reaching the ingoing status by 2015; the number inside the
vertex is the ordinal number the corresponding component has in the vector of population structure;
gray background highlights the reproductive core of the LCG (Figure 4I in [17]).
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The construction was based on the data gained by excavating a whole local colony
of the plants [17]. Those data enabled calibrating a single PPM alone. The entries of the
transition part were determined in a unique way as rational numbers, while those of the
5 × 5 reproductive-core submatrix remained uncertain:

L =



a/43 b/7 0 c/12 d/3 0 e/3 0 0 0 0
23/43 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
f /43 0 0 0 g/3 0 h/3 0 0 0 0

10/43 0 0 7/12 0 0 0 0 0 0 0
k/43 0 0 0 0 0 0 0 0 0 0
2/43 0 0 1/12 0 0 0 0 0 0 0

0 0 0 0 0 0 2/3 0 0 0 0
1/43 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 2/7 0 0 2/3 0 0 0 0 0 0



, (9)

restricted with certain linear equalities (“reproductive uncertainty” [17], p. 387):{
a + b + c + d + e = 163,

f + g + h = 22,
(10)

and certain linear inequalities:

a + f + k ≥ c + g ≥ d + h ≥ b ≥ e, (11)

ensued from the expert knowledge [17]. Here, the 9 reproduction rates a, b, . . . , h, k≥ 0 take
on integer values only in accordance with empirical data [17]: after the Colony had been
excavated and all the mother-daughter rhizome links counted, the 9 uncertain parameters
became certain (ibidem, Table 3) and resulted in λ1(L) = 3.4266 (ibidem) signifying rapid
growth of the young Colony.

Table 3. Example 3: Nonzero elements of the 9 Calamagrostis epigeios PPMs to be averaged.

“Year” a b c d e f g h k λ1

1 117 3 38 3 2 12 9 1 1 3.4266

2 100 2 54 5 2 12 8 2 2 3.3093

3 120 3 36 2 2 14 7 1 5 3.4198

4 125 4 30 2 2 10 10 2 2 3.4707

5 117 1 41 3 1 10 10 2 1 3.4124

6 119 2 37 3 2 13 7 2 3 3.4050

7 123 3 34 1 2 11 9 2 1 3.4281

8 106 5 45 4 3 12 9 1 2 3.3740

9 111 3 45 3 1 10 10 2 1 3.3847

To illustrate the concept of PMA we have to obtain a finite set of such matrices, and we
have obtained it by means of perturbing the nine rates artificially to the values presented in
Table 3 (“years” 2 to 9) together with the corresponding values of λ1(L).
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2.3. Mathematical Problem Formulation

We solve the following APMA problem:{
f (X) =‖ XM − LM . . . L1 ‖F→ minX,

min+
k Lk(i, j) ≤ X(i, j) ≤ maxkLk(i, j), i, j = 1, . . . , n;

min+(x, y) =
{

min(x, y) i f x·y 6= 0,
max(x, y) i f x·y = 0,

(12)

where the n × n matrix X has a prescribed pattern (the allocation of nonzero elements) and
the expression

‖ X ‖F =
√

x2
11 + . . . + x2

nn (13)

denotes the Frobenius norm of the matrix. Additional linear constraints on the elements of
X (both equalities and inequalities) can also be incorporated, such as conditions (10)–(11)
and those of the transition part in (3) being substochastic.

Instead of minimizing the “loss function” (in the terminology of optimization the-
ory) f (X) = ‖ XM − LMLM−1 . . . L2L1 ‖F, we may consider minimizing the loss function
Φ(X) = f 2(X) that is calculated as the sum of all the squared elements in the difference of
two matrices. The minimum has to be reached at the same matrix X.

2.4. Method 1 to Solve the APMA Problem

We use the basin-hopping method of global optimization suggested in [18–20]. This is
an iterative stochastic method reduced to repeating three key steps. First, the coordinates
are randomly perturbed, and a method of local optimization is then launched from the
perturbed starting point. Finally, based on the obtained minimum, it is determined whether
the coordinate perturbation has turned out to be successful and has to be saved. The base
version of the basin-hopping method uses the Metropolis criterion algorithm [21], although
modifications are also possible.

To find a local minimum, we use the trust-region method (TRM) suggested in [22,23]
as the algorithm of local optimization. It first determines a trust region around the best
current solution, and a quadratic model of approximation is then used within this region.
The region size is updated at each step, i.e., the size increases if the approximation of the
objective function is rather good; otherwise, it decreases. Trust-region methods are quite
popular in solving various nonlinear optimization problems due to their applicability to
the ill-conditioned ones and to their convergence and robustness properties; see [24] and
references therein.

TRM methods support both the equality- and inequality-type constraints, and they
guarantee the constraints to hold after optimization (in contrast to other local methods
such as SLSQP or L-BFGS [25]). However, the TRM may sometimes be slower, and the
alternative methods of local optimization could also be useful in some cases.

2.5. Method 2 to Solve the APMA Problem

The second approach originates from the class of penalty methods. In these methods,
an additional term is introduced as a measure of constraint violations. In our case, we
consider the column substochastic constraints and solve the following problem:{

‖ XM − LM . . . L1 ‖2
2 +ε(X)→ minX;

min+
k Lk(i, j) ≤ X(i, j) ≤ maxkLk(i, j), i, j = 1, . . . , n,

(14)

where ε(X) consists of several summands, each one corresponding to one of the inequal-
ities. If an inequality is violated, the corresponding summand equals the squared mag-
nitude of violation multiplied with a constant. For example, when the inequality is
X(0, 0) + X(0, 1) ≤ 1, the summand equals C (X(0, 0) + X(0, 1) − 1) 2 if X(0, 0) + X(0, 1) > 1.

Constant C should be chosen manually as its value depends on the current state of the
algorithm. It is a popular strategy to change the value of C in the course of the algorithm



Mathematics 2022, 10, 4417 8 of 15

because smaller Cs are better at the beginning phase, as they accelerate the convergence of
the gradient descent. However, larger values of C are desirable in the end of the algorithm
since they guarantee the feasibility of constraints.

We have seen in experiments that it is better not to put any box constraints in the
penalty summands, but rather to diversify them as the bounds for the variables.

The basin-hopping algorithm described above (Section 2.4) can be used as a global
optimization method. If we do not have any additional constraints of equality type, then
the choice of the underlying local methods becomes wider. For example, it is possible to
use the L-BFGS algorithm [26], which is faster than the TRM. If, however, we do have
additional equality constraints, the TRM shall still be used.

We suggest another problem setting in the next section, where we minimize another
loss function, the same methods still being applicable there. Both Method 1 and Method 2
work more stably when the derivatives of their loss functions are given explicitly. They are
calculated for the both loss functions in the next Section.

3. New Loss Function of Approximation

Introduced in Section 2.3 as a measure of approximation error, the loss function
Φ(X) has several disadvantages. First, it measures the absolute error and changes with
the normalization of matrices. A suitable normalization can be done by the division
by the norm of the matrix, or by the spectral radius product of the product LM . . . L1.
However, normalization cannot exclude other shortcomings, either. Some of them are
explained below.

(1) Loss function Φ behaves differently in the approximations from above and from below.
This phenomenon already occurs in the dimension n = 1. In the one-dimensional case,
we denote the “matrices” (numbers) with small letters. Let x be an approximation
of the multiplicative mean of numbers lM, . . . , l1. Denote q = (lM . . . l1)1/M; then
Φ(x) = |xM − qM|2. Normalize all the lj such that q = 1 and note a key difference
between the cases of x < 1 and x > 1, namely,

Φ(x)
{
→ ∞ as M→ ∞ if x > 1,

< 1 for all Mif x < 1.

Let, for example, M = 10. When x = 1.1, we have Φ(x) = |x10 − 1|2 = 2.54. On the
other hand, for x = 0.1, we have Φ(x) = |0.110 − 1|2 = 0.9999 . . . , hence the loss function Φ
has to choose the approximation x = 0.1 in spite of it being much worse.

(2) The value of Φ may increase with M and even tend to infinity. In the example above,
if x = 1.1, we have Φ(x) → ∞ as M → ∞. In real practice, however, the situation
should be the opposite: the greater M, the sharper will be the approximation to the
average value.

(3) When ρ(X), the spectral radius of X is small, and the value of Φ can be very small
and unable to distinguish the quality of approximation. In the example above, when
M = 100, the approximations x = 0.5 and x = 0.1 are practically not comparable because
Φ(x) < 10−30 in both cases.

The following idea helps avoid all of these shortcomings. In the case of n = 1, if q
denotes the actual value of the multiplicative mean and x our approximation, then

|x− q|2 =
|xM − qM|2

|qM−1 + qM−2x + . . . + qxM−2 + xM−1|2
(15)

Thus, the numerator Φ(x) is divided by a specially chosen denominator. If q is un-
known, the powers qk can be replaced by the products lM . . . lM −k+1. The same principle
can be applied in our problem, when we deal with matrices instead of numbers. We
begin with lM since this is chronologically the last measurement and it should give the
main contribution to measuring the quality of approximation when the application context
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suggests such a priority. Translating this idea to the general dimension n, we replace Φ
with the new loss function S(X) = s(X)2:

S(X) =
Φ(X)

Ψ(X)
, (16)

where Ψ is defined as
Ψ(X) =‖∑M−1

j=0 LM . . . Lj+2 ‖2 (17)

We derive the derivative of Ψ by applying Proposition 1 (see Appendix A):

S′(X) =
ΨΦ′ −ΦΨ′

Ψ2 , (18)

where Φ =Φ(X), Ψ = Ψ(X) are defined in (A.1) and the derivatives Φ’, Ψ ’ are derived by
the formulas from Proposition 1. Note that Φ’, Ψ ’ are n × n matrices, while Φ and Ψ
are nonnegative numbers, Ψ 6= 0. That is why the division in (18) is well defined and Ψ
commutes with Φ’.

4. Results

In this section, we report on the numerical results obtained by the methods presented
in Sections 2.4, 2.5 and 3 and applied to the Examples listed in Sections 2.1–2.3. We consider
settings with both the loss function Φ(X) = f (X)2 (12) and S(X) = s(X)2 (16), both being
calculated in each example for the purpose of comparison (Tables 4–7).

Technical parameters are as follows: in Method 1, we have used 20 iterations of the
basin-hopping algorithm; in Method 2, the first 80 iterations have been made with C = 40,
and the next 20 with C = 2040.

Next, we demonstrate the numerical results for Example 2, an artificial example to
analyze the sensitivity of our method to the substochasticity constraint. The numerical
experiments (see Table 5) show that the results may change after imposing that the solution
must be a column substochastic matrix.

The results for Example 3 turn out to be the same and independent of the linear
inequalities. Using Method 2 makes no sense in this case as the linear equalities (10)
suggest using the TRM. Note that without linear inequalities, Method 2 is the same as
Method 1.

Table 4. Results for Example 1.

Method f(
^
X) s(

^
X) ρ(

^
X)

^
X

Method 1
with Φ(X) 0.02109 0.002374 0.8585

0 0 0 0 3.3309
0.453 0 0 0 7.8767

0.0288 0.2936 0.1474 0 0
0 0 0.1726 0.7589 0
0 0 0 0.1034 0

Method 2
with Φ(X) 0.021089 0.002374 0.8585

0 0 0 0 3.3309
0.4533 0 0 0 7.8757
0.0287 0.22936 0.1474 0 0

0 0 0.1726 0.7589 0
0 0 0 0.1034 0

Method 1
with S(X) 0.021176 0.002379 0.8584

0 0 0 0 3.3348
0.4322 0 0 0 7.9666
0.0363 0.2897 0.1485 0 0.0022

0 0 0.1728 0.7587 0
0 0 0 0.1034 0
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Table 5. Results for Example 2.

Method f(
^
X) s(

^
X) ρ(

^
X)

^
X

Method 1
with Φ(X) 2.865725 0.01689 0.8952

0 0 0 0 29.9759
0 0 0 0 85

0.1383 0.0204 0.1474 0 0.1929
0 0 0.1095 0.32 0
0 0 0 0.52 0

Method 2
with Φ(X) 2.865725 0.016890 0.8952

0 0 0 0 29.9759
0 0 0 0 85

0.1383 0.0204 0.1474 0 0.1929
0 0 0.1095 0.32 0
0 0 0 0.52 0

Method 1
with S(X) 2.874438 0.016851 0.8968

0 0 0 0 30.7974
0.0002 0 0 0 84.9995
0.1033 0.0344 0.1474 0 0.2694

0 0 0.1053 0.3201 0
0 0 0 0.52 0

5. Discussion

To realize our goal of finding the multiplicative mean of several PPMs, we note
first that this problem may have an exact solution. For example, if the matrix product is
diagonalizable, then the multiplicative mean is a diagonal matrix too in the appropriate
basis, with the elements being the complex roots of the corresponding power from the
diagonal elements of the original matrix product. The solution is not unique because of
the non-uniqueness of the complex roots. Taking any of the solutions and transferring
back to the original basis, we get a multiplicative mean. This mean, however, may not be a
nonnegative matrix. Even if it is, it may not satisfy our imposed constraints. This argument,
in addition to that one in Section 1.2 concerning the lack of exact solutions to Equation (7),
substantiates the approximation approach to the problem of pattern-multiplicative average.

We search for a matrix satisfying all the constrains and being close to the unknown
pattern-multiplicative average, G, by means of some loss function. This leads to optimiza-
tion problem (13), where the loss function is the Frobenius norm. The Frobenius norm
is the most popular one in matrix analysis since it is actually the Euclidean norm in the
space of matrices equipped with the standard scalar product. However, this choice of the
distance has several disadvantages, as noted in Section 3. We introduce a modified loss
function and obtain another optimization problem. Both problems are not easy to solve as
they are highly non-convex, and hence may possess many local extrema, and because of
a large number of variables. Non-convexity implies all the known optimization methods
to converge only to local extrema. Therefore, we use the following strategy: first we get
a rough approximation to the optimum by using the global optimization tools, then we
improve the solution by searching for a close point of local minimum (hoping that this
local minimum is close to the global one). Among all the global optimization methods we
choose the basing-hopping method since it successfully approximates the optimal value
for problems with linear constraints even in relatively high dimensions. The next step, i.e.,
improving the solution with a close local minimum, can be realized by various popular
algorithms: the Newton method, gradient methods, the Frank–Wolf algorithm, the trust
region method (TRM), etc. Most of them need a relatively small Lipschitz constant for
the gradient, which is not always the case (see the explicit formulas of the gradient in
Appendix A). That is why the TRM is the most efficient algorithm for our problem.

Despite theoretical disadvantages of the loss function Φ noted in Section 3, our practi-
cal calculations have revealed only minor improvements that the alternative S brings with
any method of the optimal search.
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It is easy to see that the arithmetic mean of all the nine perturbed λ1s (Table 3) equals
3.4034. Neither the arithmetic mean of the annual λ1s, nor λ1 of the arithmetic average of
the annual PPMs can even serve as a crude estimate of the λ1(G).

Note that we do not pretend to exhaust here the theme of “versatile optimization
tools”. For example, a penalty method that can reduce a non-convex problem to an infinite-
dimensional optimal control problem [27] or the generalized subdiffenential technique
based on the sequential optimality conditions [28] look fairly perspective, too. Some non-
convex optimization problems related to the matrix calculus also appear naturally in the
approximation problems, for example, the barycentric rational polynomial approxima-
tion [29] and the generalized weak greedy approximation [30].

Coming back to the logic of PMA, consider the equation

GM = ProdL (19)

equivalent to (8) if ProdL denotes the product of M matrices in its left-hand side. Since
λ1(G M) = λ1(G )M, it follows from (19) that the exact value of λ1(G),

λ1(G) = [λ1(ProdL)]1/M, (20)

is quite calculable from the data and equal to 3.4017 in Example 3 (M = 9), to 0.893087 in
Example 4 (M = 12). It should not be surprising therefore that the corresponding optimized
values of ρ(X) = 3.41... (Table 6) and = 0.88 . . . (Table 7) are close to the exact ones above.
Not surprising would also be an alternative formulation of the APMA problem suggesting
the difference between λ1s as the loss function. Optimization along this line or even that in
combination with the former loss function is worthy of further research efforts.

Table 6. Results for Example 3.

Method f(
^
X) s(

^
X) ρ(

^
X)

^
X

Method
1 with
Φ(X)

8244.621552 0.0292 3.4118

2.6026 0.4901 0 3.4104 1.3229 0 0.9206
0.5349 0 0 0 0 0 0

0 0 0 0 0 0 0
0.2558 0 0 0 3.3333 0 0.3333
0.2326 0 0 0.5833 0 0 0
0.0233 0 0 0 0 0 0
0.0465 0 0 0.0833 0 0 0

Method
1 with
S(X)

8257.167555 0.029157 3.4107

2.5953 0.4891 0 3.4287 1.35 0 0.928
0.5349 0 0 0 0 0 0

0 0 0 0 0 0 0
0.2558 0 0 0 3.3332 0 0.3334
0.2326 0 0 0.5833 0 0 0
0.0237 0 0 0 0 0 0
0.0465 0 0 0.0833 0 0 0
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Table 7. Results for Example 4.

Method f(
^
X) s(

^
X) ρ(

^
X)

^
X

Method 1
with Φ(X) 0.045898 0.007149 0.8876

0 0 0 0 2.7782
0. 1508 0 0 0 3.0007
0.1125 0.3106 0 0 0.8163

0 0 0.3105 0.7453 0
0 0 0 0.1515 0

Method 2
with Φ(X) 0.05156 0.008283 0.8863

0 0 0 0 3.3354
0.3108 0 0 0 3
0.0591 0.3165 0.1474 0 0.6754

0 0 0.2577 0.7682 0
0 0 0 0.1257 0

Method 1
with S(X) 0.046195 0.00708 0.888

0 0 0 0 2.6526
0.0041 0 0 0 3.3033
0.1436 0.2818 0.0001 0 0.8541

0 0 0.3193 0.7378 0
0 0 0 0.1588 0

6. Conclusions

We solve the problem of finding a matrix of a special pattern which is close, in a certain
sense, to the multiplicative mean of several given matrices. The closeness is measured by
a loss function, which is usually non-convex and may have a large Lipschitz constant of
the derivative. This makes the problem of finding the optimal matrix, i.e., of minimizing
the loss function, very difficult. We have elaborated a two-phase method for this problem.
The first phase realizes a rough search of the absolute minimum, and this is done by
the basing-hopping method of global optimization. The second phase provides for an
improved solution at a point of local minimum in a vicinity of our global solution, and this
is done by the trust region method. In numerical examples, we demonstrate the efficiency
of our strategy even for relatively high dimensions. Implementation of these ideas in the
problem of pattern-multiplicative average is not direct and requires the overcoming of
some technical obstacles, which have nevertheless been bypassed in this study. While
the traditional approach to global optimization reduces to searching for the best solution
among the local ones found preliminary, the nontraditional inverted logic may be successful
when the direct one fails.
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Derivatives of matrix functions.
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We consider two functions Φ and Ψ defined on Mn, the set of real n × n matrices,
as follows:

Φ(X) =‖ XM − LMLM−1 . . . L2L1 ‖2
F, Ψ(X) =‖∑M−1

j=0 LM . . . Lj+2 ‖2 (A1)

(in the latter sum, the term with j = M − 1 is equal to XM−1). The norm is Frobenius and
defined by the scalar product (X, Y) = tr(XT Y). We need to find the derivatives of Φ and Ψ
in the space Mn. The derivative is understood in the standard way as a linear functional
on Mn that can be identified with an element of Mn, i.e., with a matrix A = Φ′(X) ∈ Mn
such that

Φ(X + H) = Φ(X) + (A, H) + o(H),

the same being true for the function Ψ, too.
Let

P = P(X) = XM − LM . . . L1, Q = Q(X) = ∑M−1
j=0 LM . . . Lj+2Xj (A2)

Proposition 1. The derivatives of Φ and Ψ at an arbitrary point X ∈Mn are

Φ′(X) = 2 ∑M−1
j=0

(
XT
)j

P
(

XT
)M−j−1

, (A3)

Ψ′(X) = 2 ∑M−1
j=0

(
XT
)k

LT
j+2 . . . LT

MQ
(

XT
)j−k−1

. (A4)

Proof. To prove (A3), we write down the expression for Φ(X + H) − Φ(X) (refusing to bold
to simplify lay-outs) and collect the linear terms:

(X + H)M = XM +
M−2

∑
j=0

X j HXM−j−1 + O
(
‖ H ‖2

)
.

Therefore,

Φ(X + H) =

=‖ (X + H)M − LM . . . L1 ‖2= tr[(X + H)M − LM . . . L1]
T·[(X + H)M − LM . . . L1] =

= tr[P(X) +
M−1
∑

j=0
X j HXM−j−1 + O

(
‖ H ‖2)]T[P(X) +

M−1
∑

j=0
X j HXM−j−1 + O

(
‖ H ‖2)] =

= trPTP + 2trPT[∑M−1
j=0 X jHXM−j−1 + O

(
‖ H ‖2)]

(taking into account that the matrix and its transpose have the same trace).
Since tr PTP = Φ(X), it follows that

Φ (X + H)−Φ (X) = 2 ∑M−1
j=0 trPTX j HXM−j−1 + O

(
‖ H ‖2

)
.

Thus, the linear part of the variation in Φ at the point X is equal to

2 ∑M−1
j=0 trPTX j HXM−j−1.

This is a linear functional in H, albeit, to find the derivative A = Φ′(X), we have to
write it in the scalar product form (A, H). Using the trace invariance with respect to cyclic
permutations of the matrix product, we obtain

trPTX jHXM−j−1 = trXM−j−1PTX jH = tr[(XT)
j
P(XT)

M−j−1
]TH = ((XT)

j
P(XT)

M−j−1
, H).
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Therefore, the linear part of the variation in Φ is equal to(
2 ∑M−1

j=0

(
XT
)j

P
(

XT
)M−j−1

)
P,

which proves (A3).
To prove (A4), we write down the increment of Ψ as

Ψ(X + H)−Ψ(X) = 2tr
M−1
∑

j=0

j−1
∑

k=0
LM . . . Lj+2Xk HX j−k−1QTP + O(‖ H ‖)2

= 2tr
M−1
∑

j=0

j−1
∑

k=0
X j−k−1QTLM . . . Lj+2Xk H + O(‖ H ‖)2

= 2tr

[
M−1
∑

j=0

j−1
∑

k=0

(
XT)kLT

j+2 . . . LT
MQ

(
XT)j−k−1

]T

H + O(‖ H ‖)2

=

(
2

M−1
∑

j=0

j−1
∑

k=0

(
XT)kLT

j+2 . . . LT
MQ

(
XT)j−k−1, H

)
+ O(‖ H ‖)2,

which completes the proof of (A4). �
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