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Abstract: As a kind of effective tool in solving complex optimization problems, intelligent optimiza-
tion algorithms are paid more attention to their advantages of being easy to implement and their wide
applicability. This paper proposes an enhanced northern goshawk optimization algorithm to further
improve the ability to solve challenging tasks. Firstly, by applying the polynomial interpolation strat-
egy to the whole population, the quality of the solutions can be enhanced to keep a fast convergence
to the better individual. Then, to avoid falling into lots of local optimums, especially late in the whole
search, different kinds of opposite learning methods are used to help the algorithm to search the
space more fully, including opposite learning, quasi-opposite learning, and quasi-reflected learning,
to keep the diversity of the population, which is noted as a multi-strategy opposite learning method
in this paper. Following the construction of the enhanced algorithm, its performance is analyzed
by solving the CEC2017 test suite, and five practical optimization problems. Results show that the
enhanced algorithm ranks first on 23 test functions, accounting for 79.31% among 29 functions, and
keeps a faster convergence speed and a better stability on most functions, compared with the original
northern goshawk optimization algorithm and other popular algorithms. For practical problems, the
enhanced algorithm is still effective. When the complexity of the TSP is increased, the performance
of the improved algorithm is much better than others on all measure indexes. Thus, the enhanced
algorithm can keep the balance between exploitation and exploration and obtain better solutions
with a faster speed for problems of high complexity.

Keywords: northern goshawk optimization algorithm; polynomial interpolation; opposite learning
method; engineering optimization problem; traveling salesman problem

MSC: 49K35; 68T20

1. Introduction

Optimization theory is an important branch of mathematics, which studies the prob-
lem of how to find the best solution among lots of solutions [1]. It has been applied to
solve the challenging optimization problems in agriculture, industry, national defense,
transportation and other fields, especially for the optimization models with strong con-
straints, multivariable systems or multi-objectives [2]. The practice shows that under the
same conditions, the optimization technology can improve the efficiency of the system,
allocate resources rationally and reduce energy consumption [3]. This effect becomes more
significant with the increase in the complexity of the optimization problem.

According to the characteristics of the approaches to solving optimization problems,
massive optimization techniques can be classified into two categories: deterministic op-
timization techniques and intelligent optimization algorithms [4]. The former uses the
analytic properties of the problem to generate a definite finite or infinite sequence of points
to converge to the global optimal solution [5], including the gradient descent method [6],
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the Newton method [7], the conjugate gradient method [8], and so on. The gradient descent
method can search the global optimum and is easy to implement. The Newton method
is to approximate the solution of the equations in the natural and complex domains with
the characteristic of a fast convergence speed. The conjugate gradient method is between
the gradient descent method and the Newton method. It overcomes the slow convergence
of the gradient descent and the calculation of the Hessian matrix of the Newton method
because it only uses the information of the first derivative [9].

These approaches are computationally efficient because they make full use of the
analytic properties of the target problem. However, the deterministic optimization tech-
niques may face challenges in the solution accuracy for problems with a high complexity,
strong nonlinearity and many variables [10]. Thus, intelligent optimization algorithms (or
meta-heuristic algorithms) were proposed.

Intelligent optimization algorithms are random search methods. Compared with
traditional optimization methods, this kind of tool does not have any special requirements
(differentiable or convex optimization) on the objective function, and is not limited to
specific problems [11]. Therefore, its application scope is more extensive, and it has become
an effective approach to solving the optimization problem.

There are several methods to classify intelligent algorithms [12]. Here, they are sum-
marized into three types, including evolutionary-based algorithms, physics or mathematics-
based algorithms and swarm intelligence algorithms [13]. Figure 1 shows the classi-
fication of intelligent optimization algorithms and some representative algorithms of
these classifications.
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Figure 1. The classification of intelligent optimization algorithms.

The evolutionary approach takes natural law as the core idea. The most classical one
of this kind is the genetic algorithm (GA), which simulates the evolutionary process of
Darwin’s genetic selection and natural elimination. It is an effective method to search for
the optimal solution [14]. However, the GA involves the process of encoding and decoding,
which makes it time-consuming. The differential evolution algorithm (DE) is also a popular
algorithm, which consists of five stages, including the population initialization, progeny
generation, progeny mutation, progeny selection and fitness evaluation. Because the
encoding and decoding processes are abandoned, the search efficiency is improved [15].
The imperialist competitive algorithm (ICA) is an overall optimization algorithm, based
on the evolutionary, inspired by the competition, occupation and annexation of colonial
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countries among imperialist countries in the political and social colonial stage, in human
history [16]. Other algorithms of this kind are the memetic algorithm (MA) [17], the
bio-geography optimization algorithm (BBO) [18] and so on.

Physics or mathematics-based algorithms are inspired by the physical laws or math-
ematical theorems found in nature by scholars. For example, the simulated annealing
algorithm (SA) was proposed, based on the similarity between the annealing process of
solid matter in physics and the general combinatorial optimization problem. Starting from
a high initial temperature, the global optimal solution of the objective function can be found
in the solution space with the constant decrease of the temperature parameter. Meanwhile,
it can jump out of the local optimum, based on the probability jump property [19]. Ac-
cording to the law of universal gravitation and Newton’s second law, the gravitational
search algorithm (GSA) was constructed. This algorithm searches for the optimal solution
by moving the particle position of the population continuously in the search space by the
universal gravitation between them. When the particle moves to the optimal position, the
optimal solution is found [20]. The sine cosine algorithm (SCA) was proposed, based on
the mathematical model of sine and cosine, to search the space region and find the optimal
solution [21]. Other such algorithms are the billiards-inspired optimization algorithm
(BOA) [22], the gradient-based optimizer (GBO) [23] and so on.

The swarm intelligence algorithms were proposed, based on the habits of social
animals, such as birds, ants, wolves or bees. The particle swarm optimization algorithm
(PSO) is one of the most popular algorithms, which mimics the behavior of birds. For
each individual in the group, it changes the search pattern by learning from its own
experience and the experience of other members [24]. Due to the simple construction
and special learning method, the PSO algorithm performs well on the convergence speed
and accuracy. Thus, it has been applied to solve some practical optimization problems.
Moreover, lots of novel algorithms of this kind have emerged in recent years by simulating
other animals. For example, the whale optimization algorithm (WOA) is proposed by
mimicking humpback whale hunting behavior in 2016 [25]. The grey wolf optimizer
(GWO) mimics the hierarchical system of the wolf population, which is unique in that a
small number of elite gray wolves lead a group of gray wolves toward their prey [26]. In
2021, the Aquila optimizer (AO) was proposed. It was constructed in four stages using
the hunting process of the Aquila in the wild. During different stages, the Aquila will fly
in different methods to make sure their prey doesn’t escape, such as a short glide attack,
swooping, or high soaring [27]. In 2022, inspired by the features of the sand cat swarm of
detecting low frequencies and digging for prey, the sand cat swarm optimization algorithm
(SCSO) was proposed [28].

Though the above algorithms have been used to solve test functions or engineering
optimization problems, there are still possibilities to further improve the capacity in the so-
lution accuracy or convergence speed [29]. Thus, some improved strategies are introduced
into the original algorithm. Here, these strategies are divided into two categories.

The first category is the strategies to enhance the exploitation ability of the algorithm.
For example, in [30], a linearly dynamic random heuristic crossover strategy was added
to the BBO algorithm, to obtain a stronger local search ability. Noticing the deficiency of
the exploitation ability for the surface conversion model, Hu et al. introduced a golden
sine learning strategy, based on the relationship between the sine function and the unit
circle to help individuals to approach better solutions, which is an effective way to improve
the quality of the whole population [31]. Similarly, to enhance the exploitation phase of
the colliding bodies optimization algorithm, the quadratic interpolation of the utilized
historically best solution was employed and showed outstanding performance in solving
24 mathematical optimization problems, including 30 design variables [32]. Aiming at the
original algorithm’s low capability in exploiting, Yousri et al. [33] adopted the fractional
calculus, using the Caputo fractional differ-sum operator, to enhance the manta rays
movement in the exploitation phase, via utilizing the history dependency of fractional
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calculus to boost exploiting the optimal solutions, via sharing the past knowledge over the
optimization process.

Moreover, some strategies are used to enhance the exploration capacity. In [34], the
classical PSO algorithm was improved, based on a Lévy fly strategy, which is a random
walk method. Following the application of this strategy to the original population, the
individuals move by leaps and bounds in the search space, which is an effective approach
to avoid the local optimums. Different mutation methods are also effective in improving the
exploration capacity, such as the wavelet mutation and Cauchy mutation. In Jiang et al. [35],
each individual has the possibility to experience the wavelet mutation by setting a mutation
rate. Due to the volatility of wavelet function in the wavelet function, individuals have
randomness in updating their positions to enhance the population diversity. Miao et al. [36]
introduces the mutation ability of the Cauchy distribution, to help the original algorithm
to explore a wider solution space and avoid falling into a local optimum prematurely.
Compared with the state-of-the-art algorithms, the novel version of the improved algorithm
performs best on the feature selection of sleep staging. The opposite learning (OL) strategy
is also a common approach to assist the algorithm to explore the space quickly. In [37],
the dynamic OL strategy is embedded into the population initialization stage and the
generation jumping stage of the original dragonfly algorithm to solve the flexible job
shop scheduling problem. The results obtained showed that the improved algorithm can
efficiently achieve a better solution on 15 examples, compared to the algorithms.

Based on the above knowledge, this paper proposes a novel version of the northern
goshawk optimization algorithm (ENGO), by enhancing the abilities of exploitation and
exploration with the according strategies. The northern goshawk optimization (NGO)
algorithm was proposed by Dehghani et al., by simulating the behavior of the northern
goshawk during the process of hunting the prey, including two stages of prey identification
and the tail and chase process [38]. Once it was tested on 68 different objective functions
and four engineering design problems, we found that it can keep a balance between the
exploration capacity and the exploitation capacity, and has an outstanding performance
for the optimization problems, compared with other similar algorithms. To improve its
capacity in solving problems with higher dimensions and stronger constraint conditions,
this paper proposed an enhanced NGO algorithm, noted as ENGO, and verified it on the
CEC2017 test suite and engineering optimization problems. The main contributions of this
paper are as follows:

Firstly, an enhanced NGO algorithm is proposed by introducing the polynomial
interpolation strategy and the multi-strategy opposite learning method.

• To improve the capacity of exploitation, this paper applies the quadratic interpolation
function to each individual, to find a better solution.

• Different opposite learning methods are employed to help the algorithm search the
space more fully, including opposite learning, quasi-opposite learning and quasi-
reflected learning.

Secondly, the ENGO algorithm is used to solve the test functions of the CEC2017 test
suite, four engineering optimization problems and the traveling salesman problem (TSP).

The structure of this paper is as follows: Section 2 introduces the original NGO
algorithm and how to apply the two strategies to it to obtain the ENGO algorithm. Section 3
shows the results of the ENGO algorithm and other comparison algorithms in solving the
CEC2017 test suite. Section 4 analyzes the performance of the ENGO algorithm in solving
engineering problems and TSP. Section 5 is the conclusion of this paper.

2. The Enhanced Northern Goshawk Optimization Algorithm
2.1. The Original Northern Goshawk Optimization

The search mechanism of the NGO algorithm stems from its efficient search and cap-
ture of prey. Thus, the algorithm consists of three stages, which are population initialization,
prey identification and prey capture.
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2.1.1. Initialization

Firstly, the initialization population of the northern goshawk can be presented by
matrix X, shown as follows.

X =


X1
X2
...

XN

 =


x1,1 x1,2 · · · x1,M
x2,1 x2,1 · · · x2,M

...
...

. . .
...

xN,1 xN,2 · · · xN,M

, (1)

where, Xi, 1 ≤ i ≤ N represents the i-th individual of the whole population. N and M are
the size of the population and the dimension of the objective function, respectively. For
a single objective optimization problem with upper bound UB and lower bound LB, the
elements of Xi can be calculated by

xi,j = LB + rand · (UB− LB), 1 ≤ i ≤ N; 1 ≤ j ≤ M. (2)

2.1.2. Prey Identification

In the first stage, the northern goshawk will select the prey and try to attack it. Because
the prey is selected randomly, this behavior can reflect the global exploration ability of
the algorithm in the feasible space. Suppose the preyi, shown in Equation (3), is the target
selected by the individual Xi, then Equation (4) mimics the process of the northern goshawk
attacking its prey.

preyi = Xp, i = 1, 2, . . . , N; p = 1, 2, . . . , i− 1, i + 1, . . . , N. (3){
Xnew

i = Xi + r(preyi − IXi), Fit(preyi) < Fit(Xi),
Xnew

i = Xi + r(Xi − preyi), Fit(preyi) ≥ Fit(Xi),
(4)

where r is a random vector with numbers in [0, 1], and I is a vector consisting of 1 or 2. r
and I are used to enhance the randomness of the algorithm to search the space more fully.
Then, the individual Xi will be updated by Equation (5).{

Xi = Xnew
i , Fit(Xnew

i ) < Fit(Xi),
Xi = Xi, Fit(Xnew

i ) ≥ Fit(Xi).
(5)

2.1.3. Prey Capture

When the northern goshawk locks on to its prey and starts attacking it, the prey will
be spooked and start escaping. In this stage, the northern goshawk needs to keep chasing
its prey. Due to its high pursuit speed, the northern goshawk can chase and eventually
capture prey in almost any situation. Regarding a circle with radius r as the range of the
chasing behavior, this stage can be simulated by Equation (6).

Xnew
i = Xi + R(2r− 1)Xi, (6)

where R = 0.02(1− t/T). T is the maximum number of iterations and t is the current
iteration. Then, the individual Xi is updated by Equation (7).{

Xi = Xnew
i , Fit(Xnew

i ) < Fit(Xi),
Xi = Xi, Fit(Xnew

i ) ≥ Fit(Xi).
(7)

Figure 2 provides the flow chart of the original NGO algorithm.
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2.2. The Improved Northern Goshawk Optimization

Although the NGO algorithm has the advantages of easy implementation, simple
structure and high precision in solving test functions and some engineering optimization
problems, there are still some opportunities to further enhance its capacities of exploration
and exploitation. For example, the model of chasing prey in the original NGO algorithm is
too simple, which will lead to the poor quality of the individuals and slow convergence
speed to the optimal solution. Thus, this section proposes an enhanced northern goshawk
optimization algorithm by introducing the polynomial interpolation strategy and the
multi-strategy opposite learning models, noted as ENGO.

2.2.1. Polynomial Interpolation Strategy

Polynomial interpolation is a kind of search method, which refers to seeking the
minimal value of the interpolation polynomial ϕ(t) constructed by some discrete data [39].
Firstly, the discrete points are selected to construct the interpolation polynomial ϕ(t). If
the constructed polynomial is quadratic, it is called the quadratic interpolation, and if it is
cubic, it is cubic interpolation method. Then, the minimal value of the function ϕ(t) can be
solved by letting ϕ′(t) = 0.
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Here, the northern goshawk population is regarded as the discrete data in the feasible
space. Firstly, three individuals Xi, Xi+1 and Xi+2 of the northern goshawk population are
selected to construct the quadratic interpolation function ϕ(X), shown in Equation (8).

ϕ(X) = a0 + a1X + a2X2. (8)

Submit the discrete individuals into Equation (8), we can obtain
ϕ(Xi) = a0 + a1Xi + a2X2

i ,
ϕ(Xi+1) = a0 + a1Xi+1 + a2X2

i+1,
ϕ(Xi+2) = a0 + a1Xi+2 + a2X2

i+2.
(9)

According to Equation (9), three coefficients a0, a1 and a2 can be obtained by Equation (10).
a0 = − (Xi+1−Xi+2)ϕ(Xi)+(Xi+2−Xi)ϕ(Xi+1)+(Xi−Xi+1)ϕ(Xi+2)

(Xi−Xi+1)(Xi+1−Xi+2)(Xi+2−Xi)
,

a1 =
(X2

i+1−X2
i+2)ϕ(Xi)+(X2

i+2−X2
i )ϕ(Xi+1)+(X2

i −X2
i+1)ϕ(Xi+2)

(Xi−Xi+1)(Xi+1−Xi+2)(Xi+2−Xi)
,

a2 =
(Xi+1−Xi+2)Xi+1Xi+2 ϕ(Xi)+(Xi+2−Xi)Xi+2Xi ϕ(Xi+1)+(Xi−Xi+1)XiXi+1 ϕ(Xi+2)

(Xi−Xi+1)(Xi+1−Xi+2)(Xi+2−Xi)
.

(10)

To obtain the minimal of quadratic curve ϕ(X), let ϕ′(X) = a1 + 2a2X = 0. When X∗ =
− a1

2a2
, the quadratic curve ϕ(X) obtains the minimal value. Combined with Equation (10), the

X∗ can be obtained as follows.

X∗ =
1
2
×

(X2
i+1 − X2

i+2)Fit(Xi) + (X2
i+2 − X2

i )Fit(Xi+1) + (X2
i − X2

i+1)Fit(Xi+2)

(Xi+1 − Xi+2)Fit(Xi) + (Xi+2 − Xi)Fit(Xi+1) + (Xi − Xi+1)Fit(Xi+2)
. (11)

Finally, comparing the obtained X* and the original Xi, the individual is updated, as
Equation (12) shown. {

Xi = X∗, Fit(X∗) < Fit(Xi),
Xi = Xi, Fit(X∗) ≥ Fit(Xi).

(12)

Following the performance of this operation on the whole population, the quality
of the northern goshawk population will be improved, which is helpful to approach the
optimal solution closer.

2.2.2. Multi-Strategy Opposite Learning Method

Moreover, falling into local optimal solutions easily is also a dilemma for optimiza-
tion algorithms, especially for some optimization problems with a large number of local
optimums. Thus, the different kinds of opposite learning methods are introduced to help
the NGO algorithm to enhance the capacity of the escaping local optimums. To make
the learning modes of the individuals in the population more diverse, this paper adopts
three kinds of learning mechanisms with their own characteristics, including opposite
learning [40], quasi-opposite learning [41] and quasi-reflected learning [42].

For the i-th individual of the northern goshawk population, the newly generated
individual, based on the different opposite learning mechanisms, can be calculated by the
following equations.

X̃i = LB + UB− Xi. (13)

Xi = rand
[

LB + UB
2

, LB + UB− Xi

]
. (14)

X̂i = rand
[

LB + UB
2

, Xi

]
. (15)

Figure 3 illustrates the characteristics of the different opposite learning methods in
the two-dimensional space. The red point is the i-th individual in the northern goshawk
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population. Following the application of different learning methods to the Xi in different
dimensions, new individuals will be generated in the constructed areas A and B.
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To widen the search range as much as possible, the above methods will be applied
to the northern goshawk population. Suppose the size of the population X is N, then
the population will be divided into three groups randomly. Following the application of
different methods to each group, a new population, based on opposite learning strategies,
will be generated, noted as Xoppo. The two populations X and Xoppo are mixed and sorted,
according to the fitness values, and N individuals with better fitness values will be retained
as the final population. Figure 4 shows the whole process of the learning methods for the
population.
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Figure 5 shows the flowchart of the ENGO algorithm. The specific steps of the ENGO
algorithm are as follows:

Step 1. Initialize the parameters, such as the size of the northern goshawk population N,
the dimension of the problem M, and the maximum iteration time T.
Step 2. Create the initial northern goshawk population by Equation (2).
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Step 3. when t < T, calculate the fitness value of each individual in the population. Following
the selection of the according prey of the i-th individual Xi by Equation (3), the updated
solution can be obtained by Equations (4) and (5).
Step 4. Divide the population into three equal groups.
Step 5. Based on Equations (13)–(15), apply different opposite learning methods to the
according group, and obtain new solutions.
Step 6. Mix the new solutions with the population, and N better solutions are selected as
the new population.
Step 7. By simulating the behavior of chasing the prey, calculate the new solution by
Equation (6). Then, update the solution by Equation (7).
Step 8. Apply the polynomial interpolation strategy to each individual and update the
individual by Equations (11) and (12).
Step 9. if t < T, return to Step 3. Otherwise, output the best individual and its fitness value.
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3. Numerical Experiment on the Test Functions
3.1. Test Functions and Parameters Setting

To test the performance of the improved algorithm, the CEC2017 test suite is used,
which consists of 29 test functions (except for the F2), including uni-model functions, multi-
modal functions, hybrid functions and composition functions [43]. These functions are
constructed by rotating, combining or scaling benchmark functions, and have been used to
test the ability of the optimization algorithms to search a complex space. Then, the original
NGO algorithm and other six well-known algorithms are selected for comparison. They are
the particle swarm optimization algorithm (PSO), the Archimedes optimization algorithm
(AOA), the African vultures optimization algorithm (AVOA), the dandelion optimizer
(DO), the sand cat optimization algorithm (SCSO) and the sparrow search algorithm (SSA).
In Table 1, the time and parameters of these compared algorithms are shown. In the
comparison experiments, the size of the population of all algorithms is set as 100, and the
maximum iteration number is 500 times. The dimension of the test functions is set as 30.
Meanwhile, to compare the different algorithms more fairly, all algorithms run 20 times,
independently, to avoid random distractions. Once completed, the average value (Ave)
and the standard deviation (Std) are recorded to show the accuracy and stability of the
algorithm. All of the experimental series were implemented using Windows 10(64-bit),
Intel(R) Core(TM) i7-1165G7 (Santa Clara, CA, USA), CPU @2.80GHz (Santa Clara, CA,
USA), MATLAB 2016a (Natick, MA, USA) with 8 GB of ARM.

Table 1. Parameters of the algorithms.

Algorithms Proposed Time Parameters

PSO [44] 1988 Learning factors c1 = 2, c2 = 2.5, the inertia factor w = 2.
AOA [45] 2021 Control parameter µ = 0.499, Sensitive parameter a = 5.

AVOA [46] 2021 Hunger degrees z is a random value in [−1, 1].
DO [47] 2022 Parameters β = 1.5, s = 0.01.

SCSO [28] 2022 The value of hearing characteristics SM = 2.
SSA [48] 2017 The update probability of the leader c3 = 0.5.

3.2. Results Analysis and Discussion

The results of the different algorithms in solving the functions of the CEC2017 test
suite are displayed in Table 2. The data in bold represents the best results among all
algorithms. The results show that the enhanced NGO algorithm ranks first on 23 test
functions, accounting for 79.31% of all functions. However, the original NGO algorithm
only ranks first on four functions, accounting for 13.79% of all functions. Obviously,
after introducing the polynomial interpolation strategy and the multi-strategy opposite
learning method into the original NGO algorithm, the solution accuracy has been greatly
improved. When compared with other algorithms, the average rank of the ENGO algorithm
is 1.3448, which is less than the others. According to the final rank, the performance of
these algorithms is ranked as ENGO > NGO > DO > SSA > SCSO > PSO > AOA.

Table 2. Results of the different algorithms on the CEC2017 functions.

Function Index PSO AOA AVOA DO SCSO SSA NGO ENGO

F1
Ave 5.1802E + 09 4.0462E + 10 1.1221E + 05 1.8277E + 05 3.3426E + 09 5.5010E + 03 2.0690E + 05 2.3466E + 03
Std 1.3161E + 09 3.5061E + 09 4.8240E + 05 1.3250E + 05 2.2407E + 09 3.6044E + 03 1.3089E + 05 1.8986E + 03

Rank 7 8 3 4 6 2 5 1

F3
Ave 7.1287E + 04 3.9949E + 04 3.0323E + 04 2.1871E + 03 4.1388E + 04 4.7198E + 04 5.8724E + 04 4.5869E + 04
Std 1.3573E + 04 7.5639E + 03 9.2550E + 03 1.5687E + 03 8.6106E + 03 5.6481E + 03 5.3424E + 03 5.4097E + 03

Rank 8 3 2 1 4 6 7 5

F4
Ave 9.1671E + 02 1.0676E + 04 5.2458E + 02 5.0657E + 02 6.6922E + 02 5.0147E + 02 5.0824E + 02 4.9688E + 02
Std 1.3168E + 02 1.2735E + 03 3.0283E + 01 2.7533E + 01 1.0356E + 02 3.2163E + 01 1.6062E + 01 2.8701E + 01

Rank 7 8 5 3 6 2 4 1

F5
Ave 7.3096E + 02 8.3088E + 02 6.9320E + 02 6.7696E + 02 7.3262E + 02 7.4290E + 02 6.5192E + 02 6.1849E + 02
Std 2.3716E + 01 2.0645E + 01 3.8796E + 01 3.0970E + 01 4.2318E + 01 5.1374E + 01 2.6417E + 01 2.1285E + 01

Rank 5 8 4 3 6 7 2 1
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Table 2. Cont.

Function Index PSO AOA AVOA DO SCSO SSA NGO ENGO

F6
Ave 6.2781E + 02 6.7466E + 02 6.4592E + 02 6.4002E + 02 6.5735E + 02 6.4691E + 02 6.0692E + 02 6.0030E + 02
Std 4.0829E + 00 4.6522E + 00 5.7921E + 00 1.2329E + 01 1.0318E + 01 8.0761E + 00 5.0220E + 00 4.5294E − 01

Rank 3 8 5 4 7 6 2 1

F7
Ave 1.1906E + 03 1.2735E + 03 1.1822E + 03 1.0234E + 03 1.1217E + 03 1.2322E + 03 9.1927E + 02 8.9333E + 02
Std 7.9530E + 01 4.7253E + 01 8.5067E + 01 7.0898E + 01 9.2206E + 01 7.6023E + 01 3.4636E + 01 1.9863E + 01

Rank 6 8 5 3 4 7 2 1

F8
Ave 1.0399E + 03 1.0744E + 03 9.4314E + 02 9.3114E + 02 9.9586E + 02 9.7208E + 02 9.3873E + 02 9.1502E + 02
Std 2.0781E + 01 1.3098E + 01 2.3945E + 01 3.4521E + 01 3.5091E + 01 3.1781E + 01 1.4437E + 01 1.9785E + 01

Rank 7 8 4 2 6 5 3 1

F9
Ave 3.9823E + 03 7.4560E + 03 4.8178E + 03 4.9962E + 03 5.7009E + 03 5.3918E + 03 2.9437E + 03 1.9618E + 03
Std 8.1851E + 02 7.3024E + 02 8.2016E + 02 1.9850E + 03 9.5008E + 02 2.2118E + 02 4.5211E + 02 5.7069E + 02

Rank 3 8 4 5 7 6 2 1

F10
Ave 8.2352E + 03 8.0569E + 03 5.7230E + 03 4.9592E + 03 5.6354E + 03 5.3943E + 03 5.4102E + 03 5.3437E + 03
Std 3.2222E + 02 4.0120E + 02 8.9928E + 02 4.9182E + 02 8.5290E + 02 4.9178E + 02 2.5354E + 02 3.8350E + 02

Rank 8 7 6 1 5 3 4 2

F11
Ave 2.0359E + 03 4.0694E + 03 1.2502E + 03 1.2517E + 03 1.8404E + 03 1.2747E + 03 1.2135E + 03 1.1957E + 03
Std 2.8771E + 02 8.8072E + 02 5.1866E + 01 4.8974E + 01 6.1253E + 02 4.3691E + 01 3.4790E + 01 2.8866E + 01

Rank 7 8 3 4 6 5 2 1

F12
Ave 2.5414E + 08 9.4131E + 09 6.7289E + 06 6.6982E + 06 3.2798E + 07 1.5966E + 06 7.3235E + 05 6.3577E + 05
Std 3.5963E + 07 9.5712E + 08 6.2126E + 06 2.1447E + 06 2.4691E + 07 1.1237E + 06 2.1315E + 05 2.3050E + 05

Rank 7 8 5 4 6 3 2 1

F13
Ave 3.1682E + 07 7.2400E + 09 1.2733E + 05 1.2456E + 05 1.3647E + 05 2.1858E + 04 1.0714E + 04 2.5724E + 04
Std 1.9843E + 07 3.5318E + 09 5.4956E + 04 1.0581E + 05 1.9868E + 04 1.2436E + 04 8.5012E + 03 1.6919E + 04

Rank 7 8 5 4 6 2 1 3

F14
Ave 1.1780E + 05 6.2017E + 05 1.8606E + 05 5.7101E + 04 3.0132E + 05 5.1864E + 04 8.2371E + 03 4.6760E + 03
Std 8.0871E + 04 4.6962E + 05 2.2180E + 05 2.6573E + 04 4.7135E + 05 4.0322E + 04 4.6052E + 03 2.5158E + 03

Rank 5 8 6 4 7 3 2 1

F15
Ave 1.8054E + 06 8.5030E + 07 3.4814E + 04 3.3985E + 04 1.7336E + 05 1.1045E + 04 4.6995E + 03 2.4524E + 03
Std 2.3121E + 06 6.6009E + 07 1.8818E + 04 2.2745E + 04 4.3157E + 05 1.2212E + 04 2.5192E + 03 6.9164E + 02

Rank 7 8 5 4 6 3 2 1

F16
Ave 3.3186E + 03 4.9326E + 03 3.1043E + 03 2.6516E + 03 3.1768E + 03 2.8377E + 03 2.5559E + 03 2.4806E + 03
Std 2.7582E + 02 4.0993E + 02 3.0041E + 02 2.5849E + 02 3.3518E + 02 4.1478E + 02 1.9722E + 02 1.5468E + 02

Rank 7 8 5 3 6 4 2 1

F17
Ave 2.3003E + 03 3.1673E + 03 2.5071E + 03 2.2951E + 03 2.3644E + 03 2.4993E + 03 1.9907E + 03 1.9748E + 03
Std 2.1638E + 02 1.8004E + 02 2.0256E + 02 2.0889E + 02 1.9855E + 02 2.1525E + 02 7.6050E + 01 6.6039E + 01

Rank 4 8 7 3 5 6 2 1

F18
Ave 2.6966E + 06 5.6400E + 06 8.7903E + 05 5.9533E + 05 1.7970E + 06 5.9365E + 05 9.6472E + 04 9.4033E + 04
Std 1.6107E + 06 6.7615E + 06 9.5620E + 05 3.3879E + 05 2.1560E + 06 5.1722E + 05 4.6634E + 04 5.4539E + 04

Rank 7 8 5 4 6 3 2 1

F19
Ave 2.1838E + 06 1.6601E + 08 3.3801E + 04 5.9278E + 04 2.0900E + 06 1.0631E + 04 5.3849E + 03 5.0245E + 03
Std 2.2968E + 06 1.1869E + 08 1.9333E + 04 4.8092E + 04 2.5655E + 06 9.8222E + 03 1.3140E + 03 1.4903E + 03

Rank 7 8 4 5 6 3 2 1

F20
Ave 2.6074E + 03 2.7081E + 03 2.6796E + 03 2.5232E + 03 2.6236E + 03 2.7266E + 03 2.3560E + 03 2.3617E + 03
Std 1.9460E + 02 1.0941E + 02 1.9055E + 02 1.9280E + 02 2.1442E + 02 2.1721E + 02 7.4857E + 01 4.2260E + 01

Rank 4 7 6 3 5 8 1 2

F21
Ave 2.5259E + 03 2.6337E + 03 2.4945E + 03 2.4552E + 03 2.4992E + 03 2.4968E + 03 2.4270E + 03 2.4084E + 03
Std 1.8736E + 01 2.0020E + 01 5.4731E + 01 3.3110E + 01 4.3535E + 01 5.5648E + 01 1.2745E + 01 1.3815E + 01

Rank 7 8 4 3 6 5 2 1

F22
Ave 6.4159E + 03 6.4679E + 03 4.8378E + 03 5.5543E + 03 3.4848E + 03 5.7974E + 03 2.3034E + 03 2.3005E + 03
Std 3.2348E + 03 7.8528E + 02 2.3835E + 03 2.0029E + 03 1.4360E + 03 2.1210E + 03 1.9491E + 00 1.2498E + 00

Rank 7 8 4 5 3 6 2 1

F23
Ave 2.8792E + 03 3.4845E + 03 2.9717E + 03 2.8672E + 03 2.9288E + 03 2.9679E + 03 2.7722E + 03 2.7413E + 03
Std 2.1797E + 01 7.5564E + 01 8.0333E + 01 4.7990E + 01 5.9829E + 01 7.6021E + 01 2.1701E + 01 1.6470E + 01

Rank 4 8 7 3 5 6 2 1

F24
Ave 3.0411E + 03 3.8398E + 03 3.1300E + 03 3.0604E + 03 3.0968E + 03 3.0891E + 03 2.9197E + 03 2.8797E + 03
Std 9.3852E + 00 9.8943E + 01 8.3199E + 01 6.9980E + 01 7.1139E + 01 6.9832E + 01 1.4223E + 01 1.2927E + 01

Rank 3 8 7 4 6 5 2 1

F25
Ave 3.2031E + 03 4.3262E + 03 2.9137E + 03 2.8939E + 03 3.0406E + 03 2.8956E + 03 2.9170E + 03 2.8886E + 03
Std 6.4161E + 01 2.5324E + 02 2.4682E + 01 1.3634E + 01 5.1759E + 01 1.3847E + 01 1.7329E + 01 6.2293E + 00

Rank 7 8 4 2 6 3 5 1

F26
Ave 6.1568E + 03 9.9657E + 03 6.6772E + 03 5.7903E + 03 6.1648E + 03 6.3669E + 03 3.2578E + 03 3.5280E + 03
Std 4.9151E + 02 3.4324E + 02 1.0058E + 03 4.4628E + 02 1.0908E + 03 1.5443E + 03 7.6200E + 02 1.2912E + 03

Rank 4 8 7 3 5 6 1 2

F27
Ave 3.3027E + 03 4.4396E + 03 3.2770E + 03 3.2687E + 03 3.3635E + 03 3.2875E + 03 3.2230E + 03 3.2184E + 03
Std 1.7512E + 01 2.0391E + 02 3.0678E + 01 4.2722E + 01 8.8901E + 01 4.2029E + 01 9.6877E + 00 6.4926E + 00

Rank 6 8 4 3 7 5 2 1

F28
Ave 3.5240E + 03 6.3214E + 03 3.2690E + 03 3.2365E + 03 3.4941E + 03 3.2461E + 03 3.2798E + 03 3.2054E + 03
Std 7.3227E + 01 3.5836E + 02 2.2702E + 01 2.6406E + 01 1.1313E + 02 2.2172E + 01 1.4775E + 01 6.6437E + 00

Rank 7 8 4 2 6 3 5 1

F29
Ave 4.3235E + 03 6.2964E + 03 4.2739E + 03 3.9694E + 03 4.4828E + 03 4.2342E + 03 3.8593E + 03 3.8632E + 03
Std 1.9360E + 02 5.6231E + 02 2.8515E + 02 1.9885E + 02 3.4699E + 02 3.4541E + 02 9.4104E + 01 1.5308E + 02

Rank 6 8 5 3 7 4 1 2

F30
Ave 7.0571E + 06 8.7344E + 08 5.0128E + 05 6.2123E + 05 7.0001E + 06 2.0995E + 04 1.7041E + 04 6.8796E + 03
Std 5.5024E + 06 2.6904E + 08 3.0621E + 05 4.2992E + 05 4.9031E + 06 7.5318E + 03 1.4933E + 04 9.3090E + 02

Rank 7 8 4 5 6 3 2 1
Average rank 6.0000 7.7586 4.7931 3.3448 5.7586 4.4828 2.5172 1.3448
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The average convergence curves of the different algorithms after it was run 20 times,
are shown in Figure 6. The accuracy and the convergence speed of the algorithm can
be measured by the descending rate and the final position of its curve. Compared with
the original NGO algorithm, the ENGO algorithm can converge to the optimum with a
faster speed, especially in the early stages of the whole search. It is because the polynomial
interpolation strategy improves the quality of the northern goshawk population by selecting
better solutions around the three selected individuals randomly. Meanwhile, among all
algorithms, the ENGO algorithm can obtain solutions with a better accuracy when the
search ends.

Figure 7 displays the boxplots of the different algorithms, which are used to measure
the stability and robustness of the algorithm. Comparing the length of the boxes, the ENGO
is smaller than the original NGO algorithm and others on F6, F7, F11, F15, F17, F20, F22,
F23, F24, F25, F27, F28 and F30, which illustrates that the distribution of the results of the
ENGO algorithm is more centralized after it was run 20 times on these functions. For the
remaining functions, the median of the data also needs to be considered. On functions F1,
F5, F8, F9, F12, F14, F16, F18, F19, F21 and F26, the median of the ENGO is smaller than
others. Thus, considering the length and median of the box, the improved algorithm has
an advantage in stability and robustness, except for F3, F4, F10, F13 and F29. It is because
the introduction of the two improvement strategies that keeps a better balance between the
exploitation capacity and the exploration capacity.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 35 
 

 

Std 9.3852E + 00 9.8943E + 01 8.3199E + 01 6.9980E + 01 7.1139E + 01 6.9832E + 01 1.4223E + 01 1.2927E + 01 

Rank 3 8 7 4 6 5 2 1 

F25 

Ave 3.2031E + 03 4.3262E + 03 2.9137E + 03 2.8939E + 03 3.0406E + 03 2.8956E + 03 2.9170E + 03 2.8886E + 03 

Std 6.4161E + 01 2.5324E + 02 2.4682E + 01 1.3634E + 01 5.1759E + 01 1.3847E + 01 1.7329E + 01 6.2293E + 00 

Rank 7 8 4 2 6 3 5 1 

F26 

Ave 6.1568E + 03 9.9657E + 03 6.6772E + 03 5.7903E + 03 6.1648E + 03 6.3669E + 03 3.2578E + 03 3.5280E + 03 

Std 4.9151E + 02 3.4324E + 02 1.0058E + 03 4.4628E + 02 1.0908E + 03 1.5443E + 03 7.6200E + 02 1.2912E + 03 

Rank 4 8 7 3 5 6 1 2 

F27 

Ave 3.3027E + 03 4.4396E + 03 3.2770E + 03 3.2687E + 03 3.3635E + 03 3.2875E + 03 3.2230E + 03 3.2184E + 03 

Std 1.7512E + 01 2.0391E + 02 3.0678E + 01 4.2722E + 01 8.8901E + 01 4.2029E + 01 9.6877E + 00 6.4926E + 00 

Rank 6 8 4 3 7 5 2 1 

F28 

Ave 3.5240E + 03 6.3214E + 03 3.2690E + 03 3.2365E + 03 3.4941E + 03 3.2461E + 03 3.2798E + 03 3.2054E + 03 

Std 7.3227E + 01 3.5836E + 02 2.2702E + 01 2.6406E + 01 1.1313E + 02 2.2172E + 01 1.4775E + 01 6.6437E + 00 

Rank 7 8 4 2 6 3 5 1 

F29 

Ave 4.3235E + 03 6.2964E + 03 4.2739E + 03 3.9694E + 03 4.4828E + 03 4.2342E + 03 3.8593E + 03 3.8632E + 03 

Std 1.9360E + 02 5.6231E + 02 2.8515E + 02 1.9885E + 02 3.4699E + 02 3.4541E + 02 9.4104E + 01 1.5308E + 02 

Rank 6 8 5 3 7 4 1 2 

F30 

Ave 7.0571E + 06 8.7344E + 08 5.0128E + 05 6.2123E + 05 7.0001E + 06 2.0995E + 04 1.7041E + 04 6.8796E + 03 

Std 5.5024E + 06 2.6904E + 08 3.0621E + 05 4.2992E + 05 4.9031E + 06 7.5318E + 03 1.4933E + 04 9.3090E + 02 

Rank 7 8 4 5 6 3 2 1 

Average rank 6.0000 7.7586 4.7931 3.3448 5.7586 4.4828 2.5172 1.3448 

The average convergence curves of the different algorithms after it was run 20 times, 

are shown in Figure 6. The accuracy and the convergence speed of the algorithm can be 

measured by the descending rate and the final position of its curve. Compared with the 

original NGO algorithm, the ENGO algorithm can converge to the optimum with a faster 

speed, especially in the early stages of the whole search. It is because the polynomial in-

terpolation strategy improves the quality of the northern goshawk population by selecting 

better solutions around the three selected individuals randomly. Meanwhile, among all 

algorithms, the ENGO algorithm can obtain solutions with a better accuracy when the 

search ends. 

   

   

Figure 6. Cont.



Mathematics 2022, 10, 4383 13 of 33
Mathematics 2022, 10, x FOR PEER REVIEW 14 of 35 
 

 

   

   

   

   

   

Figure 6. Cont.



Mathematics 2022, 10, 4383 14 of 33
Mathematics 2022, 10, x FOR PEER REVIEW 15 of 35 
 

 

   

   

  

Figure 6. The average convergence curves of different algorithms on CEC2017. 

Figure 7 displays the boxplots of the different algorithms, which are used to measure 

the stability and robustness of the algorithm. Comparing the length of the boxes, the 

ENGO is smaller than the original NGO algorithm and others on F6, F7, F11, F15, F17, F20, 

F22, F23, F24, F25, F27, F28 and F30, which illustrates that the distribution of the results of 

the ENGO algorithm is more centralized after it was run 20 times on these functions. For 

the remaining functions, the median of the data also needs to be considered. On functions 

F1, F5, F8, F9, F12, F14, F16, F18, F19, F21 and F26, the median of the ENGO is smaller than 

others. Thus, considering the length and median of the box, the improved algorithm has 

an advantage in stability and robustness, except for F3, F4, F10, F13 and F29. It is because 

the introduction of the two improvement strategies that keeps a better balance between 

the exploitation capacity and the exploration capacity. 

Figure 6. The average convergence curves of different algorithms on CEC2017.



Mathematics 2022, 10, 4383 15 of 33
Mathematics 2022, 10, x FOR PEER REVIEW 16 of 35 
 

 

   

   

   

   

Figure 7. Cont.



Mathematics 2022, 10, 4383 16 of 33
Mathematics 2022, 10, x FOR PEER REVIEW 17 of 35 
 

 

   

   

   

   

Figure 7. Cont.



Mathematics 2022, 10, 4383 17 of 33
Mathematics 2022, 10, x FOR PEER REVIEW 18 of 35 
 

 

   

  

Figure 7. The boxplots of the different algorithms on CEC2017. 

Figure 8 includes the radar maps of eight algorithms in solving the CEC2017 test 

suite. They are constructed by the ranks of different algorithms on each test function, 

which is used to reflect the comprehensive performance of the algorithm more intuitively. 

The radar graph of the ENGO algorithm has the minimum area, which also shows its 

outstanding performance on most functions. The area of the NGO algorithm is obviously 

bigger than the ENGO algorithm. The AOA algorithm has the biggest area, indicating that 

there are still opportunities to be improved. Table 3 is the p-value of the Wilcoxon rank 

sum test between the ENGO and other algorithms. Usually, when the p-value is smaller 

than 0.05, there is an obvious difference between the two groups of test data. Thus, com-

bined with the data in Table 2, ‘+’ represents the ENGO better than the comparison algo-

rithm, obviously, while ‘-’ represents the ENGO worse than the comparison algorithm, 

obviously. The ‘=’ illustrates that there is no obvious difference between the two algo-

rithms. From Table 3, the improved algorithm outperforms the original algorithm in more 

than half of the test functions with the support of statistics. 

  

Figure 7. The boxplots of the different algorithms on CEC2017.

Figure 8 includes the radar maps of eight algorithms in solving the CEC2017 test suite.
They are constructed by the ranks of different algorithms on each test function, which is
used to reflect the comprehensive performance of the algorithm more intuitively. The radar
graph of the ENGO algorithm has the minimum area, which also shows its outstanding
performance on most functions. The area of the NGO algorithm is obviously bigger than
the ENGO algorithm. The AOA algorithm has the biggest area, indicating that there are still
opportunities to be improved. Table 3 is the p-value of the Wilcoxon rank sum test between
the ENGO and other algorithms. Usually, when the p-value is smaller than 0.05, there is an
obvious difference between the two groups of test data. Thus, combined with the data in
Table 2, ‘+’ represents the ENGO better than the comparison algorithm, obviously, while ‘−’
represents the ENGO worse than the comparison algorithm, obviously. The ‘=’ illustrates
that there is no obvious difference between the two algorithms. From Table 3, the improved
algorithm outperforms the original algorithm in more than half of the test functions with
the support of statistics.
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Table 3. The p-value of Wilcoxon rank sum test between the ENGO and other algorithms. 

 PSO AOA AVOA DO SCSO SSA NGO 

F1 6.796 × 10−8/+ 6.796 × 10−8/+ 5.255 × 10−5/+ 2.960 × 10−7/+ 6.796 × 10−8/+ 4.540 × 10−6/+ 6.796 × 10−8/+ 

F3 6.796 × 10−8/+ 6.796 × 10−8/− 6.796 × 10−8/− 5.979 × 10−1/− 6.796 × 10−8/− 6.796 × 10−8/+ 6.796 × 10−8/+ 

F4 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 5.979 × 10−1/= 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 

F5 6.796 × 10−8/+ 6.796 × 10−8/+ 1.481 × 10−3/+ 2.184 × 10−1/= 6.796 × 10−8/+ 8.817 × 10−1/= 7.712 × 10−3/+ 

F6 6.796 × 10−8/+ 6.796 × 10−8/+ 1.657 × 10−7/+ 1.431 × 10−7/+ 7.898 × 10−8/+ 1.235 × 10−7/+ 1.803 × 10−6/+ 

F7 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 8.585 × 10−2/= 

F8 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 9.173 × 10−8/+ 

F9 6.796 × 10−8/+ 6.796 × 10−8/+ 5.091 × 10−4/+ 2.073 × 10−2/+ 6.015 × 10−7/+ 3.987 × 10−6/+ 4.155 × 10−4/+ 

F10 1.953 × 10−3/+ 7.898 × 10−8/+ 2.041 × 10−5/+ 3.382 × 10−4/− 1.376 × 10−6/+ 1.201 × 10−6/+ 3.942 × 10−1/= 

F11 6.796 × 10−8/+ 6.796 × 10−8/+ 8.597 × 10−6/+ 1.116 × 10−3/+ 9.748 × 10−6/+ 3.069 × 10−6/+ 1.047 × 10−6/+ 

F12 7.937 × 10−8/+ 7.937 × 10−3/+ 6.905 × 10−1/= 8.413 × 10−1/= 7.937 × 10−3/+ 1.000 × 10−0/= 5.476 × 10−1/= 

F13 7.937 × 10−8/+ 7.937 × 10−3/+ 2.222 × 10−1/= 3.175 × 10−2/+ 7.937 × 10−3/+ 3.095 × 10−1/= 9.524 × 10−2/− 

F14 7.937 × 10−8/+ 7.937 × 10−3/+ 7.937 × 10−3/+ 7.937 × 10−3/+ 7.937 × 10−3/+ 8.413 × 10−1/= 4.206 × 10−1/= 

F15 4.903 × 10−1/= 5.166 × 10−6/+ 8.392 × 10−1/= 1.058 × 10−2/+ 9.246 × 10−1/= 4.703 × 10−3/+ 1.065 × 10−7/+ 

F16 6.796 × 10−8/+ 6.796 × 10−8/+ 1.143 × 10−2/+ 6.389 × 10−2/= 2.062 × 10−6/+ 7.113 × 10−3/+ 4.540 × 10−6/+ 

F17 6.917 × 10−7/+ 6.796 × 10−8/+ 1.600 × 10−5/+ 2.616 × 10−1/= 3.705 × 10−5/+ 5.310 × 10−2/= 7.353 × 10−1/= 

Figure 8. The radar maps of the different algorithms on CEC2017.

Table 3. The p-value of Wilcoxon rank sum test between the ENGO and other algorithms.

PSO AOA AVOA DO SCSO SSA NGO

F1 6.796 × 10−8/+ 6.796 × 10−8/+ 5.255 × 10−5/+ 2.960 × 10−7/+ 6.796 × 10−8/+ 4.540 × 10−6/+ 6.796 × 10−8/+
F3 6.796 × 10−8/+ 6.796 × 10−8/− 6.796 × 10−8/− 5.979 × 10−1/− 6.796 × 10−8/− 6.796 × 10−8/+ 6.796 × 10−8/+
F4 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 5.979 × 10−1/= 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+
F5 6.796 × 10−8/+ 6.796 × 10−8/+ 1.481 × 10−3/+ 2.184 × 10−1/= 6.796 × 10−8/+ 8.817 × 10−1/= 7.712 × 10−3/+
F6 6.796 × 10−8/+ 6.796 × 10−8/+ 1.657 × 10−7/+ 1.431 × 10−7/+ 7.898 × 10−8/+ 1.235 × 10−7/+ 1.803 × 10−6/+
F7 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 8.585 × 10−2/=
F8 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 9.173 × 10−8/+
F9 6.796 × 10−8/+ 6.796 × 10−8/+ 5.091 × 10−4/+ 2.073 × 10−2/+ 6.015 × 10−7/+ 3.987 × 10−6/+ 4.155 × 10−4/+
F10 1.953 × 10−3/+ 7.898 × 10−8/+ 2.041 × 10−5/+ 3.382 × 10−4/− 1.376 × 10−6/+ 1.201 × 10−6/+ 3.942 × 10−1/=
F11 6.796 × 10−8/+ 6.796 × 10−8/+ 8.597 × 10−6/+ 1.116 × 10−3/+ 9.748 × 10−6/+ 3.069 × 10−6/+ 1.047 × 10−6/+
F12 7.937 × 10−8/+ 7.937 × 10−3/+ 6.905 × 10−1/= 8.413 × 10−1/= 7.937 × 10−3/+ 1.000 × 10−0/= 5.476 × 10−1/=
F13 7.937 × 10−8/+ 7.937 × 10−3/+ 2.222 × 10−1/= 3.175 × 10−2/+ 7.937 × 10−3/+ 3.095 × 10−1/= 9.524 × 10−2/−
F14 7.937 × 10−8/+ 7.937 × 10−3/+ 7.937 × 10−3/+ 7.937 × 10−3/+ 7.937 × 10−3/+ 8.413 × 10−1/= 4.206 × 10−1/=
F15 4.903 × 10−1/= 5.166 × 10−6/+ 8.392 × 10−1/= 1.058 × 10−2/+ 9.246 × 10−1/= 4.703 × 10−3/+ 1.065 × 10−7/+
F16 6.796 × 10−8/+ 6.796 × 10−8/+ 1.143 × 10−2/+ 6.389 × 10−2/= 2.062 × 10−6/+ 7.113 × 10−3/+ 4.540 × 10−6/+
F17 6.917 × 10−7/+ 6.796 × 10−8/+ 1.600 × 10−5/+ 2.616 × 10−1/= 3.705 × 10−5/+ 5.310 × 10−2/= 7.353 × 10−1/=
F18 6.168 × 10−1/= 6.796 × 10−8/+ 6.220 × 10−4/+ 5.428 × 10−1/= 7.205 × 10−2/= 6.868 × 10−4/+ 1.014 × 10−3/+
F19 6.220 × 10−4/+ 3.069 × 10−6/+ 1.719 × 10−1/= 5.652 × 10−2/= 5.428 × 10−1/= 2.073 × 10−2/+ 7.898 × 10−8/+
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Table 3. Cont.

PSO AOA AVOA DO SCSO SSA NGO

F20 6.796 × 10−8/+ 6.796 × 10−8/+ 4.735 × 10−1/= 1.929 × 10−2/+ 6.796 × 10−8/+ 2.341 × 10−3/+ 1.294 × 10−4/−
F21 6.040 × 10−3/+ 1.415 × 10−5/+ 4.155 × 10−4/+ 1.333 × 10−1/= 8.355 × 10−3/+ 1.610 × 10−4/+ 2.393 × 10−1/=
F22 3.416 × 10−7/+ 6.796 × 10−8/+ 1.159 × 10−4/+ 7.712 × 10−3/+ 1.807 × 10−5/+ 1.794 × 10−4/+ 2.977 × 10−1/=
F23 5.979 × 10−1/= 3.152 × 10−2/+ 8.604 × 10−1/= 2.503 × 10−1/= 6.610 × 10−5/+ 6.389 × 10−2/= 6.796 × 10−8/+
F24 6.796 × 10−8/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 1.657 × 10−7/+ 6.796 × 10−8/+ 6.796 × 10−8/+ 7.205 × 10−2/=
F25 9.127 × 10−7/+ 6.796 × 10−8/+ 1.235 × 10−7/+ 4.539 × 10−7/+ 3.939 × 10−7/+ 1.918 × 10−7/+ 1.436 × 10−2/+
F26 6.796 × 10−8/+ 6.796 × 10−8/+ 5.255 × 10−5/+ 1.556 × 10−1/= 6.796 × 10−8/+ 6.787 × 10−2/= 6.796 × 10−8/−
F27 1.047 × 10−6/+ 6.796 × 10−8/+ 2.356 × 10−6/+ 6.917 × 10−7/+ 1.997 × 10−4/+ 1.600 × 10−5/+ 8.597 × 10−6/+
F28 1.065 × 10−7/+ 6.796 × 10−8/+ 2.302 × 10−5/+ 5.091 × 10−4/+ 1.431 × 10−7/+ 6.674 × 10−6/+ 4.249 × 10−1/=
F29 6.796 × 10−8/+ 6.796 × 10−8/+ 9.620 × 10−2/= 2.748 × 10−2/+ 1.065 × 10−7/+ 1.333 × 10−1/= 2.561 × 10−3/−
F30 1.047 × 10−6/+ 6.796 × 10−8/+ 2.041 × 10−5/+ 2.748 × 10−2/+ 9.127 × 10−7/+ 1.794 × 10−4/+ 4.249 × 10−1/=

+/=/− 26/3/0 28/0/1 21/7/1 16/11/2 25/3/1 21/8/0 15/10/4

4. Practical Optimization Problems

Except for the test functions, the practical optimization problems with high dimensions
and strong constraints can also reflect the performance of the algorithm. In this section,
the ENGO algorithm, the original NGO algorithm and the other eight algorithms need to
solve five problems to show their performance. These algorithms are AOA, AO [23], the
Harris hawks optimization (HHO) [49], the WOA, PSO, GWO [50], the manta ray foraging
optimization (MRFO) [51] and the multi-verse optimizer (MVO) [52]. All algorithms run
20 times, independently. The size of the population is 30, the maximum iteration is 100.
The results and discussion of these examples are as follows.

4.1. Gear Train Design Problem

The gear train design problem is used to obtain the most suitable number of teeth
to minimize the cost of the gear ratio. This problem includes four variables, denoted as
TA, TB, TC and TD, respectively [53]. The structure of the four gears is shown in Figure 9.
Equation (16) lists its mathematical model.

→
x = [x1, x2, x3, x4] = [TA, TB, TC, TD],

f (
→
x ) =

(
1

6.931
− x1x2

x3x4

)2
, (16)

12 ≤ x1, x2, x3, x4 ≤ 60.
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Table 4 provides the final results of the ENGO algorithm and other algorithms in
solving the gear train design problem. Among these algorithms, the ENGO algorithm has
the best average value after it was run 20 times. That is, the ENGO algorithm is effective
in solving this problem. Meanwhile, the smaller standard deviation illustrates that the
improved algorithm is more stable, while the original NGO algorithm is largely fluctuating.
Table 5 includes the best variables of the gear train obtained by each algorithm.

Table 4. Results of the different algorithms in solving the gear train design problem.

Algorithms The Best The Average The Worst The Std Rank

NGO 6059.99 6074.13 6127.80 30.01 2
ENGO 6059.73 6066.12 6090.62 13.70 1
AOA 6071.98 6545.79 7222.18 444.38 8
AO 6113.00 6199.99 6410.86 120.66 4

HHO 6118.61 6795.99 7306.63 449.83 9
WOA 6570.10 7922.69 10,623.26 1569.47 10
PSO 6059.72 6276.06 6439.73 197.57 5

GWO 6069.89 6076.51 6091.00 9.24 3
MRFO 6060.57 6276.27 6410.09 183.54 6
MVO 6327.37 6518.43 6821.12 213.74 7

Table 5. The best solution of the gear train design problem obtained by the different algorithms.

Algorithms x1 x2 x3 x4

NGO 0.7782 0.3847 40.3197 200.0000
ENGO 0.7782 0.3847 40.3201 200.0000
AOA 0.7788 0.3851 40.3452 199.6439
AO 0.7910 0.4106 40.8942 193.8638

HHO 0.8351 0.4132 43.2690 162.6520
WOA 0.8270 0.4523 42.2240 175.0869
PSO 0.7988 0.3948 41.3871 185.6578

GWO 0.7785 0.3850 40.3279 199.9139
MRFO 0.7799 0.3855 40.4039 198.8352
MVO 0.7850 0.3884 40.6637 195.3838

4.2. Pressure Vessel Design Problem

The pressure vessel design problem aims to obtain the optimal total cost of the cylin-
drical vessel, by adjusting the parameter values of the material, its formation, and welding.
The schematic diagram of the pressure vessel is shown in Figure 10. There are four param-
eter values that need to be optimized. Ts represents the thickness of the shell, Th is the
thickness of the head, and the inner radius and length of the cylindrical section are noted
as R and L (without considering the head), respectively. The mathematical model of this
problem is shown as follows [54,55]:

→
x = [x1, x2, x3, x4] = [Ts, Th, R, L],

f (
→
x ) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3, (17)

g1(
→
x ) = −x1 + 0.0193x3 ≤ 0,

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0,

g3(
→
x ) = −πx2

3x4 − 4
3 πx3

3 + 1296000 ≤ 0,
g4(
→
x ) = x4 − 240 ≤ 0,

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 0 ≤ x3 ≤ 200, 0 ≤ x4 ≤ 200.



Mathematics 2022, 10, 4383 21 of 33

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 35 
 

 

.2000,2000,990,990

,0240)(

,01296000
3

4
)(

,000954.0)(

,00193.0)(

4321

44

3

34

2

33

332

311



−=

+−−=

+−=

+−=

xxxx

xxg

xxxxg

xxxg

xxxg









   

 

Figure 10. The construction of the pressure vessel design problem. 

Table 6 shows the results of solving the pressure vessel design problem. The ENGO 

algorithm also has the best performance of accuracy and stability. The original NGO al-

gorithm ranks second. Though the GWO algorithm also shows a great performance on 

the measure index of the best value, there are still defects in the stability. In Table 7, the 

best parameters of the pressure vessel design problem are listed. 

Table 6. Results of the different algorithms in solving the pressure vessel design problem. 

Algorithms The Best The Average The Worst The Std Rank 

NGO 5885.40 5891.23 5912.01 7.63 2 

ENGO 5885.53 5889.23 5903.66 4.43 1 

AOA 5888.21 6177.71 8486.53 579.23 4 

AO 6015.94 6827.33 7996.55 649.54 9 

HHO 5991.42 6529.04 7347.30 389.76 8 

WOA 6191.17 8298.09 13,900.72 1763.29 10 

PSO 5921.55 6192.62 6694.52 248.26 5 

GWO 5885.32 6415.77 7318.93 543.48 7 

MRFO 5889.04 5899.86 5927.37 11.37 3 

MVO 5902.31 6376.45 7181.97 368.37 6 

Table 7. The best solution of the pressure vessel design problem obtained by the different algo-

rithms. 

Algorithms x1 x2 x3 x4 

NGO 13.1101 6.7661 42.1004 176.6150 

ENGO 13.3703 7.0200 42.0984 176.6376 

AOA 12.0123 5.9525 40.3278 199.9302 

AO 12.2204 6.1872 40.5586 196.7161 

HHO 12.7969 5.5343 41.3533 186.0939 

WOA 13.8206 6.6719 41.5674 183.3307 

PSO 13.3587 6.7702 42.0985 176.6364 

Figure 10. The construction of the pressure vessel design problem.

Table 6 shows the results of solving the pressure vessel design problem. The ENGO
algorithm also has the best performance of accuracy and stability. The original NGO
algorithm ranks second. Though the GWO algorithm also shows a great performance on
the measure index of the best value, there are still defects in the stability. In Table 7, the
best parameters of the pressure vessel design problem are listed.

Table 6. Results of the different algorithms in solving the pressure vessel design problem.

Algorithms The Best The Average The Worst The Std Rank

NGO 5885.40 5891.23 5912.01 7.63 2
ENGO 5885.53 5889.23 5903.66 4.43 1
AOA 5888.21 6177.71 8486.53 579.23 4
AO 6015.94 6827.33 7996.55 649.54 9

HHO 5991.42 6529.04 7347.30 389.76 8
WOA 6191.17 8298.09 13,900.72 1763.29 10
PSO 5921.55 6192.62 6694.52 248.26 5

GWO 5885.32 6415.77 7318.93 543.48 7
MRFO 5889.04 5899.86 5927.37 11.37 3
MVO 5902.31 6376.45 7181.97 368.37 6

Table 7. The best solution of the pressure vessel design problem obtained by the different algorithms.

Algorithms x1 x2 x3 x4

NGO 13.1101 6.7661 42.1004 176.6150
ENGO 13.3703 7.0200 42.0984 176.6376
AOA 12.0123 5.9525 40.3278 199.9302
AO 12.2204 6.1872 40.5586 196.7161

HHO 12.7969 5.5343 41.3533 186.0939
WOA 13.8206 6.6719 41.5674 183.3307
PSO 13.3587 6.7702 42.0985 176.6364

GWO 11.7017 6.0078 40.3203 200.0000
MRFO 13.1352 6.8732 42.0915 176.7231
MVO 14.9302 7.0317 48.6240 109.7093

4.3. Four-Stage Gearbox Design Problem

Figure 11 is the schematic diagram of the four-stage gearbox design problem, which
is proposed to reduce the weight of the gearbox. There are twenty-two parameters to be
determined, which can be divided into four categories, including the positions of the gears,
the positions of the pinions, the thickness of the blanks, and the number of teeth. Moreover,
there are eighty-six constraints that need to be satisfied. They cover the contact ratio, pitch,
strength of the gears, assembly of the gears, kinematics, and the size of the gears. Thus,
the four-stage gearbox design problem is challenging for most algorithms to search for the
optimum in a small search area with lots of local solutions. The model can be represented
by the following [56].
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→
x = [x1, x2, x3, . . . , x22] = [Np1, . . . , Np4, Ng1, . . . , Ng4, b1 . . . , b4, xp1, xg1, . . . , xg4, yp1, yg1, . . . , yg4],

f (
→
x ) =

( π

1000

) 4

∑
i=1

bic2
i (N2

pi + N2
gi)

(Npi + Ngi)
2 , (18)

g1(x) =

(
366000

πw1
+

2c1Np1

Np1 + Ng1

)((
Np1 + Ng1

)2

4b1c2
1Np1

)
− σN JR

0.0167WKoKm
≤ 0,

g2(x) =

(
366000Ng1

πw1Np1
+

2c2Np2

Np2 + Ng2

)((
Np2 + Ng2

)2

4b2c2
2Np2

)
− σN JR

0.0167WKoKm
≤ 0,

g3(x) =

(
366000Ng1Ng2

πw1Np1Np2
+

2c3Np3

Np3 + Ng3

)((
Np3 + Ng3

)2

4b3c2
3Np3

)
− σN JR

0.0167WKoKm
≤ 0,

g4(x) =

(
366000Ng1Ng2Ng3

πw1Np1Np2Np3
+

2c4Np4

Np4 + Ng4

)((
Np4 + Ng4

)2

4b4c2
4Np4

)
− σN JR

0.0167WKoKm
≤ 0,

g5(x) =

(
366000

πw1
+

2c1Np1

Np1 + Ng1

)((
Np1 + Ng1

)3

4b1c2
1Ng1N2

p1

)
−
(

σH
Cp

)(
sin(ϕ) cos(ϕ)

0.0334WKoKm

)
≤ 0,

g6(x) =

(
366000Ng1

πw1Np1
+

2c2Np2

Np2 + Ng2

)((
Np2 + Ng2

)3

4b2c2
2Ng2N2

p2

)
−
(

σH
Cp

)(
sin(ϕ) cos(ϕ)

0.0334WKoKm

)
≤ 0,

g7(x) =

(
366000Ng1Ng2

πw1Np1Np2
+

2c3Np3

Np3 + Ng3

)((
Np3 + Ng3

)3

4b3c2
3Ng3N2

p3

)
−
(

σH
Cp

)(
sin(ϕ) cos(ϕ)

0.0334WKoKm

)
≤ 0,

g8(x) =

(
366000Ng1Ng2Ng3

πw1Np1Np2Np3
+

2c4Np4

Np4 + Ng4

)((
Np4 + Ng4

)3

4b4c2
4Ng4N2

p4

)
−
(

σH
Cp

)(
sin(ϕ) cos(ϕ)

0.0334WKoKm

)
≤ 0,

g9(x)− g12(x) = −Npi

√
sin2(ϕ)

4 − 1
Npi

+
(

1
Npi

)2
+ Npi

√
sin2(ϕ)

4 − 1
Npi

(
1

Npi

)2

+
sin(ϕ)(Npi+Ngi)

2 + CRminπ cos(ϕ) ≤ 0,

g13(x)− g16(x) = dmin −
2ci Npi

Npi + Ngi
≤ 0, g17(x)− g20(x) = dmin −

2ci Ngi

Npi + Ngi
≤ 0,

g21(x) = xp1 +

((
Np1 + 2

)
c1

Np1 + Ng1

)
− Lmax ≤ 0,

g22(x)− g24(x) = −Lmax

((
Npi + 2

)
ci

Npi + Ngi

)
i=2,3,4

+ xg(i−1) ≤ 0,

g25(x) = −xp1 +

((
Np1 + 2

)
c1

Np1 + Ng1

)
≤ 0, g26–28(x) =

((
Npi + 2

)
ci

Npi + Ngi
− xg(i−1)

)
≤ 0,

g29(x) = yp1 +

((
Np1 + 2

)
c1

Np1 + Ng1

)
− Lmax ≤ 0,

g30–32(x) = −Lmax +

((
Npi + 2

)
ci

Npi + Ngi
− yg(i−1)

)
i=2,3,4

≤ 0,
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g33(x) =

(
Np1 + 2

)
c1

Np1 + Ng1
− yp1 ≤ 0, g34–36(x) =

((
Npi + 2

)
ci

Npi + Ngi
− yg(i−1)

)
i=2,3,4

≤ 0,

g37–40(x) = −Lmax +

(
Npi + 2

)
ci

Npi + Ngi
+ xgi ≤ 0, g41–44(x) = −xgi +

((
Npi + 2

)
ci

Npi + Ngi

)
≤ 0,

g45–48(x) = ygi +

(
Npi + 2

)
ci

Npi + Ngi
− Lmax ≤ 0, g49–52(x) = −ygi +

((
Npi + 2

)
ci

Npi + Ngi

)
≤ 0,

g53–56(x) = (bi − 8.255)(bi − 5.715)(bi − 12.70)
(
−Npi + 0.945ci − Ngi

)
(−1) ≤ 0,

g57–60(x) = (bi − 8.255)(bi − 3.175)(bi − 12.70)
(
−Npi + 0.646ci − Ngi

)
≤ 0,

g61–64(x) = (bi − 5.715)(bi − 3.175)(bi − 12.70)
(
−Npi + 0.504ci − Ngi

)
≤ 0,

g65–68(x) = (bi − 5.715)(bi − 3.175)(bi − 8.255)
(
−Npi − Ngi

)
≤ 0,

g69–72(x) = (bi − 8.255)(bi − 5.715)(bi − 12.70)
(

Npi + Ngi − 1.812ci
)
(−1) ≤ 0,

g73–76(x) = (bi − 8.255)(bi − 3.175)(bi − 12.70)
(

Npi + Ngi − 0.945ci
)
≤ 0,

g77–80(x) = (bi − 5.715)(bi − 3.175)(bi − 12.70)
(

Npi + Ngi − 0.646ci
)
(−1) ≤ 0,

g81–84(x) = (bi − 5.715)(bi − 3.175)(bi − 8.255)
(

Npi + Ngi − 0.504ci
)
≤ 0,

g85(x) = wmin −
w1
(

Np1Np2Np3Np4
)

Ng1Ng2Ng3Ng4
≤ 0, g86(x) = −wmax

w1
(

Np1Np2Np3Np4
)

Ng1Ng2Ng3Ng4
≤ 0,

ci =
√(

ygi − yp1
)2

+
(

xgi − xp1
)2, Ko = 1.5, dmin = 25, JR = 0.2,

ϕ = 120, W = 55.9, Km = 1.6, CRmin = 1.4, Lmax = 127, Cp = 464,

σH = 3290, wmax = 255, w1 = 5000, σN = 2090, wmin = 245,

bi ∈ {3.175, 12.7, 8.255, 5.715}, 7 ≤ Ngi, Npi ≤ 76,

ypi, xpi, ygi, xgi ∈ {12.7, 38.1, 25.4, 50.8, 76.2, 63.5, 88.9, 114.3, 101.6}.
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Tables 8 and 9 are the according results of all algorithms in solving the four stage
gearbox design problem. In Table 8, the ENGO algorithm and MRFO algorithm both
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perform well in this problem. Though the MRFO has a smaller average than the ENGO,
the ENGO is more stable than the MRFO during many runs, which is also significant
in engineering applications. For the original NGO algorithm, it ranks sixth among all
algorithms. Thus, by introducing the polynomial interpolation strategy and the multi-
strategy opposite learning models into the original NGO algorithm, its comprehensive
performance has been significantly improved.

Table 8. Results of the different algorithms in solving the four stage gearbox design problem.

Algorithms The Best The Average The Worst The Std Rank

NGO 18,398.72 166,899.45 355,937.63 98,874.36 6
ENGO 40.29 31,057.83 118,898.03 38,591.38 2
AOA 236,593.12 593,321.31 1,367,729.52 318,308.48 9
AO 75,789.09 334,881.90 1,053,952.90 240,302.34 7

HHO 16,877.30 335,825.38 826,083.75 241,230.91 8
WOA 148,853.31 639,888.43 2,175,565.64 412,516.64 10
PSO 72.27 110,875.33 293,548.53 91,901.27 4

GWO 43.52 147,549.85 489,288.82 133,316.04 5
MRFO 40.09 29,320.84 126,516.25 42,610.57 1
MVO 61.07 103,131.19 363,070.87 128,562.16 3

Table 9. The best solution of the four stage gearbox design problem obtained by the different
algorithms.

Algorithms x1 x2 x3 x4 x5 x6 x7 x8

NGO 16.3597 43.4036 15.6042 20.7061 15.9103 45.3901 18.1319 37.3685
ENGO 16.3498 36.2778 18.0688 32.4697 13.9053 36.2515 15.7787 31.2109
AOA 7.3482 16.5814 9.7969 18.9440 8.9957 11.7763 6.7875 23.3493
AO 6.7509 26.2480 15.9342 28.5684 18.4118 42.2120 11.9579 14.9953

HHO 19.5464 53.4613 24.5021 44.3106 20.7301 44.8527 26.8726 52.5285
WOA 11.5902 27.4520 12.1870 32.3820 11.1318 20.5502 13.5990 23.5141
PSO 23.4903 54.2967 24.7237 51.7276 32.4498 54.2332 18.4690 43.6656

GWO 21.7829 59.0988 22.9404 33.5723 20.0176 47.8837 20.2588 42.3957
MRFO 22.1205 43.6337 17.6126 38.1229 20.9525 41.6324 21.0797 48.9074
MVO 32.4530 57.1252 22.4880 47.3220 22.7186 67.3639 13.1444 22.6758

Algorithms x9 x10 x11 x12 x13 x14 x15 x16

NGO 0.7977 1.9562 1.2978 0.7257 1.5711 3.5749 5.1603 4.5826
ENGO 1.1626 1.0218 1.1244 1.2402 1.8459 3.5264 4.2182 4.8197
AOA 2.6529 1.2972 1.6242 1.9436 1.6410 2.7802 4.2547 3.5011
AO 2.4254 0.5351 1.0247 1.6666 1.7472 3.5758 2.1305 3.9710

HHO 0.7225 0.9587 1.2449 1.1576 6.2971 2.8094 4.5773 3.2258
WOA 0.8123 1.1016 1.4739 1.4853 0.7152 3.7964 3.5428 3.1702
PSO 1.2110 1.4161 1.1434 1.1996 1.6512 6.2798 2.9257 5.6438

GWO 0.6744 0.5895 0.6186 0.8372 8.0862 4.0926 5.5300 5.1202
MRFO 1.1778 1.1063 1.0636 1.0945 2.3573 5.2736 5.1814 4.8497
MVO 1.4973 1.0831 0.7566 1.9664 7.2887 5.9129 5.7797 5.5464

Algorithms x17 x18 x19 x20 x21 x22

NGO 2.9657 1.1195 4.3970 2.4098 3.5683 3.6964
ENGO 4.8350 1.8115 5.3561 3.8104 3.7590 2.7212
AOA 4.5457 2.9304 5.6055 2.3556 1.6346 1.6271
AO 2.7660 6.2850 3.4033 2.7208 3.2026 2.8172

HHO 2.9383 4.7721 2.9564 2.4774 3.4950 2.9967
WOA 2.5494 1.0331 1.7917 2.8701 1.7390 2.7638
PSO 6.0429 7.3123 5.0504 3.1684 6.1872 3.9215
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Table 9. Cont.

Algorithms x17 x18 x19 x20 x21 x22

GWO 5.1050 6.3408 6.4331 3.6878 4.2577 5.0673
MRFO 6.2644 4.2654 4.1077 2.8940 3.6149 4.3536
MVO 3.6218 1.9314 5.9677 5.2745 6.1850 3.9999

4.4. 72-Bar Truss Design Problem

Figure 12 is the construction of the 72-bar truss design problem, including its node and
element numbering schemes [57]. As Table 10 shown, the structural members of the 72-bar
space truss are organized into 16 groups, symmetrically. The unit weight of the material
is 0.1 lb/in.3, and the modulus of elasticity is 107 psi. The structure has the following
constraints: a maximum displacement of ±0.25 in. at the uppermost joints in the x, y, or
z directions, and a maximum allowable stress of ±25 ksi in any element and the range of
acceptable cross sectional areas varies from 0.1 in.2 to 3.0 in.2 [58].
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Figure 12. The construction of the 72-bar truss design problem. (a) The front view; (b) Structure
diagram in 3-dimension.

Table 10. Multiple loading conditions for the 72-bar truss.

Case Node Px (Kips) PY (Kips) Pz (Kips)

1

17 0.0 0.0 −5.0
18 0.0 0.0 −5.0
19 0.0 0.0 −5.0
20 0.0 0.0 −5.0

2 17 5.0 5.0 −5.0

Once the algorithm is run 20 times, all results are summarized in Tables 11 and 12. As
shown in Table 11, the ENGO algorithm keeps outstanding performance on all four measure
indexes, while the original NGO algorithm only ranks fourth. Thus, for engineering
optimization problems of high dimension, the difference between the enhanced algorithm
and the original algorithm is more clear. Finally, the optimal solutions obtained by the
different algorithms are listed in Table 12, for reference.
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Table 11. Results of the different algorithms in solving the 72-bar truss design problem.

Algorithms The Best The Average The Worst The Std Rank

NGO 392.18 411.71 444.66 15.70 4
ENGO 364.94 369.08 374.79 2.37 1
AOA 521.87 633.25 797.57 79.64 8
AO 450.14 519.94 643.44 49.42 5

HHO 469.52 535.59 653.30 46.82 6
WOA 657.74 1276.02 2551.19 500.03 10
PSO 561.18 656.26 817.32 58.92 9

GWO 366.77 385.89 544.00 41.89 2
MRFO 374.05 387.49 398.93 6.14 3
MVO 403.42 631.44 818.15 130.68 7

Table 12. The best solutions of the 72-bar truss design problem obtained by the different algorithms.

Variables Elements NGO ENGO AOA AO HHO WOA PSO GWO MRFO MVO

A1 (cm2) 1–4 2.0920 1.8590 1.5676 1.1585 1.8381 1.1766 1.7266 1.9659 2.1464 2.0780
A2 (cm2) 5–12 0.4767 0.5651 0.5686 0.9007 0.5715 1.3878 0.5236 0.5256 0.4721 0.6499
A3 (cm2) 13–16 0.0947 0.0010 0.1243 0.0010 0.5927 1.0805 1.0676 0.0076 0.0282 0.4172
A4 (cm2) 17–18 0.1207 0.0036 0.5637 0.7380 0.0010 0.5005 0.4696 0.0116 0.0133 0.0010
A5 (cm2) 19–22 0.9872 1.1815 2.6426 0.8930 0.8664 1.0783 0.9505 1.3216 1.1074 1.3433
A6 (cm2) 23–30 0.5752 0.5100 0.7967 0.5979 0.3892 0.4719 1.0107 0.4859 0.5052 0.5199
A7 (cm2) 31–34 0.0220 0.0087 0.0677 0.0371 0.0010 0.3239 0.3293 0.0239 0.0035 0.0010
A8 (cm2) 35–36 0.0156 0.0027 0.6353 0.0010 0.9025 1.0858 0.2507 0.0553 0.0259 0.0066
A9 (cm2) 37–40 0.6838 0.5605 0.9351 0.5663 0.7672 0.3525 1.1277 0.5764 0.6552 0.8319

A10 (cm2) 41–48 0.5559 0.5261 0.3389 0.4346 0.6098 0.8691 0.6233 0.5201 0.5437 0.4748
A11 (cm2) 49–52 0.0664 0.0010 0.3367 0.0010 0.5841 0.2747 0.1287 0.0254 0.0472 0.0010
A12 (cm2) 53–54 0.0944 0.1566 0.6734 0.4884 0.0737 0.9883 0.4048 0.0536 0.0857 0.3795
A13 (cm2) 55–58 0.2149 0.1639 0.9447 0.1893 0.1440 0.5191 0.3632 0.1694 0.2025 0.1548
A14 (cm2) 59–66 0.5023 0.5753 0.5190 0.7363 0.5593 0.3495 0.3299 0.5391 0.5462 0.5078
A15 (cm2) 67–70 0.4853 0.3682 0.6180 0.5549 0.9750 1.0178 0.7666 0.4751 0.4264 0.2240
A16 (cm2) 71–72 0.8930 0.5086 0.5435 0.7684 0.5203 1.0450 1.3540 0.5289 0.7368 0.6657

4.5. Traveling Salesman Problem

The traveling salesman problem (TSP) is a classical combinatorial optimization prob-
lem [59]. In the TSP, there is a commodity salesman who needs to sell his goods in several
designated cities. During this process, the salesman has to go through all of the cities
before he returns to the original city. Therefore, how to determine the most suitable route
to minimize the total travel, is the question to be considered. Since the feasible solution
to this problem is the full permutation of all vertices, the challenge of this problem will
increase dramatically with the increase in the number of cities, which can be regarded as
a NP-hard problem [60]. Here, the ENGO algorithm is employed to solve the TSP. Then,
two examples are given to analyze the performance of the ENGO algorithm and other
comparison algorithms.

4.5.1. Two Traveling Salesmen and 80 Cities

The first example includes 80 randomly generated cities and two traveling salesmen.
The results are summarized in Table 13. Once the algorithm is run 20 times, the average
travel obtained by the ENGO algorithm is the smallest. Then, the MRFO algorithm performs
better on the best value than the ENGO algorithm, which illustrates that there are still
opportunities to improve the ENGO by borrowing the structure of the MRFO algorithm.
Figure 13 includes the best routes for the traveling salesman, the convergence curves and
the box plots of the different algorithms. From Figure 13a–h, the routes obtained by the
AOA or GWO are more complicated, while the route obtained by the ENGO algorithm
is reasonable. Furthermore, in Figure 13k, the red line of the ENGO algorithm has the
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fastest convergence speed during the whole search process, which illustrates that the
improvement strategies are helpful to enhance the quality of the population to make the
algorithm approach the optimum faster.

Table 13. The results of the different algorithms for the TSP with 80 cities and two2 traveling salesmen.

Algorithms The Best The Average The Worst The Std Rank

NGO 7.4210 7.5834 7.7711 0.1558 6
ENGO 7.3777 7.4481 7.5576 0.0727 1
AOA 7.3134 7.5703 7.8840 0.2039 5
AO 7.3397 7.4836 7.6206 0.1105 3

HHO 7.4713 7.9101 8.3391 0.3088 10
WOA 7.4717 7.5239 7.5539 0.0346 4
PSO 7.6181 7.8428 8.0443 0.1876 9

GWO 7.6058 7.7255 7.8716 0.1072 7
MRFO 7.2231 7.4833 7.7176 0.1832 2
MVO 7.5609 7.7854 7.9852 0.1874 8

Mathematics 2022, 10, x FOR PEER REVIEW 29 of 35 
 

 

still opportunities to improve the ENGO by borrowing the structure of the MRFO algo-

rithm. Figure 13 includes the best routes for the traveling salesman, the convergence 

curves and the box plots of the different algorithms. From Figure 13a–h, the routes ob-

tained by the AOA or GWO are more complicated, while the route obtained by the ENGO 

algorithm is reasonable. Furthermore, in Figure 13k, the red line of the ENGO algorithm 

has the fastest convergence speed during the whole search process, which illustrates that 

the improvement strategies are helpful to enhance the quality of the population to make 

the algorithm approach the optimum faster. 

Table 13. The results of the different algorithms for the TSP with 80 cities and two2 traveling sales-

men. 

Algorithms The Best The Average The Worst The Std Rank 

NGO 7.4210 7.5834 7.7711 0.1558 6 

ENGO 7.3777 7.4481 7.5576 0.0727 1 

AOA 7.3134 7.5703 7.8840 0.2039 5 

AO 7.3397 7.4836 7.6206 0.1105 3 

HHO 7.4713 7.9101 8.3391 0.3088 10 

WOA 7.4717 7.5239 7.5539 0.0346 4 

PSO 7.6181 7.8428 8.0443 0.1876 9 

GWO 7.6058 7.7255 7.8716 0.1072 7 

MRFO 7.2231 7.4833 7.7176 0.1832 2 

MVO 7.5609 7.7854 7.9852 0.1874 8 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 13. Cont.



Mathematics 2022, 10, 4383 28 of 33Mathematics 2022, 10, x FOR PEER REVIEW 30 of 35 
 

 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 13. The best results, the convergence and box plot of all algorithms for the TSP with 80 cities 

and two traveling salesmen. (a) NGO; (b) ENGO; (c) AOA; (d) AO; (e) HHO; (f) WOA; (g) PSO; (h) 

GWO; (i) MRFO; (j) MVO; (k) The convergence curve; (l) The box plot. 

4.5.2. Three Traveling Salesmen and 80 Cities 

Then, to increase the difficulty of the TSP, the number of traveling salesmen is set as 

three. Table 14 are the results obtained by all algorithms. Obviously, the ENGO algorithm 

has the best performance on four measure indexes. Meanwhile, from Figure 14k,l, the 

ENGO algorithm also has the fastest convergence speed and is the most stable one. There-

fore, when the difficulty of the TSP is increased, the ENGO algorithm will show a stronger 

capacity to obtain the optimal route. 

Table 14. The results of the different algorithms for the TSP with 80 cities and three travelling 

salesmen. 

Algorithms The Best The Average  The Worst The Std Rank 

NGO 7.4785 7.6461 7.8232 0.1497 4 

ENGO 7.4153 7.5262 7.6154 0.0719 1 

AOA 7.5364 7.7051 7.8416 0.1225 5 

AO 7.5042 7.6262 7.6752 0.0695 3 

HHO 7.6903 7.9476 8.1682 0.1786 7 

WOA 7.6291 7.7467 7.8408 0.0973 6 

PSO 7.8003 7.9549 8.1152 0.1396 8 

GWO 7.7822 8.0106 8.3583 0.2167 9 

MRFO 7.4747 7.6107 7.8013 0.1459 2 

MVO 7.7944 8.0646 8.6528 0.3388 10 

 

Figure 13. The best results, the convergence and box plot of all algorithms for the TSP with 80 cities
and two traveling salesmen. (a) NGO; (b) ENGO; (c) AOA; (d) AO; (e) HHO; (f) WOA; (g) PSO;
(h) GWO; (i) MRFO; (j) MVO; (k) The convergence curve; (l) The box plot.

4.5.2. Three Traveling Salesmen and 80 Cities

Then, to increase the difficulty of the TSP, the number of traveling salesmen is set
as three. Table 14 are the results obtained by all algorithms. Obviously, the ENGO algo-
rithm has the best performance on four measure indexes. Meanwhile, from Figure 14k,l,
the ENGO algorithm also has the fastest convergence speed and is the most stable one.
Therefore, when the difficulty of the TSP is increased, the ENGO algorithm will show a
stronger capacity to obtain the optimal route.

Table 14. The results of the different algorithms for the TSP with 80 cities and three travelling salesmen.

Algorithms The Best The Average The Worst The Std Rank

NGO 7.4785 7.6461 7.8232 0.1497 4
ENGO 7.4153 7.5262 7.6154 0.0719 1
AOA 7.5364 7.7051 7.8416 0.1225 5
AO 7.5042 7.6262 7.6752 0.0695 3

HHO 7.6903 7.9476 8.1682 0.1786 7
WOA 7.6291 7.7467 7.8408 0.0973 6
PSO 7.8003 7.9549 8.1152 0.1396 8

GWO 7.7822 8.0106 8.3583 0.2167 9
MRFO 7.4747 7.6107 7.8013 0.1459 2
MVO 7.7944 8.0646 8.6528 0.3388 10
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5. Conclusions and Future Work

This paper proposed a novel version of the NGO algorithm by introducing the poly-
nomial interpolation strategy and the multi-strategy opposite learning method, called the
ENGO algorithm. To test the ability of the improved algorithm, the ENGO algorithm is
employed to solve 29 benchmark functions of the CEC2017 test suite, four engineering
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examples and the TSP and, compared it with other famous optimization algorithms. On
the one hand, the results show that the ENGO algorithm ranks first on 23 test functions,
accounting for 79.31% of the 29 functions, while the original NGO algorithm ranks first on
only four functions, accounting for 13.79%. Combined with the box plots, the fluctuation
of the results obtained by ENGO algorithm is significantly smaller. These gaps suggest
that the introduction of the improvement strategies keeps a better balance between the
exploration and exploitation, which helps the algorithm to enhance the search ability, and
to obtain results with higher precision. The average convergence curves can also reflect
the effect of the different strategies. Compared with other algorithms, the curve of the
ENGO decreases rapidly. It is because the quality of the whole population is enhanced
by the polynomial interpolation strategy, which leads the individuals to determine the
appropriate search direction and move toward the optimal solution quickly. At the end of
the search process, from the convergence curves, it can be observed that the ENGO algo-
rithm can avoid the search stagnation phenomenon, which reflects that the multi-strategy
opposite learning method helps the algorithm to expand the search range, to escape the
local optimums. On the other hand, the results of the four engineering examples and the
TSP show that the ENGO algorithm is still competitive for the optimization problems with
high dimensions and strong constraints. When facing a more complex search space, the
ENGO algorithm can keep an outstanding performance on all measure indexes, such as the
72 truss design problem. For the two TSP examples with high dimensions, the differences
between the ENGO algorithm and the original NGO algorithm become more obvious,
which illustrates that the two improvement strategies can maintain the efficient search
ability of the algorithm as the complexity of the problem increases.

For the future, we can introduce the polynomial interpolation strategy and the multi-
strategy opposite learning method into other intelligent optimization algorithms and
discuss whether these strategies are still effective, and obtain an outstanding performance.
Moreover, the ENGO algorithm can be employed to solve other changing problems, such
as the parameters optimization of some complex models, feature selection, degree reduc-
tion, shape optimization, production scheduling problems, flight optimization problems,
and so on.
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Nomenclature

Notations Explanation
NGO Northern goshawk optimization algorithm
ENGO Enhanced goshawk optimization algorithm proposed in this paper
N The size of the northern goshawk population
M The dimension of the optimization problem
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t The number of current iterations of the algorithm
T The maximum iterations
UB The upper bound of the optimization problem
LB The lower bound of the optimization problem
Xi The i-th individual in the population
Xi,j The j-th element of the i-th individual
preyi The selected prey in the population
r A random number in the goshawk optimization algorithm
I A vector consisted of 1 or 2
a0, a1, a2 Three coefficients in the quadratic polynomial function
X̃i New solution obtained by opposite learning
Xi New solution obtained by quasi-opposite learning
X̂i New solution obtained by quasi-reflected learning
Xoppo New population including the solutions after different opposite

learning methods
TA, TB, TC, TD Number of teeth in gears TA, TB, TC, TD
Ts The thickness of the shell section
Th The thickness of the head
R The inner radius
L The length of the cylindrical
Np1, . . . , Np4 The positions of the pinions
Ng1, . . . , Ng4 The positions of the gears
b1 . . . , b4 The thickness of the blanks
xp1, xg1, . . . , xg4, yp1, yg1, . . . , yg4 The number of teeth of the different gears
TSP Traveling salesman problem
GA Genetic algorithm
DE Differential evolution algorithm
ICA Imperialist competitive algorithm
MA Memetic algorithm
BBO Bio-geography optimization algorithm
SA Simulated annealing algorithm
GSA Gravitational search algorithm
SCA Sine cosine algorithm
BOA Billiards-inspired optimization algorithm
GBO Gradient-based optimizer
PSO Particle swarm optimization algorithm
WOA Whale optimization algorithm
GWO Grey wolf optimizer
AO Aquila optimizer
SCSO Sand cat swarm optimization algorithm
AOA Archimedes optimization algorithm
AVOA African vultures optimization algorithm
DO Dandelion optimizer
SSA Sparrow search algorithm
HHO Harris hawks optimization algorithm
MRFO Manta ray foraging optimization algorithm
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