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Abstract: Studies have reported several cases with respiratory viruses coinfection in hospitalized
patients. Influenza A virus (IAV) mimics the Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) with respect to seasonal occurrence, transmission routes, clinical manifestations and
related immune responses. The present paper aimed to develop and investigate a mathematical
model to study the dynamics of IAV/SARS-CoV-2 coinfection within the host. The influence of
SARS-CoV-2-specific and IAV-specific antibody immunities is incorporated. The model simulates
the interaction between seven compartments, uninfected epithelial cells, SARS-CoV-2-infected cells,
IAV-infected cells, free SARS-CoV-2 particles, free IAV particles, SARS-CoV-2-specific antibodies and
IAV-specific antibodies. The regrowth and death of the uninfected epithelial cells are considered.
We study the basic qualitative properties of the model, calculate all equilibria and investigate the
global stability of all equilibria. The global stability of equilibria is established using the Lyapunov
method. We perform numerical simulations and demonstrate that they are in good agreement with
the theoretical results. The importance of including the antibody immunity into the coinfection
dynamics model is discussed. We have found that without modeling the antibody immunity, the
case of IAV and SARS-CoV-2 coexistence is not observed. Finally, we discuss the influence of IAV
infection on the dynamics of SARS-CoV-2 single-infection and vice versa.
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1. Introduction

Coronavirus disease 2019 (COVID-19) was detected in December 2019, in Wuhan,
China during the season when influenza was still circulating [1]. COVID-19 is caused by
a dangerous type of virus called severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). According to the update provided by the World Health Organization (WHO) on 21
August 2022 [2], over 593 million confirmed cases and over 6.4 million deaths have been
reported globally. SARS-CoV-2 is transmitted to people when they are exposed to respira-
tory fluids carrying infectious viral particles. The implementation of preventive measures
such as physical and social distancing, using face masks, hand washing, disinfection of
surfaces and getting vaccinated can reduce SARS-CoV-2 transmission. Eleven vaccines
for COVID-19 have been approved by WHO for emergency use. These include Novavax,
CanSino, Bharat Biotech, Pfizer/BioNTech, Moderna, Serum Institute of India (Novavax
formulation), Janssen (Johnson & Johnson), Oxford/AstraZeneca, Serum Institute of India
(Oxford/AstraZeneca formulation), Sinopharm and Sinovac [3]. SARS-CoV-2 is a single-
stranded positive-sense RNA virus that infects the epithelial cells. SARS-CoV-2 can cause
an acute respiratory distress syndrome (ARDS), which has high mortality rates, particu-
larly in patients with immunosenescence [4]. Immunosenescence renders vaccination less
effective and increases the susceptibility to viral infections [5].
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Influenza viruses are members of the family of Orthomyxoviridae, which are nega-
tivesense RNA viruses. There are four distinct influenza viruses, A, B, C and D. Influenza
A virus (IAV) can infect a wide range of species. IAV is a significant public health threat,
resulting in 15-65 million infections and over 200,000 hospitalizations every year during
seasonal epidemics in the United States [6]. IAV infects the uninfected epithelial cells of
the host respiratory tract [7]. Both SARS-CoV-2 and IAV have analogous transmission
ways, moreover, they have common clinical manifestations including dyspnea, cough,
fever, headache, rhinitis, myalgia and sore throat [1]. Viral shedding usually takes place 5
to 10 days in influenza, whereas it does 2 to 5 weeks in COVID-19 [1]. Acute respiratory
distress is less common in influenza than COVID-19 [1]. Deaths in influenza cases are less
than 1%, while in cases of COVID-19 it ranges from 3% to 4% [1].

It was reported in [8] that 94.2% of individuals with COVID-19 were also coinfected
with several other microorganisms, such as fungi, bacteria and viruses. Important viral
copathogens include the respiratory syncytial virus (RSV), human enterovirus (HEV),
human rhinovirus (HRV), influenza A virus (IAV), influenza B virus (IBV), human metap-
neumovirus (HMPV), parainfluenza virus (PIV), human immunodeficiency virus (HIV),
cytomegalovirus (CMV), dengue virus (DENV), Epstein Barr virus (EBV), hepatitis B virus
(HBV) and other coronaviruses (COVs), among which the HRV, HEV and IAV are the
most common copathogens [9]. Several coinfection cases of COVID-19 and influenza have
been reported in [1,8,10–12] (see also the review papers [13–16]). Based on two separate
studies presented in [10,11], COVID-19-influenza coinfection did not result in worse clinical
outcomes [10]. In addition, this condition reduced the mortality rate among COVID-19-
influenza coinfected patients. Coinfection with influenza virus in COVID-19 patients
might render them less vulnerable to morbidities associated with COVID-19, and therefore,
a better prognosis overall [11]. In [16], it was found that, although patients with IAV and
SARS-CoV-2 coinfection did not experience longer hospital stays compared with those with
a SARS COV-2 single-infection, they usually presented with more severe clinical conditions.

Viral interference phenomenon can appear in case of infections with multiple com-
petitive respiratory viruses. One virus may be able to suppress the growth of another
virus [17–19]. Disease progression and outcome in SARS-CoV-2 infection are highly depen-
dent on the host immune response, particularly in the elderly in whom immunosenescence
may predispose to increased risk of coinfection [17].

Over the years, mathematical models have demonstrated their ability to provide useful
insight to gain a further understanding of the dynamics and mechanisms of the viruses
within a host level. These models may assist in the development of viral therapies and
vaccines as well as the selection of appropriate therapeutic and vaccine strategies. Moreover,
these models are helpful in determining the sufficient number of factors to analyze the
experimental results and explain the biological phenomena [7]. Stability analysis of the
model’s equilibria can help researchers (i) to expect the qualitative features of the model for
a given set of values of the model’s parameters, (ii) to establish the conditions that ensure
the persistence or deletion of this infection, and (iii) to determine under what conditions
the immune system is stimulated against the infection. Mathematical models of within-host
IAV single-infection have been developed in several works. Baccam et al. [20] presented
the following IAV-single-infection with limited target cells:

Ẋ = −
IAV infectious transmission︷︸︸︷

βXP ,

İ =

IAV infectious transmission︷︸︸︷
βXP −

natural death︷︸︸︷
γI ,

Ṗ =

IAV production︷︸︸︷
κ I −

natural death︷︸︸︷
πP ,

(1)
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where X = X(t), I = I(t) and P = P(t) are the concentrations of uninfected epithelial cells,
IAV-infected epithelial cells and free IAV particles, at time t, respectively. The model was
fitted using real data from six patients infected with influenza [20].

Several works have been devoted to study IAV single-infection dynamics models (see
the review papers [21–24]) by including the effect of innate immune response [20,25], adap-
tive immune response [26,27] and both innate and adaptive immune responses [5,7,28–30].
Handel et al. [31] presented a mathematical model for within-host influenza infection under
the effect of neuraminidase inhibitors drugs. The effect of a combination of neuraminidase
inhibitors and anti-IAV therapies was addressed in [26]. In [26], the first equation of model
(1) was modified by considering the target cell production and death as:

Ẋ =

epithelial cells production︷ ︸︸ ︷
αX(0) −

natural death︷︸︸︷
αX −

IAV infectious transmission︷︸︸︷
βXP , (2)

where X(0) is the initial concentration of the uninfected epithelial cells.
Model (1) was utilized to characterize the dynamics of SARS-CoV-2 within a host

in [32]. Li et al. [33] used Equation (2) for the SARS-CoV-2 infection dynamics. A model
with target-cell limited and a model with regrowth and death of the uninfected epithelial
cells presented, respectively, in [32,33] were extended and modified by including (i) latently
infected epithelial cells [32,34–36], (ii) effect of immune response [37–42], (iii) effect of
different drug therapies [35,43,44], and (iv) effect of time delay [45].

Recently, several mathematical models have been developed to characterize the coin-
fection of COVID-19 with other diseases in epidemiology (between-host), such as COVID-
19/HIV [46], COVID-19/Dengue [47], COVID-19/Dengue/HIV [48], COVID-19/ZIKV [49],
COVID-19/Bacterial [50], COVID-19/Influenza [51] and COVID-19/Tuberculosis [52].
However, modeling of within-host dynamics of COVID-19 with other pathogen coinfection
has been investigated in few papers: SARS-CoV-2/HIV [53], SARS-CoV-2/malaria [54]
and SARS-CoV-2/Bacteria [55]. Based on the target cell-limited model (1), Pinky and
Dobrovolny [18,19] developed a model for the within-host dynamics of two respiratory
viruses coinfection. They suggested that several types of respiratory viruses can suppress
the SARS-CoV-2 infection.

The model presented in [18,19] describes the competition between two respiratory
viruses. However, the impact of the immune response against the two viruses was not
modeled. Further, the regeneration and death of the uninfected epithelial cells were
neglected. Furthermore, mathematical analysis of the model was not studied. Therefore,
the aim of the present paper is to develop a within-host IAV/SARS-CoV-2 coinfection
model with immune response. The model is a generalization of the model presented
in [18,19] by incorporating (i) the regrowth and death of the uninfected epithelial cells, and
(ii) the impact of SARS-CoV-2-specific antibody and IAV-specific antibody. We study the
basic qualitative properties of the proposed model, calculate all equilibria and investigate
the global stability of the equilibria. We support our theoretical results via numerical
simulations. Finally, we discuss the obtained results.

Our proposed model can be useful to describe the within-host dynamics of coinfection
with two or more viral strains, or coinfection of SARS-CoV-2 (or IAV) and other respi-
ratory viruses. Moreover, the model may help to predict new treatment regimens for
viral coinfections.

2. Model Formulation

In this section, we present an IAV/SARS-CoV-2 coinfection dynamics model. The dy-
namics of IAV/SARS-CoV-2 coinfection is presented in the diagram Figure 1. Let us
consider following assumptions:

A1 The model considers the interactions between seven compartments: uninfected epithe-
lial cells (X), SARS-CoV-2-infected cells (Y), IAV-infected cells (I), free SARS-CoV-2
particles (V), free IAV particles (P), SARS-CoV-2-specific antibodies (Z) and IAV-
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specific antibodies (M). Here, X, Y, I, V, P, Z and M represent the concentrations of
the seven compartments.

A2 The uninfected epithelial cells are the target for both SARS-CoV-2 and IAV [18,20,32].
A3 The uninfected epithelial cells are regenerated and die at rates λ and αX, respec-

tively [33,40,42,56].
A4 The SARS-CoV-2-specific antibodies proliferate at rate σZVZ, decay at rate µZZ and

neutralize the SARS-CoV-2 particles at rate κVVZ [45,57].
A5 The IAV-specific antibodies proliferate at rate σMPM, decay at rate µM M and neutral-

ize the IAV particles at rate κPPM [56].

Based on Assumptions A1–A5, we formulate the IAV/SARS-CoV-2 coinfection dy-
namics model as:

Figure 1. The schematic diagram of the IAV/SARS-CoV-2 coinfection dynamics within-host.



Ẋ =

epithelial cells production︷︸︸︷
λ −

natural death︷︸︸︷
αX −

SARS-CoV-2 infectious transmission︷ ︸︸ ︷
βV XV −

IAV infectious transmission︷ ︸︸ ︷
βPXP ,

Ẏ =

SARS-CoV-2 infectious transmission︷ ︸︸ ︷
βV XV −

natural death︷︸︸︷
γYY ,

İ =

IAV infectious transmission︷ ︸︸ ︷
βPXP −

natural death︷︸︸︷
γI I ,

V̇ =

SARS-CoV-2 production︷︸︸︷
κVY −

natural death︷ ︸︸ ︷
πVV −

SARS-CoV-2 neutralization︷ ︸︸ ︷
κVVZ ,

Ṗ =

IAV production︷︸︸︷
κP I −

natural death︷︸︸︷
πPP −

IAV neutralization︷ ︸︸ ︷
κPPM ,

Ż =

SARS-CoV-2-specific antibody proliferation︷ ︸︸ ︷
σZVZ −

natural death︷︸︸︷
µZZ ,

Ṁ =

IAV-specific antibody proliferation︷ ︸︸ ︷
σMPM −

natural death︷ ︸︸ ︷
µM M .

(3)

3. Basic Qualitative Properties

In this section, we study the basic qualitative properties of system (3). We establish
the nonnegativity and boundedness of the system’s solutions to ensure that our model
is biologically acceptable. Particularly, the concentrations of the model’s compartments
should not become negative or unbounded.

Lemma 1. The solutions of system (3) are nonnegative and bounded.
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Proof. We have that

Ẋ |X=0= λ > 0, Ẏ |Y=0= βV XV ≥ 0 for all X, V ≥ 0,

İ |I=0= βPXP ≥ 0 for all X, P ≥ 0, V̇ |V=0= κVY ≥ 0 for all Y ≥ 0,

Ṗ |P=0= κP I ≥ 0 for all I ≥ 0,

Ż |Z=0= 0, Ṁ |M=0= 0.

This guarantees that (X(t), Y(t), I(t), V(t), P(t), Z(t), M(t)) ∈ R7
≥0 for all t ≥ 0 when

(X(0), Y(0), I(0), V(0), P(0), Z(0), M(0)) ∈ R7
≥0. Let us define

Ψ = X + Y + I +
γY
2κV

V +
γI

2κP
P +

γYκV
2κVσZ

Z +
γIκP

2κPσM
M.

Then,

Ψ̇ = λ− αX− γY
2

Y− γI
2

I − γYπV
2κV

V − γIπP
2κP

P− γYκVµZ
2κVσZ

Z− γIκPµM
2κPσM

M

≤ λ− φ

[
X + Y + I +

γY
2κV

V +
γI

2κP
P +

γYκV
2κVσZ

Z +
γIκP

2κPσM
M
]
= λ− φΨ,

where φ = min{α, γY
2 , γI

2 , πV , πP, µZ, µM}. Thus, 0 ≤ Ψ(t) ≤ ∆1 if Ψ(0) ≤ ∆1 for t ≥ 0,
where ∆1 = λ

φ . Since X, Y, I, V, P, Z and M are all nonnegative, then 0 ≤ X(t), Y(t), I(t) ≤
∆1, 0 ≤ V(t) ≤ ∆2, 0 ≤ P(t) ≤ ∆3, 0 ≤ Z(t) ≤ ∆4, 0 ≤ M(t) ≤ ∆5 if X(0) + Y(0) + I(0) +
γY
2κV

V(0) + γI
2κP

P(0) + γYκV
2κV σZ

Z(0) + γIκP
2κPσM

M(0) ≤ ∆1, where ∆2 = 2κV
γY

∆1, ∆3 = 2κP
γI

∆1,

∆4 = 2κV σZ
γYκV

∆1 and ∆5 = 2κPσM
γIκP

∆1. This proves the boundedness of the solutions.

4. Equilibria

In this section, we are interested in the conditions of existence of the system’s equilibria.
Moreover, we derive a set of threshold parameters which govern the existence of equilibria.
At any equilibrium Ξ = (X, Y, I, V, P, Z, M), the following equations hold:

0 = λ− αX− βV XV − βPXP, (4)

0 = βV XV − γYY, (5)

0 = βPXP− γI I, (6)

0 = κVY− πVV −κVVZ, (7)

0 = κP I − πPP−κPPM, (8)

0 = σZVZ− µZZ, (9)

0 = σMPM− µM M. (10)

Solving Equations (4)–(10), we obtain eight equilibria.
(i) Infection-free equilibrium, Ξ0 = (X0, 0, 0, 0, 0, 0, 0), where X0 = λ/α.
(ii) SARS-CoV-2 single-infection equilibrium without antibody immunity Ξ1 = (X1, Y1,

0, V1, 0, 0, 0), where

X1 =
γYπV
κV βV

, Y1 =
απV

κV βV

[
X0κV βV

πVγY
− 1
]

, V1 =
α

βV

[
X0κV βV

πVγY
− 1
]

Therefore, Y1 > 0 and V1 > 0 when

X0κV βV
πVγY

> 1.
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We define the basic SARS-CoV-2 single-infection reproductive ratio as:

<1 =
X0κV βV

πVγY
.

The parameter <1 determines whether or not a SARS-CoV-2 single-infection can be estab-
lished. Thus, we can write

X1 =
X0

<1
, Y1 =

απV
κV βV

(<1 − 1), V1 =
α

βV
(<1 − 1).

It follows that, Ξ1 exists if <1 > 1.
(iii) IAV single-infection equilibrium without antibody immunity, Ξ2 = (X2, 0, I2, 0, P2,

0, 0), where

X2 =
γIπP
κPβP

, I2 =
απP
κPβP

[
X0κPβP

πPγI
− 1
]

, P2 =
α

βP

[
X0κPβP

πPγI
− 1
]

.

Therefore, I2 > 0 and P2 > 0 when

X0κPβP
πPγI

> 1.

We define the basic IAV-infection reproductive ratio as:

<2 =
X0κPβP

πPγI
.

The parameter <2 determines whether or not the IAV single-infection can be established.
In terms of <2, we can write

X2 =
X0

<2
, I2 =

απP
κPβP

(<2 − 1), P2 =
α

βP
(<2 − 1).

Therefore, Ξ2 exists if <2 > 1.
(iv) SARS-CoV-2 single-infection equilibrium with stimulated SARS-CoV-2-specific

antibody immunity, Ξ3 = (X3, Y3, 0, V3, 0, Z3, 0), where

X3 =
λσZ

βVµZ + ασZ
, Y3 =

λβVµZ
γY(βVµZ + ασZ)

,

V3 =
µZ
σZ

, Z3 =
πV
κV

[
λβVσZκV

γYπV(βVµZ + ασZ)
− 1
]

.

We note that Ξ3 exists when

λβVσZκV
γYπV(βVµZ + ασZ)

> 1.

The SARS-CoV-2-specific antibody activation ratio in case of SARS-CoV-2 single-infection
is stated as:

<3 =
λβVσZκV

γYπV(βVµZ + ασZ)
.

Thus, Z3 = πV
κV

(<3 − 1). The parameter <3 determines whether or not the SARS-CoV-2-
specific antibody immunity is activated in the absence of IAV infection.
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(v) IAV single-infection equilibrium with stimulated IAV-specific antibody immunity,
Ξ4 = (X4, 0, I4, 0, P4, 0, M4), where

X4 =
λσM

βPµM + ασM
, I4 =

λβPµM
γI(βPµM + ασM)

,

P4 =
µM
σM

, M4 =
πP
κP

[
λβPσMκP

γIπP(βPµM + ασM)
− 1
]

.

We note that Ξ4 exists when

λβPσMκP
γIπP(βPµM + ασM)

> 1.

The IAV-specific antibody immunity activation ratio for IAV single-infection is stated as:

<4 =
λβPσMκP

γIπP(βPµM + ασM)
.

Thus, M4 = πP
κP

(<4 − 1). The parameter <4 determines whether or not the IAV-specific
antibody immunity is activated in the absence of SARS-CoV-2 infection.

(vi) IAV/SARS-CoV-2 coinfection equilibrium with only stimulated SARS-CoV-2-
specific antibody immunity, Ξ5 = (X5, Y5, I5, V5, P5, Z5, 0), where

X5 =
γIπP
κPβP

= X2, Y5 =
βVµZ
γYσZ

X5,

I5 =
πP(βVµZ + ασZ)

βPσZκP

[
λβPκPσZ

γIπP(βVµZ + ασZ)
− 1
]

, V5 =
µZ
σZ

= V3,

P5 =
βVµZ + ασZ

βPσZ

[
λβPκPσZ

γIπP(βVµZ + ασZ)
− 1
]

,

Z5 =
πV
κV

[
πPβVκVγI
πV βPκPγY

− 1
]
=

πV
κV

(<1/<2 − 1).

We note that Ξ5 exists when,

<1

<2
> 1 and

λβPκPσZ
γIπP(βVµZ + ασZ)

> 1.

The SARS-CoV-2 infection reproductive ratio in the presence of IAV infection is stated as:

<5 =
λβPκPσZ

γIπP(βVµZ + ασZ)
.

The parameter <5 determines whether or not SARS-CoV-2 infected patients could be
coinfected with IAV. Hence,

I5 =
πP(βVµZ + ασZ)

βPσZκP
(<5 − 1), P5 =

βVµZ + ασZ
βPσZ

(<5 − 1).

and then Ξ5 exists if <1
<2

> 1 and <5 > 1.
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(vii) IAV/SARS-CoV-2 coinfection equilibrium with only stimulated IAV-specific
antibody immunity, Ξ6 = (X6, Y6, I6, V6, P6, 0, M6), where

X6 =
γYπV
κV βV

, Y6 =
πV(βPµM + ασM)

βVσMκV

[
λβVκVσM

γYπV(βPµM + ασM)
− 1
]

,

I6 =
πV βPγYµM
βVκVγIσM

, V6 =
βPµM + ασM

βVσM

[
λβVκVσM

γYπV(βPµM + ασM)
− 1
]

,

P6 =
µM
σM

= P4, M6 =
πP
κP

[
πV βPκPγY
πPβVκVγI

− 1
]
=

πP
κP

(<2/<1 − 1).

We note that Ξ6 exists when

<2

<1
> 1 and

λβVκVσM
γYπV(βPµM + ασM)

> 1.

The SARS-CoV-2 infection reproductive ratio in the presence of IAV infection is stated as:

<6 =
λβVκVσM

γYπV(βPµM + ασM)
.

Thus,

Y6 =
πV(βPµM + ασM)

βVσMκV
(<6 − 1), V6 =

βPµM + ασM
βVσM

(<6 − 1).

The parameter <6 determines whether or not SARS-CoV-2 infected patients could be
coinfected with IAV.

(viii) IAV/SARS-CoV-2 coinfection equilibrium with stimulated both SARS-CoV-2-
specific and IAV-specific antibody immunities Ξ7 = (X7, Y7, I7, V7, P7, Z7, M7), where

X7 =
λσZσM

βPµMσZ + βVµZσM + ασZσM
, Y7 =

βVλµZσM
γY(βPµMσZ + βVµZσM + ασZσM)

,

I7 =
βPλµMσZ

γI(βPµMσZ + βVµZσM + ασZσM)
, V7 =

µZ
σZ

= V3, P7 =
µM
σ2

= P4,

Z7 =
πV
κV

[
λβVκVσMσZ

γYπV(βPµMσZ + βVµZσM + ασZσM)
− 1
]

,

M7 =
πP
κP

[
λβPκPσMσZ

γIπP(βPµMσZ + βVµZσM + ασZσM)
− 1
]

.

It is obvious that Ξ7 exists when

λβPκPσMσZ
γIπP(βPµMσZ + βVµZσM + ασZσM)

> 1,

λβVκVσMσZ
γYπV(βPµMσZ + βVµZσM + ασZσM)

> 1.

Now, we define

<7 =
λβPκPσMσZ

γIπP(βPµMσZ + βVµZσM + ασZσM)
,

<8 =
λβVκVσMσZ

γYπV(βPµMσZ + βVµZσM + ασZσM)
.

Here, <7 is the SARS-CoV-2-specific antibody activation ratio in case of IAV/SARS-CoV-2
coinfection, and <8 is the IAV-specific antibody activation ratio in case of IAV/SARS-CoV-
2 coinfection.

Hence, M7 = πP
κP

(<7 − 1) and Z7 = πV
κV

(<8 − 1). If <7 > 1 and <8 > 1, then Ξ7 exists.
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In summary, we have eight threshold parameters which determine the existence of the
model’s equilibria

<1 =
X0κV βV

πVγY
, <2 =

X0κPβP
πPγI

, <3 =
λβVσZκV

γYπV(βVµZ + ασZ)
,

<4 =
λβPσMκP

γIπP(βPµM + ασM)
, <5 =

λβPκPσZ
γIπP(βVµZ + ασZ)

,

<6 =
λβVκVσM

γYπV(βPµM + ασM)
, <7 =

λβPκPσMσZ
γIπP(βPµMσZ + βVµZσM + ασZσM)

,

<8 =
λβVκVσMσZ

γYπV(βPµMσZ + βVµZσM + ασZσM)
. (11)

5. Global Stability

Stability analysis is at the heart of dynamical analysis. Only stable solutions can
be noticed experimentally. Therefore, in this section we examine the global asymptotic
stability of all equilibria by establishing suitable Lyapunov functions [58] and applying
the Lyapunov–LaSalle asymptotic stability theorem (L-LAST) [59–61]. The following
arithmetic-mean-geometric-mean inequality will be utilized:

u1 + u2 + · · ·+ un

n
≥ n
√
(u1)(u2) . . . (un). (12)

Let a function Λj(X, Y, I, V, P, Z, M) and Ω̃j be the largest invariant subset of

Ωj =

{
(X, Y, I, V, P, Z, M) :

dΛj

dt
= 0

}
, j = 0, 1, 2, . . . , 7.

Define a function
z(υ) = υ− 1− ln v.

The following result suggests that when <1 ≤ 1 and <2 ≤ 1, both IAV and SARS-CoV-2
infections are predicted to die out regardless of the initial conditions (any disease stages).

Theorem 1. If <1 ≤ 1 and <2 ≤ 1, then Ξ0 is globally asymptotically stable (G.A.S).

Proof. Define

Λ0 = X0z
(

X
X0

)
+ Y + I +

γY
κV

V +
γI
κP

P +
γYκV
κVσZ

Z +
γIκP
κPσM

M.

We note that Λ0 > 0 for all X, Y, I, V, P, Z, M > 0, and Λ0(X0, 0, 0, 0, 0, 0, 0) = 0.

We calculate dΛ0
dt along the solutions of model (3) as:

dΛ0

dt
=

(
1− X0

X

)
[λ− αX− βV XV − βPXP] + βV XV − γYY + βPXP− γI I

+
γY
κV

[κVY− πVV −κVVZ] +
γI
κP

[κP I − πPP−κPPM] +
γYκV
κVσZ

[σZVZ− µZZ]

+
γIκP
κPσM

[σMPM− µM M]

=

(
1− X0

X

)
(λ− αX) + βV X0V + βPX0P− γYπV

κV
V − γIπP

κP
P− γYκVµZ

κVσZ
Z− γIκPµM

κPσM
M.

Using the equilibrium condition λ = αX0, we obtain:

dΛ0

dt
= −α

(X− X0)
2

X
+

γYπV
κV

(<1 − 1)V +
γIπP

κP
(<2 − 1)P− γYκVµZ

κVσZ
Z− γIκPµM

κPσM
M.
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Since <1 ≤ 1 and <2 ≤ 1, then dΛ0
dt ≤ 0 for all X, V, P, Z, M > 0. In addition, dΛ0

dt = 0
when X = X0 and V = P = Z = M = 0. The solutions of system (3) tend to Ω̃0 [62]
which includes elements with V = P = 0. Thus, V̇ = Ṗ = 0 and from the fourth and fifth
equations of system (3) we have:

0 = V̇ = κVY =⇒ Y(t) = 0, for all t

0 = Ṗ = κP I =⇒ I(t) = 0, for all t.

Therefore, Ω̃0 = {Ξ0} and applying L-LAST [59–61], we obtain that Ξ0 is G.A.S.
The following result suggests that, when <1 > 1, <2/<1 ≤ 1 and <3 ≤ 1, the SARS-

CoV-2 single-infection with inactive immune response is always established regardless of
the initial conditions.

Theorem 2. Suppose that <1 > 1, <2/<1 ≤ 1 and <3 ≤ 1, then Ξ1 is G.A.S .

Proof. Let us formulate a Lyapunov function Λ1 as:

Λ1 = X1z
(

X
X1

)
+ Y1z

(
Y
Y1

)
+ I +

γY
κV

V1z
(

V
V1

)
+

γI
κP

P +
γYκV
κVσZ

Z +
γIκP
κPσM

M.

We calculate dΛ1
dt as:

dΛ1

dt
=

(
1− X1

X

)
[λ− αX− βV XV − βPXP] +

(
1− Y1

Y

)
[βV XV − γYY] + βPXP− γI I

+
γY
κV

(
1− V1

V

)
[κVY− πVV −κVVZ] +

γI
κP

[κP I − πPP−κPPM]

+
γYκV
κVσZ

[σZVZ− µZZ] +
γIκP
κPσM

[σMPM− µM M]. (13)

Simplifying Equation (13), we obtain:

dΛ1

dt
=

(
1− X1

X

)
(λ− αX) + βV X1V + βPX1P− βV XV

Y1

Y
+ γYY1 −

γYπV
κV

V

− γYY
V1

V
+

γYπV
κV

V1 +
γYκV

κV
V1Z− γIπP

κP
P− γYκVµZ

κVσZ
Z− γIκPµM

κPσM
M.

Using the equilibrium conditions for Ξ1:

λ = αX1 + βV X1V1, βV X1V1 = γYY1, Y1 =
πV
κV

V1,

we obtain

dΛ1

dt
=

(
1− X1

X

)
(αX1 − αX) + 3βV X1V1 − βV X1V1

X1

X
− βV X1V1

Y1XV
YX1V1

− βV X1V1
V1Y
VY1

+
γIπP

κP

(
βPX1κP

γIπP
− 1
)

P +
γYκVµZ

κVσZ

(
σZ
µZ

V1 − 1
)

Z

− γIκPµM
κPσM

M. (14)
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Then, collecting terms of (14), we obtain:

dΛ1

dt
= −α(X− X1)

2

X
+ βV X1V1

(
3− X1

X
− Y1XV

YX1V1
− V1Y

VY1

)
+

γIπP
κP

(
<2

<1
− 1
)

P +
γYκV(ασZ + βVµZ)

κV βVσZ
(<3 − 1)Z− γIκPµM

κPσM
M.

Using inequality (12), we obtain:

3− X1

X
− Y1XV

YX1V1
− V1Y

VY1
≤ 0.

Since <2/<1 ≤ 1 and <3 ≤ 1 then, dΛ1
dt ≤ 0 for all X, Y, V, P, Z, M > 0. Moreover, dΛ1

dt = 0
when X = X1, Y = Y1, V = V1, and P = Z = M = 0. The solutions of system (3) tend to
Ω̃1 where P = 0. Hence, Ṗ = 0, and the fifth equation of system (3) gives

0 = Ṗ = κP I =⇒ I(t) = 0, for all t.

Hence, Ω̃1 = {Ξ1} and Ξ1 is G.A.S. by using L-LAST [59–61].
The result of the following theorem suggests that, when <2 > 1, <1/<2 ≤ 1 and

<4 ≤ 1, the IAV single-infection with inactive immune response is always established
regardless of the initial conditions.

Theorem 3. Let <2 > 1, <1/<2 ≤ 1 and <4 ≤ 1, then Ξ2 is G.A.S.

Proof. Consider

Λ2 = X2z
(

X
X2

)
+ Y + I2z

(
I
I2

)
+

γY
κV

V +
γI
κP

P2z
(

P
P2

)
+

γYκV
κVσZ

Z +
γIκP
κPσM

M.

We calculate dΛ2
dt as:

dΛ2

dt
=

(
1− X2

X

)
[λ− αX− βV XV − βPXP] + βV XV − γYY +

(
1− I2

I

)
[βPXP− γI I]

+
γY
κV

[κVY− πVV −κVVZ] +
γI
κP

(
1− P2

P

)
[κP I − πPP−κPPM]

+
γYκV
κVσZ

[σZVZ− µZZ] +
γIκP
κPσM

[σMPM− µM M]. (15)

Then, simplifying Equation (15), we obtain:

dΛ2

dt
=

(
1− X2

X

)
(λ− αX) + βV X2V + βPX2P− βPXP

I2

I
+ γI I2 −

γYπV
κV

V − γIπP
κP

P

− γI I
P2

P
+

γIπP
κP

P2 +
γIκP

κP
P2M− γYκVµZ

κVσZ
Z− γIκPµM

κPσM
M.

Using the equilibrium conditions for Ξ2:

λ = αX2 + βPX2P2, βPX2P2 = γI I2, I2 =
πP
κP

P2,
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we obtain,

dΛ2

dt
=

(
1− X2

X

)
(αX2 − αX) + 3βPX2P2 − βPX2P2

X2

X
− βPX2P2

I2XP
IX2P2

− βPX2P2
P2 I
PI2

+
γYπV

κV

(
βV X2κV
γYπV

− 1
)

V +
γIκPµM

κPσM

(
σM
µM

P2 − 1
)

M− γYκVµZ
κVσZ

Z

= −α(X− X2)
2

X
+ βPX2P2

(
3− X2

X
− I2XP

IX2P2
− P2 I

PI2

)
+

γYπV
κV

(<1/<2 − 1)V

+
γIκP(ασM + βPµM)

κPβPσM
(<4 − 1)M− γYκVµZ

κVσZ
Z.

If <1/<2 ≤ 1 and <4 ≤ 1, then employing inequality (12), we obtain dΛ2
dt ≤ 0 for all

X, I, V, P, Z, M > 0. Further, dΛ2
dt = 0 when X = X2, I = I2, P = P2 and V = Z = M = 0.

The solutions of system (3) tend to Ω̃2 which has V = 0 and gives V̇ = 0. The fourth
equation of system (3) gives

0 = V̇ = κVY =⇒ Y(t) = 0, for all t.

Therefore, Ω̃2 = {Ξ2}. Applying L-LAST, we obtain Ξ2 is G.A.S.
The next result shows that when <3 > 1 and <5 ≤ 1, the SARS-CoV-2 single-infection

with active immune response is always established regardless of the initial conditions.

Theorem 4. Let <3 > 1 and <5 ≤ 1, then Ξ3 is G.A.S.

Proof. Define

Λ3 = X3z
(

X
X3

)
+ Y3z

(
Y
Y3

)
+ I +

γY
κV

V3z
(

V
V3

)
+

γI
κP

P +
γYκV
κVσZ

Z3z
(

Z
Z3

)
+

γIκP
κPσM

M.

We calculate dΛ3
dt as:

dΛ3

dt
=

(
1− X3

X

)
[λ− αX− βV XV − βPXP] +

(
1− Y3

Y

)
[βV XV − γYY] + βPXP− γI I

+
γY
κV

(
1− V3

V

)
[κVY− πVV −κVVZ] +

γI
κP

[κP I − πPP−κPPM]

+
γYκV
κVσZ

(
1− Z3

Z

)
[σZVZ− µZZ] +

γIκP
κPσM

[σMPM− µM M]. (16)

Then, simplifying Equation (16), we obtain:

dΛ3

dt
=

(
1− X3

X

)
(λ− αX) + βV X3V + βPX3P− βV XV

Y3

Y
+ γYY3 −

γYπV
κV

V − γYY
V3

V

+
γYπV

κV
V3 +

γYκV
κV

V3Z− γIπP
κP

P− γYκVµZ
κVσZ

Z− γYκV
κV

Z3V +
γYκVµZ

κVσZ
Z3 −

γIκPµM
κPσM

M.

Using the equilibrium conditions for Ξ3:

λ = αX3 + βV X3V3, βV X3V3 = γYY3,

Y3 =
πV
κV

V3 +
κV
κV

V3Z3,

V3 =
µZ
σZ

,
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we obtain,

dΛ3

dt
=

(
1− X3

X

)
(αX3 − αX) + 3βV X3V3 − βV X3V3

X3

X
− βV X3V3

Y3XV
YX3V3

− βV X3V3
V3Y
VY3

+
γIπP

κP

(
βPX3κP

γIπP
− 1
)

P− γIκPµM
κPσM

M

= −α(X− X3)
2

X
+ βV X3V3

(
3− X3

X
− Y3XV

YX3V3
− V3Y

VY3

)
+

γIπP
κP

(<5 − 1)P− γIκPµM
κPσM

M.

Using inequality (12) and <5 ≤ 1, we obtain dΛ3
dt ≤ 0 for all X, Y, V, P, M > 0. Further,

dΛ3
dt = 0 when X = X3, Y = Y3, V = V3 and P = M = 0. Further, the trajectories of system

(3) tend to Ω̃3 which has elements with V = V3 and P = 0. Then, V̇ = 0 and Ṗ = 0. The
fourth and fifth equations of system (3) provide

0 = V̇ = κVY3 − πVV3 −κVV3Z =⇒ Z(t) = Z3, for all t,

0 = Ṗ = κP I =⇒ I(t) = 0, for all t.

Consequently, Ω̃3 = {Ξ3}. Applying L-LAST, we find that Ξ3 is G.A.S.
In the following theorem, we show that when <4 > 1 and <6 ≤ 1, the IAV single-

infection with active immune response is always established regardless of the initial condi-
tions.

Theorem 5. If <4 > 1 and <6 ≤ 1, then Ξ4 is G.A.S.

Proof. Define a function Λ4 as:

Λ4 = X4z
(

X
X4

)
+Y + I4z

(
I
I4

)
+

γY
κV

V +
γI
κP

P4z
(

P
P4

)
+

γYκV
κVσZ

Z +
γIκP
κPσM

M4z
(

M
M4

)
.

Calculating dΛ4
dt as:

dΛ4

dt
=

(
1− X4

X

)
[λ− αX− βV XV − βPXP] + βV XV − γYY +

(
1− I4

I

)
[βPXP− γI I]

+
γY
κV

[κVY− πVV −κVVZ] +
γI
κP

(
1− P4

P

)
[κP I − πPP−κPPM]

+
γYκV
κVσZ

[σZVZ− µZZ] +
γIκP
κPσM

(
1− M4

M

)
[σMPM− µM M]. (17)

Equation (17) can be written as:

dΛ4

dt
=

(
1− X4

X

)
(λ− αX) + βV X4V + βPX4P− βPXP

I2

I
+ γI I4 −

γYπV
κV

V

− γIπP
κP

P− γI I
P4

P
+

γIπP
κP

P4 +
γIκP

κP
P4M− γYκVµZ

κVσZ
Z− γIκPµM

κPσM
M

− γIκP
κP

M4P +
γIκPµM

κPσM
M4.

Using the equilibrium conditions for Ξ4:

λ = αX4 + βPX4P4, βPX4P4 = γI I4,

I4 =
πP
κP

P4 +
κP
κP

P4M4, P4 =
µM
σM

,
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we obtain,

dΛ4

dt
=

(
1− X4

X

)
(αX4 − αX) + 3βPX4P4 − βPX4P4

X4

X
− βPX4P4

I4XP
IX4P4

− βPX4P4
P4 I
PI4

+
γYπV

κV

(
βV X4κV
γYπV

− 1
)

V − γYκVµZ
κVσZ

Z

= −α(X− X4)
2

X
+ βPX4P4

(
3− X4

X
− I4XP

IX4P4
− P4 I

PI4

)
+

γYπV
κV

(<6 − 1)V − γYκVµZ
κVσZ

Z.

Since <6 ≤ 1, then employing inequality (12), we obtain dΛ4
dt ≤ 0 for all X, I, V, P, Z > 0,

Further, dΛ4
dt = 0 when X = X4, I = I4, P = P4 and V = Z = 0. The solutions of system (3)

tend to Ω̃4 which contains elements with P = P4 and V = 0, then V̇ = Ṗ = 0. The fourth
and fifth equations of system (3) imply

0 = V̇ = κVY =⇒ Y(t) = 0, for all t,

0 = Ṗ = κP I4 − πPP4 −κPP4M =⇒ M = M4, for all t.

Therefore, Ω̃4 = {Ξ4}, and by applying L-LAST, we obtain Ξ4 is G.A.S.
The following result suggests that when<5 > 1,<7 ≤ 1 and<1/<2 > 1, the IAV/SARS-

CoV-2 coinfection with only stimulated SARS-CoV-2-specific antibodies is always estab-
lished regardless of the initial conditions.

Theorem 6. If <5 > 1, <7 ≤ 1 and <1/<2 > 1, then Ξ5 is G.A.S.

Proof. Define

Λ5 = X5z
(

X
X5

)
+ Y5z

(
Y
Y5

)
+ I5z

(
I
I5

)
+

γY
κV

V5z
(

V
V5

)
+

γI
κP

P5z
(

P
P5

)
+

γYκV
κVσZ

Z5z
(

Z
Z5

)
+

γIκP
κPσM

M.

Calculating dΛ5
dt as:

dΛ5

dt
=

(
1− X5

X

)
[λ− αX− βV XV − βPXP] +

(
1− Y5

Y

)
[βV XV − γYY]

+

(
1− I5

I

)
[βPXP− γI I] +

γY
κV

(
1− V5

V

)
[κVY− πVV −κVVZ]

+
γI
κP

(
1− P5

P

)
[κP I − πPP−κPPM] +

γYκV
κVσZ

(
1− Z5

Z

)
[σZVZ− µZZ]

+
γIκP
κPσM

[σMPM− µM M]. (18)
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Equation (18) can be simplifying as:

dΛ5

dt
=

(
1− X5

X

)
(λ− αX) + βV X5V + βPX5P− βV XV

Y5

Y
+ γYY5

− βPXP
I5

I
+ γI I5 −

γYπV
κV

V − γYY
V5

V
+

γYπV
κV

V5 +
γYκV

κV
V5Z

− γIπP
κP

P− γI I
P5

P
+

γIπP
κP

P5 +
γIκP

κP
P5M

− γYκVµZ
κVσZ

Z− γYκV
κV

Z5V +
γYκVµZ

κVσZ
Z5 −

γIκPµM
κPσM

M.

Using the equilibrium conditions for Ξ5:

λ = αX5 + βV X5V5 + βPX5P5, βV X5V5 = γYY5,

βPX5P5 = γI I5, Y5 =
πV
κV

V5 +
κV
κV

V5Z5,

I5 =
πP
κP

P5, V5 =
µZ
σZ

,

we obtain,

dΛ5

dt
=

(
1− X5

X

)
(αX5 − αX) + 3βV X5V5 + 3βPX5P5 − βV X5V5

X5

X
− βPX5P5

X5

X

− βV X5V5
Y5XV
YX5V5

− βPX5P5
I5XP
IX5P5

− βV X5V5
V5Y
VY5

− βPX5P5
P5 I
PI5

+
γIκPµM

κPσM

(
σM
µM

P5 − 1
)

M.

= −α(X− X5)
2

X
+ βV X5V5

(
3− X5

X
− Y5XV

YX5V5
− V5Y

VY5

)
+ βPX5P5

(
3− X5

X
− I5XP

IX5P5
− P5 I

PI5

)
+

γIκP(βPµMσZ + βVµZσM + ασZσM)

κPβPσMσZ
(<7 − 1)M. (19)

Since <7 ≤ 1, then employing inequality (12), we obtain dΛ5
dt ≤ 0 for all X, Y, I, V, P, M > 0.

Moreover, we have dΛ5
dt = 0 when X = X5, Y = Y5, I = I5, V = V5, P = P5 and M = 0.

The trajectories of system (3) converge to Ω̃5 which comprises elements with V = V5; then,
V̇ = 0. The fourth equation of system (3) implies that

0 = V̇ = κVY5 − πVV5 −κVV5Z =⇒ Z(t) = Z5, for all t.

Consequently, Ω̃5 = {Ξ5}, and by applying L-LAST, we obtain Ξ5 is G.A.S.
The result given in the following theorem suggests that when <6 > 1, <8 ≤ 1 and

<2/<1 > 1, the IAV/SARS-CoV-2 coinfection with only stimulated IAV-specific antibodies
is always established regardless of the initial conditions.

Theorem 7. Let <6 > 1, <8 ≤ 1 and <2/<1 > 1, then Ξ6 is G.A.S.

Proof. Consider a function Λ6 as:

Λ6 = X6z
(

X
X6

)
+ Y6z

(
Y
Y6

)
+ I6z

(
I
I6

)
+

γY
κV

V6z
(

V
V6

)
+

γI
κP

P6z
(

P
P6

)
+

γYκV
κVσZ

Z +
γIκP
κPσM

M6z
(

M
M6

)
.
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Calculating dΛ6
dt as:

dΛ6

dt
=

(
1− X6

X

)
[λ− αX− βV XV − βPXP] +

(
1− Y6

Y

)
[βV XV − γYY]

+

(
1− I6

I

)
[βPXP− γI I] +

γY
κV

(
1− V6

V

)
[κVY− πVV −κVVZ]

+
γI
κP

(
1− P6

P

)
[κP I − πPP−κPPM] +

γYκV
κVσZ

[σZVZ− µZZ]

+
γIκP
κPσM

(
1− M6

M

)
[σMPM− µM M]. (20)

We collect the terms of Equation (20) as:

dΛ6

dt
=

(
1− X6

X

)
(λ− αX) + βV X6V + βPX6P− βV XV

Y6

Y
+ γYY6 − βPXP

I6

I

+ γI I6 −
γYπV

κV
V − γYY

V6

V
+

γYπV
κV

V6 +
γYκV

κV
V6Z− γIπP

κP
P− γI I

P6

P

+
γIπP

κP
P6 +

γIκP
κP

P6M− γYκVµZ
κVσZ

Z− γIκP
κP

M6P +
γIκPµM

κPσM
M6 −

γIκPµM
κPσM

M.

Using the equilibrium conditions for Ξ6:

λ = αX6 + βV X6V6 + βPX6P6, βV X6V6 = γYY6, βPX6P6 = γI I6,

Y6 =
πV
κV

V6, I6 =
πP
κP

P6 +
κP
κP

P6M6, P6 =
µM
σM

,

we obtain,

dΛ6

dt
=

(
1− X6

X

)
(αX6 − αX) + 3βV X6V6 + 3βPX6P6 − βV X6V6

X6

X
− βPX6P6

X6

X

− βV X6V6
Y6XV
YX6V6

− βPX6P6
I6XP
IX6P6

− βV X6V6
V6Y
VY6

− βPX6P6
P6 I
PI6

+
γYκVµZ

κVσZ

(
σZ
µZ

V6−
)

Z

= −α(X− X6)
2

X
+ βV X6V6

(
3− X6

X
− Y6XV

YX6V6
− V6Y

VY6

)
+ βPX6P6

(
3− X6

X
− I6XP

IX6P6
− P6 I

PI6

)
+

γYκV(βPµMσZ + βVµZσM + ασZσM)

κV βVσMσZ
(<8 − 1)Z. (21)

Since <8 ≤ 1, then employing inequality (12), we obtain dΛ6
dt ≤ 0 for all X, Y, I, V, P, Z > 0.

Moreover, dΛ6
dt = 0 when X = X6, Y = Y6, I = I6, V = V6, P = P6 and Z = 0. The solutions

of system (3) tend to Ω̃6 which contains elements with P = P6; then, Ṗ = 0. The fifth
equation of system (3) implies that

0 = Ṗ = κP I6 − πPP6 −κPP6M =⇒ M(t) = M6, for all t.

Consequently, Ω̃6 = {Ξ6}. Using L-LAST, we deduce that Ξ6 is G.A.S.
The following result suggests that when <7 > 1 and <8 > 1, the IAV/SARS-CoV-2

coinfection with both stimulated SARS-CoV-2-specific and IAV-specific antibodies is always
established regardless of the initial conditions.

Theorem 8. If <7 > 1 and <8 > 1, then Ξ7 is G.A.S.
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Proof. Define a function Λ7 as:

Λ7 = X7z
(

X
X7

)
+ Y7z

(
Y
Y7

)
+ I7z

(
I
I7

)
+

γY
κV

V7z
(

V
V7

)
+

γI
κP

P7z
(

P
P7

)
+

γYκV
κVσZ

Z7z
(

Z
Z7

)
+

γIκP
κPσM

M7z
(

M
M7

)
.

Calculating dΛ7
dt as:

dΛ7

dt
=

(
1− X7

X

)
[λ− αX− βV XV − βPXP] +

(
1− Y7

Y

)
[βV XV − γYY]

+

(
1− I7

I

)
[βPXP− γI I] +

γY
κV

(
1− V7

V

)
[κVY− πVV −κVVZ]

+
γI
κP

(
1− P7

P

)
[κP I − πPP−κPPM] +

γYκV
κVσZ

(
1− Z7

Z

)
[σZVZ− µZZ]

+
γIκP
κPσM

(
1− M7

M

)
[σMPM− µM M]. (22)

We collect the terms of Equation (22) as:

dΛ7

dt
=

(
1− X7

X

)
(λ− αX) + βV X7V + βPX7P− βV XV

Y7

Y
+ γYY7

− βPXP
I7

I
+ γI I7 −

γYπV
κV

V − γYY
V7

V
+

γYπV
κV

V7 +
γYκV

κV
V7Z

− γIπP
κP

P− γI I
P7

P
+

γIπP
κP

P7 +
γIκP

κP
P7M− γYκVµZ

κVσZ
Z

− γYκV
κV

Z7V +
γYκVµZ

κVσZ
Z7 −

γIκPµM
κPσM

M− γIκP
κP

M7P +
γIκPµM

κPσM
M7.

Using the equilibrium conditions for Ξ7:

λ = αX7 + βV X7V7 + βPX7P7,

βV X7V7 = γYY7, βPX7P7 = γI I7,

Y7 =
πV
κV

V7 +
κV
κV

V7Z7, I7 =
πP
κP

P7 +
κP
κP

P7M7,

V7 =
µZ
σZ

, P7 =
µM
σM

,

we obtain,

dΛ7

dt
=

(
1− X7

X

)
(αX7 − αX) + 3βV X7V7 + 3βPX7P7 − βV X7V7

X7

X
− βPX7P7

X7

X

− βV X7V7
Y7XV
YX7V7

− βPX7P7
I7XP
IX7P7

− βV X7V7
V7Y
VY7

− βPX7P7
P7 I
PI7

= −α(X− X7)
2

X
+ βV X7V7

(
3− X7

X
− Y7XV

YX7V7
− V7Y

VY7

)
+ βPX7P7

(
3− X7

X
− I7XP

IX7P7
− P7 I

PI7

)
.

Using inequality (12), we obtain dΛ7
dt ≤ 0 for all X, Y, I, V, P > 0, where dΛ7

dt = 0 when
X = X7, Y = Y7, I = I7, V = V7 and P = P7. The solutions of system (3) tend to Ω̃7 which
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includes element with V = V7 and P = P7 which gives V̇ = Ṗ = 0, and from the fourth
and fifth equations of system (3), we obtain:

0 = V̇ = κVY7 − πVV7 −κVV7Z =⇒ Z(t) = Z7, for all t,

0 = Ṗ = κP I7 − πPP7 −κPP7M =⇒ M(t) = M7, for all t.

Therefore, Ω̃7 = {Ξ7} and by employing L-LAST, we obtain Ξ7 is G.A.S.
Based on the above findings, we summarize the existence and global stability condi-

tions for all equilibrium points in Table 1.

Table 1. Conditions of existence and global stability of the system’s equilibria.

Equilibrium Point Existence Conditions Global Stability Conditions

Ξ0 = (X0, 0, 0, 0, 0, 0, 0) None <1 ≤ 1 and <2 ≤ 1

Ξ1 = (X1, Y1, 0, V1, 0, 0, 0) <1 > 1 <1 > 1, <2/<1 ≤ 1 and <3 ≤ 1

Ξ2 = (X2, 0, I2, 0, P2, 0, 0) <2 > 1 <2 > 1, <1/<2 ≤ 1 and <4 ≤ 1

Ξ3 = (X3, Y3, 0, V3, 0, Z3, 0) <3 > 1 <3 > 1 and <5 ≤ 1

Ξ4 = (X4, 0, I4, 0, P4, 0, M4) <4 > 1 <4 > 1 and <6 ≤ 1

Ξ5 = (X5, Y5, I5, V5, P5, Z5, 0) <5 > 1 and <1/<2 > 1 <5 > 1, <7 ≤ 1 and <1/<2 > 1

Ξ6 = (X6, Y6, I6, V6, P6, 0, M6) <6 > 1 and <2/<1 > 1 <6 > 1, <8 ≤ 1 and <2/<1 > 1

Ξ7 = (X7, Y7, I7, V7, P7, Z7, M7) <7 > 1 and <8 > 1 <7 > 1 and <8 > 1

6. Numerical Simulations

The global stability of the system’s equilibria will be illustrated numerically. In addi-
tion, we make a comparison between single-infection and coinfection. We use the values
of the parameters presented in Table 2. Some values of parameters are taken from studies
for SARS-CoV-2 single-infection and IAV single-infection, while other values are assumed
just to perform the numerical simulations. To the best of our knowledge, until now there
is no available data (e.g., the concentrations of SARS-CoV-2, IAV, antibodies, etc.) from
SARS-CoV-2 and IAV coinfection patients. Therefore, estimating the parameters of the
coinfection model is still open for future work.

Table 2. Model parameters.

Parameter Description Value Source

λ Production rate of uninfected epithelial cells 0.5 Assumed

α Rate constant death of uninfected epithelial cells 0.05 [44,63]

γY Rate constant death of SARS-CoV-2-infected epithelial cells 0.11 [33,40,64]

γI Rate constant death of IAV-infected epithelial cells 0.2 Assumed

κV
Rate constant of SARS-CoV-2 particles secretion
per SARS-CoV-2-infected epithelial cells 0.2 [53,63]

πV Rate constant of SARS-CoV-2 death 0.2 [38,63]

κV
Rate constant of neutralization of SARS-CoV-2 by
SARS-CoV-2-specific antibodies 0.05 [38,45]

κP
Rate constant of IAV particles secretion per IAV-infected
epithelial cells 0.4 Assumed

πP Rate constant of IAV death 0.1 Assumed

κP Rate constant of neutralization of IAV by IAV-specific antibodies 0.04 Assumed

µZ Rate constant of natural death of SARS-CoV-2-specific antibodies 0.05 Assumed

µM Rate constant of natural death of IAV-specific antibodies 0.04 [26]
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6.1. Stability of the Equilibria

In this subsection, we support our global stability results provided in Theorems 1–8 by
showing that the solutions of system (3) with any chosen initial conditions (any IAV/SARS-
CoV-2 coinfection stage) will tend to one of the eight equilibria. Let us solve system (3)
with three different initial conditions (states) as:

C1 : (X(0), Y(0), I(0), V(0), P(0), Z(0), M(0)) = (8, 1, 0.5, 1, 0.5, 1, 4),

C2 : (X(0), Y(0), I(0), V(0), P(0), Z(0), M(0)) = (7, 1.5, 0.7, 1.5, 0.8, 2, 6),

C3 : (X(0), Y(0), I(0), V(0), P(0), Z(0), M(0)) = (6, 2, 1, 2, 1.4, 3, 8).

Selecting the values of βV , βP, σZ and σM leads to the following situations:
Situation 1 (Stability of Ξ0): βV = 0.001, βP = 0.001, σZ = 0.01 and σM = 0.02.

For these values of parameters, we have <1 = 0.0909 < 1 and <2 = 0.2 < 1. Figure 2
shows that the trajectories tend to the equilibrium Ξ0 = (10, 0, 0, 0, 0, 0, 0) for all initials
C1–C3. This demonstrates that Ξ0 is G.A.S. based on Theorem 1. In this situation, both
SARS-CoV-2 and IAV will be removed.

Situation 2 (Stability of Ξ1): βV = 0.02, βP = 0.001, σZ = 0.002 and σM = 0.02.
With such selection, we obtain <2 = 0.2 < 1 < 1.8182 = <1, <3 = 0.1653 < 1 and hence
<2/<1 = 0.11 < 1. The equilibrium point Ξ1 exists with Ξ1 = (5.5, 2.05, 0, 2.05, 0, 0, 0). It is
clear from Figure 3 that the trajectories tend to Ξ1 for all initials. Thus, the numerical results
agree with Theorem 2. This case simulates a SARS-CoV-2 single-infection without antibody
immunity. In this case, viral interference phenomenon appears, where the SARS-CoV-2
may be able to block the IAV infection.

Situation 3 (Stability of Ξ2): βV = 0.005, βP = 0.01, σZ = 0.01 and σM = 0.005. This
gives <1 = 0.4545 < 1 < 2 = <2, <4 = 0.7692 < 1 and then <1/<2 = 0.2273 < 1.
The numerical results show that Ξ2 = (5, 0, 1.25, 0, 5, 0, 0) exists. We can observe from
Figure 4 that the trajectories converge to Ξ2 regardless of the initial states C1–C3. This
result supports the result of Theorem 3. This situation represents an IAV single-infection
without antibody immunity. As a result of competition between the two viruses, IAV may
be able to block the SARS-CoV-2 infection.

Situation 4 (Stability of Ξ3): βV = 0.02, βP = 0.002, σZ = 0.05 and σM = 0.05. This
yields <3 = 1.2987 > 1 and <5 = 0.2857 < 1. Figure 5 shows that the trajectories tend
to Ξ3 = (7.14, 1.3, 0, 1, 0, 1.19, 0) regardless of the initial stats C1–C3. Therefore, Ξ3 is
G.A.S, and this supports Theorem 4. Hence, a SARS-CoV-2 single-infection with stimulated
SARS-CoV-2-specific antibody is attained. Despite the activity of antibodies against the
SARS-CoV-2 particles, the SARS-CoV-2 may be able to suppress the growth of IAV and
block it.

Situation 5 (Stability of Ξ4): βV = 0.01, βP = 0.05, σZ = 0.01 and σM = 0.05. The values
of <4 and <6 are computed as <4 = 5.5556 > 1 and <6 = 0.5051 < 1. Thus, Ξ4 exists
with Ξ4 = (5.56, 0, 1.11, 0, 0.8, 0, 11.39). In Figure 6, we see that the trajectories tend to Ξ4
regardless of the initial states C1–C3. It follows that Ξ4 is G.A.S. according to Theorem 5.
Hence, an IAV single-infection with activated IAV-specific antibody is achieved. Despite the
activity of antibodies against the IAV particles, the IAV may be able to block the SARS-CoV-2
infection.

Situation 6 (Stability of Ξ5): βV = 0.15, βP = 0.04, σZ = 0.03 and σM = 0.001. Then,
we calculate <5 = 1.3333 > 1, <7 = 0.2105 < 1 and <1/<2 = 1.7045 > 1. The numerical
results drawn in Figure 7 show that Ξ5 = (1.25, 2.84, 0.63, 1.67, 2.5, 2.82, 0) exists andis
G.A.S., and this is consistent with Theorem 6. As a result, a coinfection with SARS-CoV-2
and IAV is attained where only SARS-CoV-2-specific antibody is stimulated. In this case,
the concentration of the IAV particles tend to a value less than or equal to µM

σM
= 40, and

then the IAV-specific antibody will be deactivated. On the other hand, the activity of
SARS-CoV-2-specific antibodies reduces the replication of SARS-CoV-2, and this leads to
the coexistence of the two viruses.
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Situation 7 (Stability of Ξ6): βV = 0.04, βP = 0.05, σZ = 0.01 and σM = 0.05. We
compute <6 = 2.0202 > 1, <8 = 0.627 < 1 and <2/<1 = 2.75 > 1. We find that
the equilibrium Ξ6 = (2.75, 2.3, 0.55, 2.3, 0.8, 0, 4.38) exists. Further, the numerical solutions
outlined in Figure 8 show that Ξ6 is G.A.S., and this boosts the result of Theorem 7. In this
situation, a coinfection with SARS-CoV-2 and IAV is attained where only the IAV-specific
antibody is activated. In this case, the concentration of the SARS-CoV-2 particles tends to
a value less than or equal to µZ

σZ
= 5, and then the SARS-CoV-2-specific antibody will be

deactivated. On the other hand, the activity of IAV-specific antibodies reduces the growth
of IAV, and this leads to the coexistence of the two viruses.

Situation 8 (Stability of Ξ7): βV = 0.05, βP = 0.05, σZ = 0.1 and σM = 0.1. This
selection yields <7 = 5.2632 > 1 and <8 = 2.3923 > 1. Figure 9 shows that Ξ7 =
(5.26, 1.2, 0.53, 0.5, 0.4, 5.57, 10.66) exists, and it is G.A.S. based on Theorem 8. In this
situation, a coinfection with SARS-CoV-2 and IAV is established regardless of the initial
states C1–C3. In this case, both SARS-CoV-2-specific antibody and IAV-specific antibody
are working against the coinfection. The activation of both SARS-CoV-2-specific and
IAV-specific antibodies leads to coexistence of the two viruses.

For more confirmation, we investigate the local stability of the system’s equilibria.
Calculating the Jacobian matrix J = J(X, Y, I, V, P, Z, M) of system (3) as:

J =



−(α + βVV + βPP) 0 0 −βV X −βPX 0 0
βVV −γY 0 βV X 0 0 0
βPP 0 −γI 0 βPX 0 0

0 κV 0 −(πV +κV Z) 0 −κVV 0
0 0 κP 0 −(πP +κP M) 0 −κPP
0 0 0 σZZ 0 σZV − µZ 0
0 0 0 0 σM M 0 σMP− µM


. (23)

At each equilibrium, we compute the eigenvalues λj, j = 1, 2, . . . , 7 of J. If Re(λj) < 0,
j = 1, 2, . . . , 7, then the equilibrium point is locally stable. We select the parameters βV , βP,
σZ and σM as given in situations 1–8; then, we compute all nonnegative equilibria and the
accompanying eigenvalues. Table 3 outlined the nonnegative equilibria, the real parts of
the eigenvalues and whether or not the equilibrium point is stable. We found that the local
stability agrees with the global one.

Table 3. Local stability of nonnegative equilibria Ξi, i = 0, 1, . . . , 7.

Situation The Equilibria Re(λj) j = 1, 2, . . . , 7 Stability

1 Ξ0 = (10, 0, 0, 0, 0, 0, 0) (−0.23,−0.22,−0.09,−0.07,−0.05,−0.05,−0.04) stable

2
Ξ0 = (10, 0, 0, 0, 0, 0, 0)
Ξ1 = (5.5, 2.05, 0, 2.05, 0, 0, 0)

(−0.36,−0.23,−0.07,−0.05,−0.05, 0.05,−0.04)
(−0.32,−0.22,−0.08,−0.04,−0.04,−0.05,−0.04)

unstable
stable

3
Ξ0 = (10, 0, 0, 0, 0, 0, 0)
Ξ2 = (5, 0, 1.25, 0, 5, 0, 0)

(−0.36,−0.26, 0.06,−0.05,−0.05,−0.05,−0.04)
(−0.31,−0.24,−0.07,−0.04,−0.04,−0.05,−0.02)

unstable
stable

4
Ξ0 = (10, 0, 0, 0, 0, 0, 0)
Ξ1 = (5.5, 2.05, 0, 2.05, 0, 0, 0)
Ξ3 = (7.14, 1.3, 0, 1, 0, 1.19, 0)

(−0.36,−0.25,−0.05,−0.05, 0.05,−0.05,−0.04)
(−0.32,−0.23,−0.07,−0.04,−0.04, 0.05,−0.04)
(−0.37,−0.24,−0.06,−0.04,−0.02,−0.02,−0.04)

unstable
unstable
stable

5
Ξ0 = (10, 0, 0, 0, 0, 0, 0)
Ξ2 = (1, 0, 2.25, 0, 9, 0, 0)
Ξ4 = (5.56, 0, 1.11, 0, 0.8, 0, 11.39)

(−0.6,−0.3, 0.3,−0.05,−0.05,−0.04,−0.007)
(−0.56, 0.41,−0.22,−0.12,−0.12,−0.09,−0.05)
(−0.75,−0.27,−0.03,−0.03,−0.05,−0.04,−0.04)

unstable
unstable
stable

6

Ξ0 = (10, 0, 0, 0, 0, 0, 0)
Ξ1 = (0.73, 4.21, 0, 4.21, 0, 0, 0)
Ξ2 = (1.25, 0, 2.19, 0, 8.75, 0, 0)
Ξ3 = (1.67, 3.79, 0, 1.67, 0, 5.09, 0)
Ξ5 = (1.25, 2.84, 0.63, 1.67, 2.5, 2.82, 0)

(−0.7,−0.56, 0.39, 0.25,−0.05,−0.05,−0.04)
(−0.73,−0.27,−0.14,−0.14, 0.08,−0.04,−0.03)
(−0.48,−0.35,−0.11,−0.11,−0.05, 0.04,−0.03)
(−0.61,−0.32,−0.11,−0.11,−0.04,−0.03, 0.02)
(−0.56,−0.33,−0.12,−0.12,−0.03,−0.01,−0.01)

unstable
unstable
unstable
unstable
stable
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Table 3. Cont.

Situation The Equilibria Re(λj) j = 1, 2, . . . , 7 Stability

7

Ξ0 = (10, 0, 0, 0, 0, 0, 0)
Ξ1 = (2.75, 3.3, 0, 3.3, 0, 0, 0)
Ξ2 = (1, 0, 2.25, 0, 9, 0, 0)
Ξ4 = (5.56, 0, 1.11, 0, 0.8, 0, 11.39)
Ξ6 = (2.75, 2.3, 0.55, 2.3, 0.8, 0, 4.38)

(−0.6,−0.4, 0.3, 0.13,−0.05,−0.05,−0.04)
(−0.39,−0.36,−0.07,−0.07, 0.09,−0.04,−0.02)
(−0.56, 0.41,−0.26,−0.12,−0.12,−0.05,−0.05)
(−0.75,−0.37,−0.03,−0.03, 0.06,−0.05,−0.04)
(−0.49,−0.34,−0.06,−0.06,−0.01,−0.01,−0.03)

unstable
unstable
unstable
unstable
stable

8

Ξ0 = (10, 0, 0, 0, 0, 0, 0)
Ξ1 = (2.2, 3.55, 0, 3.55, 0, 0, 0)
Ξ2 = (1, 0, 2.25, 0, 9, 0, 0)
Ξ3 = (6.67, 1.52, 0, 0.5, 0, 8.12, 0)
Ξ4 = (7.14, 0, 0.71, 0, 0.4, 0, 15.36)
Ξ6 = (2.2, 3.15, 0.22, 3.15, 0.4, 0, 3)
Ξ7 = (5.26, 1.2, 0.53, 0.5, 0.4, 5.57, 10.66)

(−0.6,−0.47, 0.3, 0.16,−0.05,−0.05,−0.04)
(−0.38,−0.37, 0.31,−0.08,−0.08,−0.07,−0.04)
(0.86,−0.56,−0.26,−0.12,−0.12,−0.05,−0.05)
(−0.7,−0.52, 0.22,−0.02,−0.02,−0.05,−0.04)
(−0.9,−0.43, 0.12,−0.02,−0.02,−0.05,−0.05)
(−0.43,−0.36, 0.27,−0.08,−0.08,−0.006,−0.006)
(−0.71,−0.57,−0.03,−0.03,−0.02,−0.02,−0.04)

unstable
unstable
unstable
unstable
unstable
unstable
stable
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Figure 2. Solutions of system (3) with initials C1–C3 tend to Ξ0 = (10, 0, 0, 0, 0, 0, 0) when <1 ≤ 1 and
<2 ≤ 1 (Situation 1).

0 20 40 60 80 100 120 140 160 180

Time

5

5.5

6

6.5

7

7.5

8

X
 (

t)

C1

C2

C3

(a) Uninfected epithelial cells

0 20 40 60 80 100 120 140 160 180 200

Time

1

1.2

1.4

1.6

1.8

2

2.2

Y
 (

t)

C1

C2

C3

(b) SARS-CoV-2-infected cells

Figure 3. Cont.



Mathematics 2022, 10, 4382 23 of 36

0 5 10 15 20 25 30 35 40

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I 
(t

)

C1

C2

C3

(c) IAV-infected cells

0 20 40 60 80 100 120 140 160 180 200

Time

0.8

1

1.2

1.4

1.6

1.8

2

2.2

V
 (

t)

C1

C2

C3

(d) Free SARS-CoV-2 particles

0 10 20 30 40 50 60

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
 (

t)

C1

C2

C3

(e) Free IAV particles

0 50 100 150

Time

0

0.5

1

1.5

2

2.5

3

Z
 (

t)

C1

C2

C3

(f) SARS-CoV-2-specific antibodies

0 20 40 60 80 100 120 140 160

Time

0

1

2

3

4

5

6

7

8

M
 (

t)

C1

C2

C3

(g) IAV-specific antibodies

Figure 3. Solutions of system (3) with initials C1–C3 tend to Ξ1 = (5.5, 2.05, 0, 2.05, 0, 0, 0) when
<1 > 1, <2/<1 ≤ 1 and <3 ≤ 1 (Situation 2).
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Figure 4. Solutions of system (3) with initials C1–C3 tend to Ξ2 = (5, 0, 1.25, 0, 5, 0, 0) when <2 > 1,
<1/<2 ≤ 1 and <4 ≤ 1 (Situation 3).
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Figure 5. Solutions of system (3) with initials C1–C3 tend to Ξ3 = (7.14, 1.3, 0, 1, 0, 1.19, 0) when
<3 > 1 and <5 ≤ 1 (Situation 4).
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Figure 6. Solutions of system (3) with initials C1–C3 tend to Ξ4 = (5.56, 0, 1.11, 0, 0.8, 0, 11.39) when
<4 > 1 and <6 ≤ 1 (Situation 5).
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Figure 7. Solutions of system (3) with initials C1–C3 tend to Ξ5 = (1.25, 2.84, 0.63, 1.67, 2.5, 2.82, 0)
when <5 > 1,<1/<2 > 1 and <7 ≤ 1 (Situation 6).
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Figure 8. Solutions of system (3) with initials C1–C3 tend to Ξ6 = (2.75, 2.3, 0.55, 2.3, 0.8, 0, 4.38)
when <6 > 1,<2/<1 > 1 and <8 ≤ 1 (Situation 7).
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Figure 9. Solutions of system (3) with initials C1–C3 tend to Ξ7 = (5.26, 1.2, 0.53, 0.5, 0.4, 5.57, 10.66)
when <7 > 1 and <8 > 1 (Situation 8).
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6.2. Comparison Results

In this subsection, we present a comparison between the single-infection and coinfection.
Influence of IAV infection on the dynamics of SARS-CoV-2 single-infection
Here, we compare the solutions of model (3) and the following SARS-CoV-2 single-

infection model: 
Ẋ = λ− αX− βV XV,
Ẏ = βV XV − γYY,
V̇ = κVY− πVV −κVVZ,
Ż = σZVZ− µZZ.

(24)

We fix parameters βV = 0.09, βP = 0.05, σZ = 0.5 and σM = 0.9 and select the initial
state as:

C4 : (X(0), Y(0), I(0), V(0), P(0), Z(0), M(0)) = (7.5, 0.5, 0.4, 0.03, 0.04, 7.5, 9.5)

From Figure 10, we observe that when the SARS-CoV-2 single-infected individual is coin-
fected with IAV, then the concentrations of uninfected epithelial cells, SARS-CoV-2-infected
cells and SARS-CoV-2-specific antibodies are reduced. However, the concentration of free
SARS-CoV-2 particles tend to be the same value in both SARS-CoV-2 single-infection and
IAV/SARS-CoV-2 coinfection. This result agrees with the observation of Ding et al. [10]
which said that “IAV/SARS-CoV-2 coinfection did not result in worse clinical outcomes in
comparison with SARS-CoV-2 single-infection”.
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Figure 10. Comparison between the solutions of SARS-CoV-2-single-infection model and IAV/SARS-
CoV-2 coinfection model.
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Influence of SARS-CoV-2 infection on the dynamics of IAV single-infection
To examine the impact of SARS-CoV-2 infection on IAV single-infection, we compare

the solutions of model (3) and the following IAV single-infection model:
Ẋ = λ− αX− βPXP,
İ = βPXP− γI I,
Ṗ = κP I − πPP−κPPM,
Ṁ = σMPM− µM M.

(25)

We fix parameters βV = 0.095, βP = 0.08, σZ = 0.9 and σM = 0.95 and consider the
following initial condition:

C5 : (X(0), Y(0), I(0), V(0), P(0), Z(0), M(0)) = (6, 0.6, 0.5, 0.05, 0.05, 7.05, 8.05).

It can be observed from Figure 11 that when the IAV single-infected individual is coinfected
with SARS-CoV-2, then the concentrations of uninfected epithelial cells, IAV-infected cells
and IAV-specific antibodies are decreased. However, the concentration of free IAV particles
cells tends to the same value in both IAV single-infection and IAV/SARS-CoV-2 coinfection.
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Figure 11. Comparison between the solutions of IAV-single infection model and IAV/SARS-CoV-2
coinfection model.
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7. Discussion

IAV and SARS-CoV-2 coinfection cases were reported in some works (see [1,8,10,11]).
Therefore, it is important to understand the within-host dynamics of this coinfection.
In this paper, we develop and examine a within-host IAV/SARS-CoV-2 coinfection model.
We studied the basic and global properties of the model. We find that the system has
eight equilibria, and their existence and global stability are governed by eight threshold
parameters (<i, i = 1, . . . , 8). We proved the following:

(I) The infection-free equilibrium Ξ0 always exists. It is G.A.S. when <1 ≤ 1 and
<2 ≤ 1. In this case, the patient is recovered from both IAV and SARS-CoV-2 infections.
From a control viewpoint, making <1 ≤ 1 and <2 ≤ 1 will be a good strategy. This can
be achieved by reducing the parameters βV and βP (or κV and κP). Let εV ∈ [0, 1] and
εP ∈ [0, 1] be the effectiveness of the antiviral drugs for SARS-CoV-2 and IAV, respectively.
Then, the parameters βV and βP will be changed to (1− εV)βV and (1− εP)βP. Moreover,
<1 and <2 become

<1(εV) =
(1− εV)X0κV βV

πVγY
, <2(εP) =

(1− εP)X0κPβP
πPγI

.

To make <1 ≤ 1 and <2 ≤ 1, the effectiveness εV and εP have to satisfy

εmin
V ≤ εV ≤ 1, εmin

V = max
{

0, 1− 1
<1(0)

}
,

εmin
P ≤ εP ≤ 1, εmin

P = max
{

0, 1− 1
<2(0)

}
.

(II) The SARS-CoV-2 single-infection equilibrium without antibody immunity Ξ1 exists if
<1 > 1. It is G.A.S. when <1 > 1, <2/<1 ≤ 1 and <3 ≤ 1. This case leads to the situation
of a patient who is only infected by SARS-CoV-2 with inactive immune response. As we
will see below, if both SARS-CoV-2-specific antibody and IAV-specific antibody immunities
are not activated against the two viruses, then according to the competition between the
two viruses, SARS-CoV-2 may be able to block the IAV infection.

(III) The IAV single-infection equilibrium without antibody immunity Ξ2 exists if
<2 > 1. It is G.A.S. when <2 > 1, <1/<2 ≤ 1 and <4 ≤ 1. This case leads to the situation
of a patient who is only infected by IAV with unstimulated immune response. Then, IAV
may be able to block the SARS-CoV-2 infection.

(IV) The SARS-CoV-2 single-infection equilibrium with stimulated SARS-CoV-2-specific
antibody immunity Ξ3 exists if <3 > 1. It is G.A.S. when <3 > 1 and <5 ≤ 1. This point
represents the situation of a SARS-CoV-2 single-infection patient with active SARS-CoV-
2-specific antibody immunity. Despite the activity of antibodies against the SARS-CoV-2
particles, the SARS-CoV-2 may be able to block the IAV.

(V) The IAV single-infection equilibrium with stimulated IAV-specific antibody im-
munity Ξ4 exists if <4 > 1. It is G.A.S. when <4 > 1 and <6 ≤ 1. This point represents
the case of an IAV single-infection patient with active IAV-specific antibody immunity.
Despite the activity of antibodies against the IAV particles, the IAV may be able to block
the SARS-CoV-2.

(VI) The IAV/SARS-CoV-2 coinfection equilibrium with only stimulated SARS-CoV-
2-specific antibody immunity Ξ5 exists if <5 > 1 and <1/<2 > 1. It is G.A.S. when
<5 > 1, <7 ≤ 1 and <1/<2 > 1. Here, the IAV/SARS-CoV-2 coinfection occurs with only
stimulated SARS-CoV-2-specific antibody immunity. The activity of SARS-CoV-2-specific
antibodies suppresses the growth of SARS-CoV-2 particles, and this makes IAV coexist with
SARS-CoV-2.

(VII) The IAV/SARS-CoV-2 coinfection equilibrium with only stimulated IAV-specific
antibody immunity Ξ6 exists if <6 > 1 and <2/<1 > 1. It is G.A.S. when <6 > 1,
<8 ≤ 1 and <2/<1 > 1. It means that the IAV/SARS-CoV-2 coinfection occurs with only
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stimulated IAV-specific antibody immunity. The activity of IAV-specific antibodies reduces
the replication of IAV particles, and this makes SARS-CoV-2 coexist with IAV.

(VIII) The IAV/SARS-CoV-2 coinfection equilibrium with both stimulated SARS-CoV-
2-specific antibody and IAV-specific antibody immunities Ξ7 exists, and it is G.A.S. when
<7 > 1 and <8 > 1. It means that the IAV/SARS-CoV-2 coinfection occurs with both
SARS-CoV-2-specific antibody and IAV-specific antibody immunities activated. Since both
SARS-CoV-2-specific and IAV-specific antibodies are activated, then coexistence of the two
viruses appears.

We discussed the influence of IAV infection on SARS-CoV-2 single-infection dynamics
and vice versa. We found that the concentration of free IAV or SARS-CoV-2 particles cells
tend to be the same value in both single-infection and coinfection. This agrees with the
work Ding et al. [10] which reported that IAV/SARS-CoV-2 coinfection did not result in
worse clinical outcomes [10]. In addition, the spread of seasonal influenza can increase the
likelihood of coinfection in patients with COVID-19 [8].

From the above, we note that the coexistence case of IAV and SARS-CoV-2 can occur
if at least one type of the specific antibody immunity is active. Now, we discuss the im-
portance of considering the antibody immune response in the IAV/SARS-CoV-2 dynamics
model. If the antibody immune response is neglected, then system (3) becomes:

Ẋ = λ− αX− βV XV − βPXP,
Ẏ = βV XV − γYY,
İ = βPXP− γI I,
V̇ = κVY− πVV,
Ṗ = κP I − πPP.

(26)

We can see that system (26) describes the competition between IAV and SARS-CoV-2 on
one source of target cells, epithelial cells. The model admits only three equilibria:

(i) Infection-free equilibrium, Ξ̃0 = (X̃0, 0, 0, 0, 0), where both IAV and SARS-CoV-2
are cleared,

(ii) SARS-CoV-2 single-infection equilibrium Ξ̃1 = (X̃1, Ỹ1, 0, Ṽ1, 0), where the IAV is
blocked,

(iii) IAV single-infection equilibrium, Ξ̃2 = (X̃2, 0, Ĩ2, 0, P̃2), where the SARS-CoV-2 is
blocked, where X̃i = Xi, i = 0, 1, 2, Ỹ1 = Y1, Ṽ1 = V1, Ĩ2 = I2, and P̃2 = P2.

We note that the case of IAV and SARS-CoV-2 coexistence does not appear. In the
recent studies presented in [1,8,10,11], it was recorded that some COVID-19 patients were
coinfected with IAV. Therefore, neglecting the immune response may not describe the
coinfection dynamics accurately. This supports the idea of including the immune response
into the IAV/SARS-CoV-2 coinfection model, where the case of IAV and SARS-CoV-2
coexistence is observed.

8. Conclusions

Mathematical models are frequently used to understand the complex behavior of
biological systems. In this paper, we formulated an IAV and SARS-CoV-2 coinfection model
within a host. The model is a seven-dimensional nonlinear ODEs which describes the
interaction between uninfected epithelial cells, SARS-CoV-2-infected cells, IAV-infected
cells, free SARS-CoV-2 particles, free IAV particles, SARS-CoV-2-specific antibodies and IAV-
specific antibodies. The regrowth and death of the uninfected epithelial cells are considered.
We first examined the nonnegativity and boundedness of the solutions; then we calculated
the model’s equilibria and established their existence in terms of eight threshold parameters.
We proved the global stability of all equilibria by constructing Lyapunov functions and
applying the Lyapunov–LaSalle asymptotic stability theorem. We performed numerical
simulations and demonstrated that they are in good agreement with the theoretical results.
We discussed the effect of including the antibody immunity into the coinfection dynamics
model. We found that including the antibody immunity in the coinfection model plays
an important role in establishing the case of IAV and SARS-CoV-2 coexistence which is
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practically detected in many patients. Finally, we discussed the influence of IAV infection
on the dynamics of SARS-CoV-2 single-infection and vice versa.

The model proposed in this research and its analysis shows three main biological
states, (i) clearance of both IAV and SARS-CoV-2 particles, (ii) appearance of interference
phenomenon, where one virus may be able to suppress the growth of another virus, and
(iii) coexistence of the two viruses.

The model developed in this work can be improved by (i) utilizing real data to find a
good estimation of the parameters’ values, (ii) studying the effect of time delays that occur
during infection or production of IAV and SARS-CoV-2 particles [45], (iii) considering viral
mutations [65,66], (iv) considering the effect of treatments on the progression of both viruses,
and (v) including the influence of Cytotoxic T-Lymphocytes (CTLs) in killing SARS-CoV-2-
infected and IAV-infected cells [40]. These research points need further investigations so
we leave them to future works.
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