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Abstract: Relation extraction aims to predict the relation triple between the tail entity and head
entity in a given text. A large body of works adopt meta-learning to address the few-shot issue faced
by relation extraction, where each relation category only contains few labeled data for demonstration.
Despite promising results achieved by existing meta-learning methods, these methods still struggle
to distinguish the subtle differences between different relations with similar expressions. We argue
this is largely owing to that these methods cannot capture unbiased and discriminative features in the
very few-shot scenario. For alleviating the above problems, we propose a taxonomy-aware prototype
network, which consists of a category-aware calibration module and a task-aware training strategy
module. The former implicitly and explicitly calibrates the representation of prototype to become
sufficiently unbiased and discriminative. The latter balances the weight between easy and hard
instances, which enables our proposal to focus on data with more information during the training
stage. Finally, comprehensive experiments are conducted on four typical meta tasks. Furthermore,
our proposal presents superiority over the competitive baselines with an improvement of 3.30% in
terms of average accuracy.

Keywords: few-shot; relation extraction; prototype; distribution calibration; contrastive learning
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1. Introduction

Relation extraction (RE) is designed to extract the relation between two entities in
a given text [1], and has been widely applied in downstream tasks of Nature Language
Processing, e.g., knowledge base population and question answering [2]. Traditional deep
neural network methods [3] for RE are typically challenged by the need to gather large
amounts of high-quality annotation data, which is expensive and laborious. Therefore,
few-shot relation extraction is feasible for realistic applications [4]. Furthermore, meta-
learning methods are proposed to address such a low-resource dilemma [5]. The core
of meta-learning (ML) is to optimize methods via diverse meta-tasks, each with several
labeled instances, so that the methods can rapidly learn to identify new relations with only
few instances. Figure 1 illustrates an instance of two-way one-shot for few-shot RE.

These ML approaches can be broadly classified into three categories, namely model-,
optimization- and metric-based ML methods [6]. As a popular solution, the metric-based
ML methods focus on designing a metric function in order to identify the distance between
instances in the query set and the categories (illustrated with a few instances) appearing in
the support set. Prototypical network [7], a simple and effective metric-based ML method,
approximately represents each category via a prototype, which is achieved through averag-
ing the embeddings of these instances that belong to the class. A great deal of works are
devoted to improving the representation of prototypes, e.g., Gao et al. [8] modifies the repre-
sentation of prototypes by highlighting the crucial instances and features, and Wen et al. [5]
integrates the transformer model into prototype nets for greater expressiveness. In addition,
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some recent works have utilized external knowledge to provide more clues to the represen-
tation of prototypes, e.g., Qu et al. [9] optimizes the posterior distribution of a prototype
via a global relation graph as the initial prior of the prototype, Yang et al. [10] employs the
text descriptions of relations and entities to enhance representations of a prototype, and
Yang et al. [11] fuses the entity concept to constrain the representations of a prototype.

Test

Training

Support set: 
London is the captial of the U,K. [capital_of ]
Leibniz was a member of the Prussian Academy of Sciences.
[member_of ] 

Query set: 
Newton was a member of the Prussian Academy of
Sciences.[Label: member_of or capital_of ?] 

Support set: 
Mark Twain was born in 1835.[date_of_birth] 
Elvis Presley was born in Memphis, tennessee. [place_of birth]

Query set: 
William Shakespeare passed away at age 52 (around
1616). [Label: date of birth or place of birth?] 

Figure 1. A 2-way 1-shot meta task for few-shot relation, where the head entity, the tail entity and the
relation category are in green, purple and red, respectively. The relation categories in training and
test stage are disjoint.

However, there are two main limitations to these methods. First, the prototype repre-
sentation of the above models bears some bias and the discriminative ability is insufficient
in few-shot scenarios, which restricts the performance of these ML methods. Additionally,
these improved methods usually design complex structures and introduce excessive pa-
rameters, which increases the computational burden and also easily leads to overfitting in
the few-shot schema. Second, current ML methods treat all training instances equally [6]
or pay more attention to very hard instances [12,13], which prevents these methods from
extracting useful information from the training instances. Intuitively, on the one hand, tasks
that are overly simple provide no valuable information; on the other hand, even humans
can only extract critical information from moderately hard instances and struggle with very
hard instances, let alone neural network models.

With the aim of alleviating the above problems, we propose a taxonomy-aware proto-
typical network (TAPN) method, consisting of two modules: a category-aware calibration
module and a task-aware training strategy module. Specifically, the category-aware calibra-
tion module leverages relation description to explicitly calibrate the prototype distribution
in order to obtain unbiased representations and applies prototype-aware contrastive learn-
ing to implicitly calibrate the prototype representations to be more discriminative. The
task-aware training strategy module leverages the task-aware difficulty to balance the
weights of easy and hard instances, which also dynamically adapt different meta tasks.

We evaluate our proposal on four classic meta tasks, and the broad results of the
experiment indicate that TAPN is markedly superior to baselines. Additionally, ablation
research further validates the effectiveness of these two modules and an error analysis
shows the interpretability of TAPN’s good performance.

In summary, our major contributions can be summarized as follows:

(1) To the best of our knowledge, we are the first to explicitly and implicitly calibrate the
prototype representation simultaneously without introducing extra or even harmful
parameters.

(2) We design a category-aware calibration module to enable the representation of an
unbiased and more discriminative prototype by relation description and prototype-
aware contrastive learning, respectively.

(3) We propose a task-aware training strategy module to extract beneficial knowledge by
exploring hard task and sample instances.

(4) The experimental findings confirm the validity of our model in terms of accuracy
against the competing baselines.

The remainder of the paper is organized as follows: We review the related work
for few-shot RE in Section 2, detail our approach in Section 3, design our experiments
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in Section 4, analyze the results of our proposal in Section 5 and conclude our work in
Section 6.

2. Related Work
2.1. Relation Extraction

RE is designed to determine the relations between entities in a given sentence. Most
traditional RE models extract the relations under supervised settings [14], which can be
classified into three categories: neural-, kernel- and feature-based methods [1].

Feature-based methods [15] typically focus on generating a set of features, e.g., word
feature [16], syntactic feature [17], semantic feature [18], etc., for the relation classifier.
Kernel-based methods mainly design the kernel functions to compute similarities between
two relation instances. These kernel functions comprise syntactic sequence kernel [19], tree
kernel [20], dependency tree kernel [21], dependency graph path kernel [22] and compos-
ite kernels [23]. Distinct from manual participation in the feature-based or kernel-based
methods, neural-based models [1] often concentrate on extracting the relational features
with neural networks, e.g., convolution neural network (CNN) [24], graph convolutional
network [25,26], and recurrent neural network [27], to perform the end-to-end training.

Typically, the aforementioned approaches work well based on numerous labeled data.
However, it is time-consuming [9] and impractical to collect such massive annotated data in
some professional domains. We focus on extracting relation triple in the few-shot scenario.

2.2. Few-Shot Relation Extraction

Meta-learning methods [28] have been extensively applied to the few-shot RE. The
ML models are trained in various meta-tasks with few instances as demonstrations, then
can be generalized to new meta tasks. In general, these ML methods are divided into three
category [29]: metric-, optimization- and model-based methods [17].

Model-based methods [30] emphasize on designing the architecture of the model to
address the few-shot task. To be specific, MANN [31] designs a memory-enhanced neural
network to quickly absorb new data and proposes an effective strategy for accessing the
external memory, which provides the ability to quickly predict new relations. Optimization-
based methods [32,33] try to initialize the parameters well. For instance, Finn et al. [32]
optimize parameters with few training data so that they can be adapted to novel tasks
with a limited number of gradient descent steps. The metric-based approaches focus on
learning a metric function to determine the similarity between support sentences and query
sentences. For instance, relation networks [34] learn a deep distance metric on the basis of
the neural network instead of the fixed Euclidean distance or dot product. The prototypical
network [7] predicts relation labels through computing the similarity between the prototype
of each class and query sentences, which is derived from averaging the representations
of all the examples belonging to a particular class. In addition, a great deal of works are
designed to improve the prototypical network: Gao et al. [8] present hybrid attention-based
prototypical networks to deal with the diversity and noise of text, Han et al. [12] introduce
external relation description and combine global and local features as hybrid prototypes,
that learns better characterization through utilizing relational label information.

However, these improved prototypical networks almost introduce extra parameters,
e.g., parameters of the attention mechanism, which require sufficient data for optimization
and is not realistic in the few-shot scenario. In addition, the prototype representations
are usually biased and insufficiently discriminative. In this paper, compared to vanilla
prototypical networks, we calibrate the prototype representation without introducing
additional parameters.

2.3. Contrastive Learning

Contrastive Learning achieves success in computer vision (CV) [35] through pulling
together positive instances and pushing negative instances away simultaneously. Different
from positives produced by cropping, flipping, distortion and rotation in CV, methods to
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construct positives for discrete text sequences present a critical problem. Moreover, there are
quantities of works dedicated to solving the above problem. For example, to design proper
positives, Wu et al. [36] and Meng et al. [37] design word deletion, reordering and substitution
techniques, Yan et al. [38] propose four new data-augmentation techniques (adversarial attack,
token shuffling, cutoff and dropout), Gao et al. [39] apply random dropout as noise for sentence
text and Jiang et al. [40] introduce different templates to express the same sentence text.

However, the aforementioned works usually construct positives and negatives at the
instance-level and ignore the connection between instances and categories. Inspired by this,
we design a prototype-aware contrastive learning prototype at the category-level, which
drives the representations of categories to become more discriminating.

3. Approaches

In this section, we will display the details of our proposed technique. As exhibited
in Figure 2, the structure of our proposal includes two modules: the category-aware
calibration module and the task-aware training strategy module. In detail, the feature-
encoder first transforms the input sentences and relation descriptions into corresponding
embedding. Next, the category-aware calibration module can obtain the unbiased and
discriminative prototype representations according to the embeddings of sentences and
relation description. We can predict the label of each query sentence based on the similarity
between all category prototypes and this query sentence. Finally, the task-aware training
strategy module can balance the weight between simple and hard data and then ensure
propagation of the correct information.

1
2
3

N

1 2 3 N

EncoderSupport
set

Query
set

Avg

Task-aware Training Strategy Module

K
1

N

Relation 
description

DesRep

Metric
function

Avg

Avg

Avg

Category-aware Calibration Module

Similarity matrix

SenRep

Vanilla prototype Unbiased prototype

Figure 2. An overview of the few-shot relation extraction framework. Support set follows N-way
K-shot setting. Different colors in the support set denote different relations categories. “SenRep”
and “DesRep” denote the abbreviations of sentence semantic representation and relation description
representation, respectively.

In the next section, we first describe the formulation of the problem in Section 3.1.
We then detail the category-aware calibration module in Section 3.2 and the task-aware
training strategy module in Section 3.3.
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3.1. Task Definition

Relation Extraction. Given an Lx-word text x with a head entity eh and a tail entity et, i.e.,
x = {w1, · · · , eh, · · · , et, · · · , wLx}, the RE task can be formulated as training a model to
predict the relation label r between eh and et, where r belongs to a pre-defined relation label
setR. It is worth noting that the entity span may consist of multiple words.
Few-shot Relation Extraction. Few-shot relation extraction aims to identify the emerging
novel relation labels without sufficient labeled data. Therefore, the predefined relation label
setR is divided into the base categories Rb and novel categories Rn for the training and test
stage, respectively. This setting simulates the test environment, where Rb ∪ Rn = R and
Rb ∩ Rn = �. Next, quantities of meta tasks are constructed for few-shot RE. Specifically, a
meta task T consists of a support set S and a query setQ: T = (S ,Q). Following the typical
N-way K-shot setting of ML learning, the support set S =

{
xj

r; r = 1, · · · , N, j = 1, · · · , K
}

contains N categories, each category with K labeled instances. The query set Q includes
the same N relation categories as S . The few-shot RE methods are trained on meta tasks
sampled from the base categories Rb, learn general knowledge, and are tested on other
meta tasks sampled from the novel categories Rn.
External Knowledge. The relation description dr = {w1, · · · , wLd} for each relation r is
also given, where Ld denotes the word length of dr.

3.2. Category-Aware Calibration Module

In this section, we first calibrate the representation of each category, and then predict
the label of the query sentence by a metric function, which calculates the distance between
the query sentence and these categories.

3.2.1. Feature Encoder

We employ E to denote the text feature encoder. We use BERTbase as E, as shown in
Figure 3. We can then obtain the contextual semantic representation hx of an instance x:

hx = E(x)[h]⊕ E(x)[t], (1)

where hx ∈ R2d, d is the embedding dimension of E,⊕ presents the concatenation operation,
and E(x)[h] and E(x)[t] denote embedding of the start token of head entity eh and tail
entity et, respectively.

Transformer (BERT)

[CLS] [h] [head entity] [/h] [tail entity][t] [/t] [SEP][    ]

[CLS] [     ] [       ] [SEP][h] [t][/h] [/t]

Input 
sentence

Output
embedding

[       ]

Figure 3. The feature encoder of our proposal. Orange items represent special mark tokens, e.g.,
[CLS] and [SEP] are the start and end of the input sentence with Lx words, and [h] ([t]) and [/h] ([/t])
are the start and end of the head entity span and tail entity span, respectively.

Additionally, we can gain the relation description representation for each relation r:

hdr = E(dr)[CLS]⊕ 1
Ld

Ld

∑
i=1

E(dr)[wi], (2)
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where hdr ∈ R2d, E(dr)[CLS] ∈ Rd demonstrates embedding of the start token of the
relation description text, and E(dr)[wi] ∈ Rd illustrates the embedding of word wi in the
relation description text.

3.2.2. Category Distribution Calibration

Following vanilla prototypical network [7], we average all the instance embeddings in
the support set for each relation as vanilla prototype:

cxr =
1
K

K

∑
j=1

h
xj

r
, r = 1 · · ·N, (3)

where we treat prototype cxr as the representation of category r. However, cxr is vul-
nerable to outliers in the few-shot scenario where there are only very few instances for
demonstration, leading to semantic distribution and discrimination bias.

Fortunately, the relation description summarizes the semantic characteristics, which
elaborates the real meaning. Therefore, we leverage the relation description to calibrate the
distribution of the corresponding category representation:

cr = cxr + hdr , (4)

compared to cxr , cr is an unbiased prototype and much closer to the real distribution of
relation r. In other words, we calibrate the category distribution without introducing
supernumerary parameters. We can then predict the category of a query instance by the
following metric function:

p(y = r|q) = −
exp

(
−d
(
cr, hq

))
N
∑

r′=1
exp

(
−d
(
cr′ , hq

)) , (5)

where p(y = r|q) means the probability of query q belonging to relation r. hq, yielded
from Equation (1), is a representation of the query sentence. d(·, ·) is the distance function
based on dot production. Subsequently, we apply cross-entropy loss to optimize prototype
representation:

Lce = − ∑
q∈Q

Ir log(p(y = r|q)), (6)

where Ir is an indication function, Ir = 1 when query q belongs to relation r, otherwise
Ir = 0.

3.2.3. Category Discrimination Calibration

As for semantic discrimination bias, we apply contrastive learning to discriminate the
representations of instances for each relation. In detail, instances should be close to the
prototype belonging to the same category and far away from other prototypes as follows:

Lcons =
−1
NK

N

∑
r=1

log
∑K

j=1 exp(cr · hxj
r
/τ)

∑
r′ 6=r

∑K
j=1(cx

r′
· h

xj
r
/τ)

, (7)

where τ is a temperature hyper-parameter, h
xj

r
denotes the representation of j-th instance

in relation r. Thus, here we can obtain discriminative prototypes based on Equation (7).

3.3. Task-Aware Training Strategy Module

For a sentence with true relation label r, we predict that it belongs to r with a confidence
of p(y = r|q) by Equation (5). We define the easily classified sentence as a very simple
instance when p(y = r|q)→ 1. Conversely, the extremely difficult classified sentence is the
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very hard instance with very low confidence. The task-aware training strategy module is
designed to optimize our proposal with moderately hard data.

3.3.1. Hard Instances

Intuitively, the models will benefit if they focus more on hard instances instead of
treating all instances equally [13]. Therefore, we apply the focal loss function [13] on hard
instance to modify the cross entropy loss L f ocal :

L f ocal = − ∑
q∈Q

Ir log
((

1− p(y = r|q)ϕ)p(y = r|q)
)
, (8)

where ϕ > 0 is a hyper-parameter [13] and reduces the relative loss contributed by very
simple instances. Furthermore, Equation (8) is cross-entropy loss when ϕ = 0.

3.3.2. Hard Meta Tasks

However, the harder the sentence, the higher the L f ocal weight assigned to this sen-
tence, which may lead to TAPN failing to learn knowledge since L f ocal focuses excessively
on very hard sentences. Therefore, we design an inverse focal loss function at the meta-task
level, which pays less attention to the very hard task consisting of very hard classified
sentences. We can observe that the greater the inter-class similarity in a meta task, the
harder this meta task becomes. We then use the inter-class similarity matrix M ∈ RN×N to
measure the difficulty (hardness) of meta task:

mi,j =
ci · cj

‖ci‖ × ‖cj‖
, (9)

where ‖·‖ represents the Euclidean norm. Next, we use a scalar m to determine the hard
magnitude of a specific meta task in the current mini-batch as follows:

mb =
exp(‖Mb‖F)

∑B
b′=1

exp
(
‖Mb′ ‖F

) , (10)

where B is the batch size in training stage, mb is the difficulty of b-th meta task in current
batch, and ‖·‖F is the Frobenius norm. The task-aware loss is then defined as follows:

Lu f f = −
B

∑
b=1

1
mb

∑
q∈Q

Ir log
((

1− p(y = r|q)ϕ)p(y = r|q)
)
, (11)

Lu f f pays less attention to a hard meta task but focuses on hard instances in the meta task.
Namely, Lu f f balances the weight between easy and hard data; therefore, it can learn useful
knowledge from moderately hard data.

Lastly, the final objective loss is designed as follows:

L = Lcons + Lu f f (12)

4. Experiments

In this section, we first discuss several research questions in Section 4.1. We then intro-
duce the dataset and baselines to compare with those in Sections 4.2 and 4.3, respectively.
Finally, we provide some implementation details in Section 4.4.

4.1. Research Questions

We design the following research questions to guide our experiments and examine the
effectiveness of our proposal.

- RQ1: Does our proposal outperform the state-of-the-art baselines in terms of accuracy
for few-shot relation extraction?
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- RQ2: How does sentence length influence the performance of our proposal and
baselines?

- RQ3: What is the impact of the different components of TAPN?
- RQ4: Are the results interpretable from the view of error analysis?

4.2. Datasets

We conduct our experiment on FewRel [4]. There are 64, 20 and 16 relations for
training, validation and testing, respectively. Since the 20 test relations are not reported,
we re-split the original published relations into 50, 14 and 16 for training, validation and
testing, respectively, according to existing methods [10,11]. In addition, the statistics of
FewRel are listed in Table 1. Moreover, the test relation descriptions are listed in Table 2.

Table 1. Statistics of FewRel. “#Rel” and “#Instance” denote the number of relations and instances,
respectively. “Length” means the average token length of instances.

Task #Rel #Instance Length

Training 50 35,000 25
Validation 14 9800 24
Testing 16 11,200 24

Table 2. Relation descriptions for the test data.

Id Relation Name Relation Description

“follows” follows immediately prior item in a series of which the subject is a part.
P177 crosses obstacle (body of water, road, . . .) which this bridge crosses over or this

tunnel goes under.
P206 located in or next

to body of water
located in or next to “body of water”, “sea, lake or river”.

P2094 competition class official classification by a regulating body under which the subject
(events, teams, participants, or equipment) qualifies for inclusion.

P25 mother female parent of the subject. For stepmother, use stepparent.
P26 spouse the subject has the object as their spouse (husband, wife, partner, etc.)
P361 part of object of which the subject is a part (it is not useful to link objects which

are themselves parts of other objects already listed as parts of the subject).
P364 original language

of film or TV show
language in which a film or a performance work was originally created.

P40 child subject has object as biological, foster, and/or adoptive child.
P410 military rank military rank achieved by a person.
P412 voice type person’s voice type. expected values: soprano, mezzo-soprano, contralto,

countertenor, tenor, baritone, bass (and derivatives).
P413 position played on

team
position or specialism of a player on a team, e.g., Small Forward.

P463 member of organization or club to which the subject belongs. Do not use for mem-
bership in ethnic or social groups, nor for holding a position such as a
member of parliament.

P59 constellation the area of the celestial sphere of which the subject is a part (from a
scientific standpoint, not an astrological one).

P641 sport sport in which the subject participates or belongs to.
P921 main subject primary topic of a work.

4.3. Model Summary

We introduce two group competitive baselines for the few-shot RE task to be compared
with. We first illustrate the basic ML methods:

- Snail [41] applies the temporal convolutions to aggregate information from past experience
and designs a soft attention mechanism to pinpoint specific pieces of information.
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- GNN [42] defines a graph neural network architecture to propagate label information
from labeled data to unlabeled data.

- Siamese [43] uses two twin networks with shared weights to calculate the similarity
of two inputs and then determines whether they belong to the same category.

- Proto [7] predicts the relation labels by calculating the similarity between the query
sentences and the prototype of each category, which is obtained by averaging the
representations of all instances belonging to a specific category.

- BERT-PAIR [44] concatenates the query instance with all supporting instances with a
particular label as a series of sequences, and then calculates the similarity of two pairs
of instances for predicting the relation of query instance.

We then list some improved prototypical networks by introducing external knowledge
through carefully designed complex modules:

- KEFDA [45] designs a knowledge-enhanced prototypical network to conduct instance
matching and a relation-meta learning network for implicit relation matching.

- ConceptFERE (We use the ConceptFERE(simple) version here to allow for computa-
tion overheads. Ref. [11] develops a self-attention-based fusion module to incorporate
sentence embedding and entity concept embedding, which is valuable for the relation
classifier.

- HCRP [12] introduces external relation description and combines global and local
features as hybrid prototypes, which better learn representations by exploiting relation
label information.

Finally, we present the model proposed in this paper:

- TAPN leverages the relation description to calibrate the prototype representation
without introducing extra parameters and designs an effective training strategy to
optimize the model.

4.4. Implementation Details

The model configurations are kept the same across all models discussed, including our
proposal and the selected baselines. In detail, following [4,46], we assess the performance
of DRK on four classic meta-tasks: 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-
way 5-shot. We apply BERTbase as the feature encoder and use ADAM to optimize all
the models. In addition, we follow the parameter setting of FewRel [4] and tune other
hyperparameters through performing a grid search on a validation set. Furthermore, we
present the parameter settings in Table 3. It is worth noting that we set τ to 0.4 on the
10-way 1-shot meta task through conducting a grid search on a validation set.

Table 3. Hyperparameters of our proposal.

Hyperparameters Set

Training iterations 20,000
Validation iterations 2000
Test iterations 10,000
learning rate 2× 10−5

sentence length Lx 128
d 768
τ 1
ϕ 1
batch size 4
grad iter 1
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5. Results and Discussion
5.1. Overall Evaluation

For answering RQ1, we assess the RE performance of TAPN along with eight com-
peting baselines on four meta-tasks. The overall results in terms of accuracy are listed in
Table 4.

Generally, for meta tasks with the same shot number, the performance of all models
deteriorates as the number of relational categories (ways) increases. In addition, for the
same way-number meta tasks, all the models achieve better performance as the shot-
number increases. The above phenomenon indicates that the difficulty of the relation-
extraction task increases as the number of shots reduces and the number of ways increases.
This can contribute to under-fitting for test tasks, which suffers from a lack of data.

Table 4. Overall performance of our proposal and baselines in terms of average accuracy(%) on
four typical meta-tasks. The results of the best baseline and the best performer in each column are
underlined and boldfaced, respectively. Statistical significance of pairwise differences of the best
baseline against our proposed TAPN is determined via a t-test (N for p < 0.05). † marks the results
quoted from the original published papers.

Model Avg 5-Way 1-Shot 5-Way 5-Shot 10-Way 1-Shot 10-Way 5-Shot

Snail 64.22 57.82 80.53 50.40 68.11
GNN 67.62 66.48 82.65 48.14 73.22

Siamese 80.40 81.29 88.18 71.00 81.12
Proto 78.36 78.59 88.99 64.07 81.80

BERT-PAIR 81.69 82.57 89.00 73.37 81.81

KEFDA 80.02 80.46 89.88 68.23 81.49
ConceptFERE † 82.61 84.28 90.34 74.00 81.82

HCRP 84.14 86.82 90.38 75.98 83.39

TAPN(ours) 87.44 90.98 N 91.76 N 80.66 N 86.37 N

Subsequently, we focus on the baseline. For the first group methods, BERT-PAIR
achieves the best results due to the carefully designed model structure. For the second
group baselines with external knowledge, most models achieve better performance than
first group models. In addition, HCRP is the best baseline on four meta tasks. This
demonstrates that external knowledge provides rich information to alleviate the few-shot
dilemma.

Next, we focus on the performance of our proposal on four meta tasks. Generally,
our suggested TAPN is superior to all baselines on all meta-tasks and gains a 3.30%
improvement in average accuracy, which confirms the validity of the TAPN. In detail,
TAPN exhibits 1.38%, 4.16%, 2.98% and 4.68% improvements in the accuracy of HCRP on
5-way 5-shot, 5-way 1-shot, 10-way 5-shot and 10-way 1-shot meta-tasks, respectively, and
the performance growth of our proposal increases as the way-number grows and the shot-
number reduces. This demonstrates that TAPN can capture unbiased and discriminative
features in the harsh few-shot scenario. In addition, we also evaluate the performance
precision of our proposed method and the state-of-the-art baseline HCRP in Table 5. We
can observe that our proposed method still outperforms HCRP by 2% improvement in
terms of average precision.
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Table 5. The performance of our proposal and HCRP in terms of precision(%) on test relations.

Relation TAPN HCRP

average 0.83 0.81
main subject 0.85 0.94
sport 0.76 0.59
constellation 0.79 0.69
member of 0.75 0.89
position played on team 0.83 0.91
voice type 0.98 0.79
military rank 0.85 0.78
child 0.72 0.96
original language of film or TV show 0.79 0.86
part of 0.93 0.93
spouse 0.83 0.64
mother 0.61 0.81
competition class 0.96 0.91
located in or next to body of water 0.89 0.95
crosses 0.97 0.97
follows 0.80 0.42

5.2. Sentence Length

As for RQ2, we study the influence of sentence length on the behavior of all models,
in accordance with the sentence length Ls. In detail, considering the distribution of testing
data, we group the sentences into four groups, i.e., Ls ∈ (0, 15), [15, 30), [30, 45), [45,+∞).
The results are plotted in Figure 4.

Generally, almost all the performances of the models drop with an increase in sentence
length, which can be clearly observed in Figure 4c. This phenomenon may be caused by
the model failing to capture key information as the sentence length increases. In addition,
long sentences are more likely to introduce noise.

Next, we compare the results of our proposed method against the baselines. Fur-
thermore, we take the worst-performing 10-way 1-shot meta task for instance to analyze
the results. We find that our proposal obtains the best results at every sentence length on
all four meta tasks. Furthermore, our proposal is less sensitive to the length of the input
sentence than other baselines. For instance, compared to the best baseline HCRP degrades
by 24.98% from 91.97% at Ls ∈ (0, 15) to 66.99% at Ls ∈ [45,+∞), our proposed TAPN only
decreases by 15.93% from 97.36% at Ls ∈ (0, 15) to 82.01% at Ls ∈ [45,+∞). In addition, the
improvement magnitude of TAPN consistently increases along with an increasing length
of the input sentence, e.g., TAPN outperforms the best baseline HCRP by an improvement
of 5.96%, 13.25%, 14.64% and 15.02% at Ls ∈ (0, 15), [15, 30), [30, 45), [45,+∞), respectively.
This demonstrates that our proposal can capture discriminative features to alleviate the
noise caused by long and tedious sentences. Similar results can be observed for the 10-way
5-shot, 5-way 5-shot, and 5-way 1-shot meta tasks.
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Figure 4. Effect on the performance of our proposed method and baselines affected by sentence
length on four typical meta tasks: 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot.

5.3. Ablation Study

For RQ3, we perform an ablation study to understand the contribution of the various
components of our proposal. In the ablation study, we replace or remove some specific
components to measure their influence on TAPN, which is marked with the notation“wo”.
Specifically, “wo/rel” and “wo/cons” denote removal of the category distribution calibra-
tion in Section 3.2.2 and category dicriminative calibration in Section 3.2.3, respectively. The
“wo/task” and “wo/instance” refer to removal of the hard meta-task finding component
in Section 3.3.2 and hard instance-finding component in Section 3.3.1, respectively. It is
worth noting that we only conduct an ablation study on 5-way 1-shot and 5-way 5-shot
meta tasks given the high computation cost on 10-way 1-shot and 10-way 5-shot meta tasks.
Furthermore, the results are presented in Table 6.

As displayed in Table 6, the removal of components leads to model degeneration,
proving the efficacy of each component. Additionally, “wo/rel" leads to the biggest drop
among the four components as marked in Table 6. The “wo/rel" plays the most important
role, which verifies that the previous prototype representation is vulnerable in the few-
shot scenario, which affects subsequent classification accuracy. Furthermore, the category
distribution calibration module calibrates prototype representation to be unbiased and
discriminative without introducing extra parameters.

Table 6. Ablation study of TAPN for the 5-way 1-shot and 5-way 5-shot meta tasks.

Model 5-Way 1-Shot 5-Way 5-Shot

TAPN 90.98 91.76
wo/rel 83.38↓ 89.89↓

wo/cons 87.91 92.17
wo/task 89.02 91.11

wo/instance 85.02 90.95
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5.4. Error Analysis

To answer RQ4, we first analyze the accuracy of each test relation, and then determine
the error sources via error analysis.

First, we present the accuracy of the best baseline HCRP and our proposal on each
test relation in Figure 5. Specifically, following Brody et al. [47], we use the parameters of
10-way 5-shot to evaluate the performance on test data by relation. Specifically, for each
test relation, we randomly select 5 examples (that is, K = 5) and 50 examples of that relation
and place them into the support set and query set, respectively. As displayed in Figure 5,
we can observe that the performance of our model is more stable than HCRP. The good
performance of HCRP is contributed to by some easily distinguished relations but fails on
some difficulty relations, e.g., the accuracy of HCRP is under 40% on relation P206, P26
and P641. Fortunately, our proposed method performs well across all relation categories,
and the accuracy on every relation is over 40%.

Next, we conduct an error analysis on the relation “follows” to determine the error
sources and the findings are summarized in Table 7. Generally, TAPN outperforms HCRP
by 4% improvement in accuracy on the relation “follows”. On the one hand, TAPN reduces
the error source, e.g., relation “constellation”. This may contribute to the calibration based
on the relation description shifting the prototype away from an irrelevant relation category.
On the other hand, TAPN decreases the error probability on the relation “part of”, meaning
that TAPN can capture the discriminative features of each relation.

0 20 40 60 80 100
Accuracy(%)

main subject
sport

constellation
member of

position played on team
voice type

military rank
child

original language of film or TV show
part of
spouse
mother

competition class
located in or next to body of water

crosses
follows

Te
st

 re
la

tio
n 

HCRP TAPN

Figure 5. The accuracy of our proposed TAPN method and the best baseline HCRP on each test
relation.

Table 7. The error source of relation “follows”.

Model “follows” Other Relations

HCRP 0.88 “part of”: 0.14, “constellation”: 0.02
TAPN 0.84 “part of”: 0.12

6. Conclusions and Future Work

In this paper, we propose a taxonomy-aware prototypical network to solve the few-shot
relation extraction. Specifically, we design a category-aware calibration module that utilizes
the relation description and contrastive learning to calibrate prototype representation to
become sufficiently unbiased and discriminative. Furthermore, we develop a task-aware
training strategy module, which dynamically balances the weight of easy and hard tasks.
In addition, we conduct extensive experimentation on FewRel for four typical meta tasks.
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The results demonstrate that our proposal exceeds the state-of-the-art baseline in average
accuracy.

However, our proposal may be limited to addressing the cross-domain relation extrac-
tion task, where the testing and training data originate from various domains. Therefore,
regarding the feature work, on the one hand, we plan to examine the generalization of
TAPN in the cross-domain few-shot scenario [48]. On the other hand, we would like to
introduce prompt learning for the true few-shot [49] scenario, where both training and
validation data are scarce. For example, we can design a template to close the gap between
relation extraction and the pre-trained language model, which can exploit common knowl-
edge learned from pre-trained language models.
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