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Abstract: Due to the shortcomings of the standard bat algorithm (BA) for multi-parameter optimiza-
tion, an improved bat algorithm is proposed. The benchmark function test shows that the proposed
algorithm has better realization of high-dimensional function optimization by introducing multiple
flight modes, adopting adaptive strategy based on group trend, and employing loudness mutation
flight selection strategy based on Brownian motion. Aiming at the characteristics of complex net-
works structure and multiple design variables of energy harvesting non-orthogonal multiple access
cognitive relay networks (EH-NOMA-CRNs), we utilize the proposed hybrid strategy improved
bat algorithm (HSIBA) to optimize the performance of EH-NOMA-CRNs. At first, we construct
a novel two-hop underlay power beacon assisted EH-NOMA-CRN, and derive the closed-form
expressions of secondary network’s outage probability and throughput. Then, the secondary net-
work performance optimization is formulated as the throughput maximation problem with regard
to EH ratio and power allocation factors. Subsequently, the HSIBA is employed to optimize the
above parameters. Numerical results show that the proposed HSIBA can achieve optimization to the
constructed EH-NOMA-CRN with faster convergence speed and higher stability.

Keywords: bat algorithm; hybrid strategy; energy harvesting; NOMA; cognitive relay network

MSC: 94A05

1. Introduction

Non-orthogonal multiple access (NOMA) is an effective method to increase frequency
efficiency. It has drawn great attention for its promising applications in the fields of
5G, 6G and Internet of things (IoT) networks [1–3]. Especially in the military scenarios
of unmanned aerial vehicles (UAVs) battlefield situation awareness [4], covert military
operations and tactical area communications [5], UAV-NOMA relaying communications [6],
and hybrid satellite-UAV networks [7], the NOMA technology has been widely used. The
core concept of NOMA is that when the non-orthogonal transmission is adopted at the
transmitter, the interference signals are actively introduced, and the correct demodulation
is achieved at the receiver by applying serial interference cancellation (SIC) technique. It
can be seen that reliable interference cancellation techniques and strategies [8,9] are the
basis for realizing NOMA. Although the use of SIC technique will increase the complexity
of the receiver, it can improve the spectrum efficiency.

In order to further improve the utilization efficiency of the authorized spectrum and
the expand the coverage of networks, many scholars have combined NOMA technique with
cognitive relay network (CRN) to build and optimize some novel NOMA-CRN models.
In [10], the authors achieved in-band full-duplex and two-way cognitive relaying trans-
mission in a cooperative NOMA system, and applied the successive inner approximation
technique to maximize the energy efficiency. In [11], the error rate performance of an under-
lay NOMA-CRN with partial relay selection (PRS) scheme was studied, and the optimum
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power coefficients were optimized to minimize the average bit error rate union bound by
using numerical methods. In [12], the physical-layer security of NOMA-CRN with relay
cooperation was investigated, and the particle swarm optimization (PSO) algorithm was
adopted to optimize the power allocation to maximize the secrecy sum-rate. In [13], the
authors utilized the NOMA-CRN for device to device (D2D) transmission, and proposed a
deep neural networks framework for optimizing resource allocation to maximize the sum
rate. In [14], the NOMA-CRN with a single primary transmitter/receiver (PT/PR) and PRS
scheme was constructed, and the PSO algorithm was employed for determining the jointly
optimal power allocation factors to realize the maximization of throughput.

In addition to extend the lifetime and improve the energy efficiency of energy-constrained
relay networks using NOMA technique, the radio frequency energy harvesting (RF-EH)
technique has been introduced into NOMA relay network to construct the new energy
harvesting NOMA relay networks (EH-NOMA-RNs). Ref. [15] considered a cooperative
EH-NOMA-RN, and adopted a one-dimensional search algorithm for optimizing power
allocation coefficient to attain the maximization of weighted sum rate. Ref. [16] used the
EH-NOMA-RN with interfering signal for IoT systems, and adopted the Golden section
search method to maximize the sum-throughput. Ref. [17] applied EH-NOMA-RN system to
layered video multicast transmission, and used the initial feasible point search algorithm to
minimize the base station’s average transmission power. Ref. [18] constructed a full-duplex
EH-NOMA-RN with cooperative relaying, and made use of the alternating optimization
technique to achieve the outage probability (OP) minimization and throughput maximiza-
tion of the system. Similar to [16], ref. [19] also applied Golden section search algorithm for
optimization of a power beacon (PB)-assisted EH-NOMA-RN IoT-based system to minimize
OP and maximize sum-throughput of the system.

Recently, based on the research of NOMA-CRNs and EH-NOMA-RNs, integrating
RF-EH technique into NOMA-CRN to form the brand-new energy harvesting NOMA
cognitive relay networks (EH-NOMA-CRNs) and solving the corresponding networks’
performance optimization problems have gradually become a novel research direction.
In [20], the authors employed a two-loop procedure using one-dimensional search to solve
the minimum transmission power problem of a multiple-input single-output EH-NOMA-
CRN with non-linear EH model and robust beamforming. In [21], two-level bisection search
algorithms were developed to realize the maximal secondary throughput of EH-NOMA-
CRN by optimizing resource allocation coefficients. In [22], a joint optimization algorithm
based on one-dimensional search was proposed to maximize the energy efficiency of
EH-NOMA-CRN with a discrete EH scheme. In [23], the physical layer security of EH-
NOMA-CRN with multi-input multi-output two-way relaying was investigated, and a
joint path-following-based optimization algorithm was put to use for maximizing the sum
achievable secrecy rate. Later, ref. [24] designed two iterative optimization algorithms
based on a deep neural network frame for the ergodic capacity prediction of IoT PB assisted
EH-NOMA-CRN to minimize OP users and maximizing system throughput.

According to the existing researches, it is known as follows:

(1). optimizing the power allocation factors or resource allocation coefficient has obvious
effect on improving the performance of NOMA-CRNs, EH-NOMA-RNs, and EH-
NOMA-CRNs, such as decreasing OP [18], increasing energy efficiency [10], secrecy
sum-rate [12], and throughput [21]. So how to design a low-complexity and high-
efficiency optimization algorithm is worth investigating.

(2). At present, the following methods are mainly used to optimize the network system:
(i) when the objective function is convex, iterative numerical method or one-dimensional
search is directly adopted for system optimization [11,16,22]. Although the complex-
ity of numerical methods is lower, it needs more time to carry out multi-parameter
and multi-objective optimization. (ii) when the objective function is non-convex, the
non-convex function is equivalently transformed into convex by using methods such
as successive inner approximation technique [10], the difference of convex program-
ming [17], semi-definite relaxation [20], and path-following-based algorithm [23], et. al,



Mathematics 2022, 10, 4357 3 of 22

and then convex optimization is performed. However, the transformation process is
more complicated. (iii) Algorithms based on deep learning [13,24] are introduced into
system performance optimization. Nevertheless, the deep neural networks framework
requires stronger computing power, which is not very suitable for energy-constrained
EH-NOMA-CRNs’ nodes with lower storage and computing capacity. (iv) The meta-
heuristic algorithm based on PSO is initially used to solve the system optimization
problem [12,14]. Although the PSO algorithm is simple, its performance is poor. It is
worth studying to design a new high-performance meta-heuristic algorithm suitable
for performance optimization of EH-NOMA-CRN.

(3). According to different sources of energy, RF-EH mainly exists in the following two
ways: simultaneous wireless information and power transfer (SWIPT) [16,23], and
wireless power transmission (WPT) such as PB-assisted EH [19,24]. The latter has
higher wireless power transmission efficiency than the former, so our paper adopts
the latter.

(4). There are two models of RF-EH: linear EH [18,22] and non-linear EH [20]. When the
network model is complex, in order to simplify the analysis and derive the closed-
form results, the linear EH model is usually made use of. Therefore, our paper also
employs the linear EH model.

To the best of our knowledge, there is no existing paper studying meta-heuristic
algorithms other than PSO algorithm for system performance optimization of EH-NOMA-
CRNs, which motivates us to write this treatise. Compared with other existing swarm
intelligence algorithms, Bat algorithm (BA) has many advantages, such as implementation
simplicity, less control parameters and excellent global ability. Since the BA was proposed,
its improvement has been carried out continuously. Especially in the last two years, some
novel improved BA algorithms have been proposed successively, such as the enhanced
Levy flight bat algorithm (ELBA) [25], and the improved BA with extremal optimization
algorithm (IBA-EO) [26]. Therefore, how to further enhance the global search ability and
convergence rate of improved BA for coping with different engineering application sce-
narios is still a problem worth studying. Like other meta-heuristic algorithms, BA has
some inherent deficiencies. Due to a single flight mode that has limited ability to search the
solution space, the accuracy of the algorithm is insufficient, and it is easy to fall into the
local optimal solution in high-dimensional search space. In this paper, a novel improved
BA has been proposed.

Explicitly, the major contributions of our paper are summarized as follows:

• First, based on the standard BA, we propose a novel hybrid strategy improved bat
algorithm (HSIBA) with adaptive strategy and several different flight modes, which
can obviously improve the accuracy and astringency of the proposed improved BA.

• Second, we proposed a novel underlay two-hop PB-assisted EH-NOMA-CRN with
multiple PRs. The closed-form expressions of secondary network (SN) OP and delay-
limited throughput are derived.

• Third, because of the derived throughput expression’s complexity, we employ the
HSIBA to jointly optimize the EH ratio and power allocation factors of SN nodes for
achieving throughput maximization. The simulation results show that the HSIBA is
perfect for optimizing performance of the proposed EH-NOMA-CRN.

The remainder of our paper is organized as follows. Section 2 introduces the standard
BA and HSIBA, and verifies the performance of HSIBA. Section 3 describes the EH-NOMA-
CRN model, and derives the closed-form solutions of SN’s OP and throughput. In Section 4,
the HSIBA is adopted to optimize the throughput of SN, and simulation results are shown.
Then, the conclusions are presented in Section 5.
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2. Hybrid Strategy Improved Bat Algorithm
2.1. Standard Bat Algorithm

The bat algorithm (BA) proposed by Xin-She Yang is a novel metaheuristic algo-
rithm [27], which adopts the echolocation of microbats. The standard BA is based on the
following three idealized rules:

(1). All bats use echolocation to sense distance and judge the difference between food/prey
and obstacles;

(2). The i-th bat at position xi fly randomly with a fixed frequency fmin and velocity vi,
i ∈ {1, 2, · · ·, I}, varying frequency fi and loudness A0 to search the food/prey. It can
spontaneously adjust the frequency fi of its emitted pulse and accommodate the rate
of pulse emission ri ∈ [0, 1], depending on the proximity of its target;

(3). Although the loudness can alter in various ways, it is assumed that the loudness
changes from a large constant (positive) A0 to a minimum value Amin.

Originally, the i-th bat is randomly given a frequency obeying uniform distribution
from fmin to fmax. In the t-th iteration, the new position xt

i and velocity vt
i of the i-th bat can

be respectively calculated as

fi = fmin + ( fmax − fmin)β (1)

vt
i = vt−1

i +
(

xt−1
i − x∗

)
fi (2)

xt
i = xt−1

i + vt
i (3)

where β ∈ [0, 1] is a random vector obeying uniform distribution, and x∗ is the current
global best location (solution) determined after comparing the locations of all n bats.

During the local search process, once a solution is chosen from the current best
solutions, a new solution for each bat can be generated by

xnew = xold + εAt (4)

where ε ∈ [−1, 1] is a random scaling factor, and At is the mean loudness of all n bats
during the t-th iteration.

Furthermore, in the (t+1)-th iteration, the i-th bat’s loudness At+1
i and rate of pulse

emission rt+1
i can be respectively updated as

At+1
i = θAt

i (5)

rt+1
i = r0

i
(
1− e−ϕt) (6)

where θ and ϕ are constants. For simplicity, θ and ϕ are respectively set as 0.8 and 0.9 in our
paper. In order to clearly describe the optimization process of standard BA, the pseudocode
of standard BA is given in Algorithm 1.

2.2. Algorithm Improvement Based on Hybrid Strategy

The standard BA has a fast convergence speed, which can adjust and balance the local
search and global search in the optimization process by gradually increasing the pulse
transmission frequency ri and reducing the pulse loudness Ai. However, the accuracy of
the algorithm is insufficient due to a single flight mode that has limited ability to search
the solution space. In our paper, we adopt adaptive strategy based on group trend, add
several different flight modes, and introduce loudness mutation factor to select between
the proposed modes as the bat flight mode during different search stages. This method can
greatly improve the accuracy and astringency of the hybrid strategy improved bat algorithm.
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Algorithm 1 Pseudocode of standard BA

Input: The objective function f it(x) and design variables
Output: Optimal solution of objective function

1: Initialize the bat population xi and velocity vi(i = 1, 2, . . . , I)
2: Initialize the bat pulse rates ri and the loudness Ai
3: while (stopping condition is not met) do
4: Calculate the fitness values of bat
5: Set x∗ as the position of best bat
6: for (each bat (xi)) do
7: Update speed of bat using Equation (2)
8: Update the position of bat using Equation (3)
9: if (rand > ri) then

10: Select a new solution among the best solutions using Equation (4)
11: end if
12: if (rand < Ai& f it(xi) < f it(x∗)) then
13: Accept the new solutions, and update ri using Equation (6), and update Ai

using Equation (5)
14: end if
15: end for
16: end while
17: Return x∗

2.2.1. Adaptive Strategy Based on Group Trend

For the standard BA, bat individuals fly freely in a wide area independently of each
other in the process of solving. Due to the lack of group awareness to adapt to the current
situation, it is difficult to balance the distance of each flight in the iterative process, and
it is easy to miss the optimal solution, which is not conducive to local optimization. For
example, it is assumed that the i-th bat is selected for local optimization at the global
optimization in the t-th iteration. For the (t+1)-th iteration, if its position update is still
carried out according to a large step size, it is easy to make it out of the optimal position,
which is not conducive to local optimization. Therefore, HSIBA introduces an adaptive
strategy based on group trend to change flight weight ω which can update the bat’s flight
weight ω according to the current search situation. To describe the group trend, Bt

i and Ot

are respectively defined as

Bt
i =

{
1 i f

(
f it(xt−1

i ) < f it(xt
i )
)

0 others
(7)

where f it(·) denotes fitness operation.

Ot =

I
∑

i=1
Bt−1

i

I
(8)

When there are more bat individuals flying in the better direction in the population,
the value of Ot is larger. The adaptive flight weight ω can be calculated as

ω = ωmin + (ωmax −ωmin)Ot (9)

When there are more individuals flying in the favorable direction in the population,
the value of ω is larger, so that bats can adopt a larger velocity weight to expand the search
range and prevent the algorithm from falling into the local optimal solution; when most
individuals in the population are difficult to find a better solution, the value of ω is smaller
to avoid missing the optimal solution, which will effectively speed up the convergence
speed of the algorithm.
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2.2.2. Introducing Multiple Flight Modes

To change the single flight mode such as Equation (3) adopted in the standard BA,
four flight modes are introduced in HSIBA. The four flight modes are adjusted by adaptive
velocity weights ω, and selected by loudness mutation factor βi (see Section 2.2.3) and
random number rand with uniform distribution of 0∼1.

(1). Adaptive weight bit flight mode
The position update Equation (3) in the standard BA is changed to Equation (10), and
the bat’s flying speed is adjusted by adaptive flight weight.

xt+1
i = xt

i + ω · vt+1
i (10)

When |βi| < 0.1 and rand < 0.4, the bats adopt the adaptive weight bit flight mode and
update their positions by using Equation (10).

(2). Position exchange variant flight mode
In the standard BA, all bats only take the optimal individual of the current population
as the flight direction, and there is no information exchange between bat individuals.
Therefore, in the HSIBA, position exchange variant flight is innovatively introduced
to enhance information exchange among bat individuals and obtain more information
about the feasible solution space. In position-exchange variant flight mode, the bats’
positions are updated as follows

xt+1
i = ω×

∣∣2× rand× x∗ − xt
I
∣∣× (βt

i + rand
)
, i = 1, (11)

xt+1
i = ω× | 2× rand × x∗ − xt+1

i−1 | ×
(

βt
i + rand

)
, i ≥ 2 (12)

The first bat performs a variant flight based on the I-th bat’s position of the t-th
iteration, and obtains the position of the (t+1)-th iteration through Equation (11), and
the i-th bat performs a variant flight based on the (i-1)-th bat’s position of the (t+1)-th
iteration, and obtains the position of the (t+1)-th iteration through Equation (12).
When |βi| ≥ 0.1 and rand < 0.6, the bats apply the position exchange variant flight
mode and update their positions by using Equations (11) and (2).

(3). Rotary flight mode
In [28], the African vulture’s rotating flight foraging model was proposed and sim-
ulated. Inspired by this model, the rotary flight mode is introduced to our HSIBA,
which makes the bats rotate around the optimal individual of the population to
expand the search range and improve the ability of jumping out the local optimal
solution. The rotation flight vectors are respectively expressed as

φ1 = x∗ ×
(

rand× xt
i

2π

)
× cos

(
xt

i
)

(13)

φ2 = x∗ ×
(

rand× xt
i

2π

)
× sin

(
xt

i
)

(14)

and the i-th bats’ position is updated as

xt+1
i = x∗ −ω · (φ1 + φ2) (15)

When |βi| ≥ 0.1 and rand ≥ 0.6, the bats employ the rotary flight mode and update
their positions by using Equation (15).

(4). Levy flight mode
In order to ensure that every bat can catch food in the process of predation, it is sure
that each bat does not fly alone. If there is no companion around the i-th bat, it adopts
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the random walk scheme to update the step. The i-th bat can apply Levy flight [29]
mode, its position can be updated as

xt+1
i = x∗ −

∣∣x∗ − xt
i
∣∣×ω× Levy(d) (16)

where d is the dimension of the i-th bat’s position vector, and Levy function can be
calculated as

Levy(x) = 0.01× µ1 × ε

|µ2|
1
ψ

(17)

where µ1 and µ2 are random numbers on the interval of 0∼1, ψ is a constant, and ε
can be computed as

ε =

Γ(1 + ψ)× sin
(

πβ
2

)
Γ
(

1+ψ
2

)
× ψ× 2

ψ−1
2


1
ψ

(18)

where Γ(x) = (x− 1)!
When |βi| < 0.1 and rand ≥ 0.4, the bats use Levy flight mode and update their
positions by applying Equation (16).

2.2.3. Loudness Mutation Flight Selection Strategy Based on Brownian Motion

This strategy is inspired by the physical phenomenon that the random motion of
particles decreases with the temperature reduction in Brownian motion. In the HSIBA,
the decreasing loudness A is understood as the decreasing temperature, and the loudness
mutation factor β is the intensity of random motion that decreases with the decrease of
temperature. During the t-th iteration, the loudness mutation factor of the i-th bat can be
expressed as

βt
i = At

i × (randn− 1) (19)

where randn is a random number that obeys a normal distribution with a mean of 0 and
a variance of 1. In the search process, the pulse loudness Ai gradually decreases, and the
loudness mutation factor βi dynamically converges to zero.

In the HSIBA, the flight mode employed by the i-th bat is decided by βi. When
|βi| ≥ 0.1, the algorithm is in the early stage of the search. The bat tends to fly with more
intense motion, and update its position by Equations (11), (12) and (15), which can achieve
faster convergence speed; When |βi| < 0.1, the algorithm is at the end of the search. The
bat tends to fly in a flight mode with small intensity and higher degree of randomness,
and update its position through Equations (10) and (16), which can improve the ability of
jumping out of the local optimal solution.

The improved bat algorithm fully takes into account the adjustment of the flight
mode of bats in different search stages, which effectively improves the shortage of single
flight mode used by standard BA in the optimization process. In order to conveniently
understand the advantages of the HSIBA, its pseudocode and optimization flow chart are
respectively shown in Algorithm 2 and Figure 1.

2.3. Algorithm Performance Verification

In order to verify the performance of HSIBA, sixteen frequently-used benchmark
functions are selected as test functions. The test functions are shown in Table 1, includ-
ing single-peak and multi-peak functions. At the same time, advanced African vulture
optimization algorithm (AVOA) [28], the wild horse optimizer (WHO) algorithm [30],
the arithmetic optimization algorithm (AOA) [31], hunter-prey optimization (HPO) algo-
rithm [32], enhanced Lévy flight bat algorithm (ELBA) [26] and standard BA are selected for
comparative analysis. The parameter settings of above algorithms and HSIBA are shown
in Table 2. The number of all algorithm populations tested is 30, the maximum number
of iterations is 100, and each test function runs 30 times independently, the test results are
shown in Tables 3 and 4, and the iteration diagram and total time for each algorithm are



Mathematics 2022, 10, 4357 8 of 22

shown in Figures 2 and 3 . (The algorithms have been tested and executed using the Matlab
9.0 (R2016a) on a laptop computer, which runs Windows 10 Enterprise 64-bit with an AMD
Ryzen 7 4800H, Radeon Graphics 2.90 GHz processor, and 16.00 GB RAM).

Algorithm 2 Pseudocode of HSIBA

Input: The objective function f it(x) and design variables
Output: Optimal solution of objective function

1: Initialize the bat population xi and velocity vi(i = 1, 2, ..., I)
2: while (stopping condition is not met) do
3: Calculate the fitness values of bat
4: Set x∗ as the position of best bat
5: for (each bat (xi) ) do
6: Update the βi and ω using Equations (19) and (9)
7: Update speed of bat using Equation (2)
8: if ( (|βi| ≥ 0.1) ) then
9: if (rand < 0.6) then

10: Update the bat’s position using Equations (11) and (12)
11: else
12: Update the bat’s position using Equation (15)
13: end if
14: else
15: if (rand < 0.4) then
16: Update the bat’s position using Equation (10)
17: else
18: Update the bat’s position using Equation (16)
19: end if
20: end if
21: if (rand > ri) then
22: Select a new solution among the best solutions using Equation (4)
23: end if
24: if (rand < Ai& f it(xi) < f it(x∗)) then
25: Accept the new solutions and update riandAi by using Equations (6) and (5)
26: end if
27: end for
28: end while
29: Return x∗

As shown in Tables 3 and 4, the test results and the performance rank of seven algo-
rithms under 16 test functions are given. By comparing the test results in Tables 3 and 4,
it can be seen that the optimization performance of HSIBA is far better than standard BA
on single-peak and multi-peak test functions, and the HSIBA also has higher accuracy and
stability than other advanced optimization algorithms. Moreover, by comparing the test
results of all algorithms in 30 and 100 dimensions, the HSIBA has superior performance in
solving high-dimensional optimization problems. Therefore, HSIBA is highly capable of
maintaining balance in exploration and exploitation against large-scale issues.

In order to further compare the performance of different optimization algorithms, as
shown in Figure 2 the iterative curves of the five optimization algorithms under 8 test
functions are given. By the comparison of the five algorithm iterations curves, it can be
seen that the HSIBA achieves better results with a minimum number of iterations in all test
functions. Consequently, when solving the same problem, HSIBA can find a better solution
quickly, so as to save computing time and power. Meanwhile, it can be seen that the fitness
calculated by HSIBA decreases steadily with the increase of the number of iterations, which
can effectively avoid the abrupt change of the convergence speed and falling into the local
optimal value.
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Figure 3 illustrates the computing time of seven algorithms. The results show that
HSIBA does not significantly increase the complexity of the operation, but can improve
the convergence speed and accuracy. The main reason is that the HSIBA adopts advanced
search strategies and a variety of flight modes for selection.

Start

Update adaptive velocity weights ω  

and loudness mutation factor β, 

calculate fitness update optimal 

individual 

rand>ri

Initialize Vultures in problem space

t≤ TM

no

Return 

optimal 

solution

no

Choice of flight 

mode  

Update the bat position Using 

Eq.(4) ,if it exceeds the 

current value and 

rand<Ai,accept the location 

and update both ri and Ai

0.1<|β| |β|≤0.1

yes

norand<0.4

Update position 

of the bat using 

Eq.(16)

Update position 

of the bat using 

Eq.(10)

yes

Update position 

of the bat using 

Eq.(11)(12)

Update position 

of the bat using 

Eq.(15)

yes rand<0.6 no

Yes

Figure 1. Optimization flow chart of HSIBA.



Mathematics 2022, 10, 4357 10 of 22

Table 1. Test functions.

Test Function Range Fmin

F1(x) = x2
1 + 106

d
∑

i=2
x2

i [−10, 10] 0

F2(x) =
d
∑

i=1
|xi|i+1 [−100, 100] 0

F3(x) =
d
∑

i=1
x2

i +

(
d
∑

i=1
0.5xi

)2

+

(
d
∑

i=1
0.5xi

)4

[−5, 100] 0

F4(x) =
d
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12, 5.12] 0

F5(x) =
d
∑

i=1

x2
i

4000 −
d

∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 0

F6(x) = sin2(πω1) +
d−1
∑

i=1
(ωi − 1)2[1 + 10sin2(πωi + 1)

]
+(ωd − 1)2[1 + sin2(2πωd)

]
ω1 = 1 + xi−1

4 , ∀i = 1, . . . , d [−10, 10] 0

F7(x) =
d
∑

i=1
x2

i [−100, 100] 0

F8(x) =
d
∑

i=1
|xi|+

d
∏
i=1
|xi| [−10, 10] 0

F9(x) =
d
∑

i=1

(
i

∑
j=1

xj

)2

[−100, 100] 0

F10(x) = maxi{|xi|, 1 ≤ i ≤ d} [−100, 100] 0

F11(x) =
d−1
∑

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

[−30, 30] 0

F12(x) =
d
∑

i=1
(|xi + 0.5|)2 [−100, 100] 0

F13(x) =
d
∑

i=1
ix4

i + random[0, 1) [−128, 128] 0

F14(x) = −20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

i

)
− exp

(
1
d

d
∑

i=1
cos 2πxi

)
+ 20 + e

[−32, 32] 0

F15(x) = π
d

{
10 sin(πy1) + (yd − 1)2

}
+π

d

d−1
∑

i=1
(y1 − 1)2[1 + 10sin2(πyi+1)

]
+

d
∑

i=1
U(xi, 10, 100, 4)yi

= 1 + xi+1
4 U(xi, a, k, m) =

 k(xi − a)mxi > a
0− a < xi < a

k(−xi − a)mxi < −a

[−50, 50] 0

F16(x) = 0.1sin2(3πx1) + 0.1
d
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+0.1(xd − 1)2[1 + sin2(2πxd)

]
+

d
∑

i=1
U(xi, 5, 100, 4)

[−50, 50] 0
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Table 2. Parameter settings of optimization algorithms for comparison and evaluation of the HSIBA.

Algorithm Parameter Value

ELBA [26]

Initial value of loudness
Final value of loudness

Initial value of pulse rate
Final value of pulse rate
Initial value of frequency
Final value of frequency

flight exponent (beta)

1
0
0
1
0
5

1.7

AVOA [28]

L1
L2
W
P1
P2
P3

0.8
0.8
2.5
0.6
0.4
0.6

AOA [31] α
µ

5
0.5

HPO [32] C
β

∈ [1, 0.02]
0.1

WHO [30]
Crossover percentage

Stallions percentage (number of groups)
Crossover

PC = 0.13
PS = 0.2

Mean

BA [27]

A0
α
r0
γ

fmin
fmax

0.7
0.8
0

0.9
−2
2

HSIBA

Fixed frequency
Fixed flight weight

Initial pulse frequency
Initial pulse loudness

fmin = −2, fmax = 2
ωmin = 0.2, ωmax = 0.8
r0

i = 0, i ∈ {1, 2, · · ·, I}
A0

i = 2, i ∈ {1, 2, · · ·, I}
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Figure 2. Iteration diagram of different optimization algorithms. (a) F1. (b) F4. (c) F5. (d) F6. (e) F9.
(f) F10. (g) F11. (h) F12.
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Table 3. Test results (d = 30).

Function AVOA AOA WHO BA HPO ELBA HSIBA Rank

F1 Mean 3.094× 10−44 5.546× 10−104 2.829× 10−1 1.469× 107 2.621× 10−26 2.023× 107 0 1
Variance 1.274× 10−86 9.229× 10−206 9.759× 10−1 1.539× 1014 8.292× 10−51 5.532× 1013 0

F2 Mean 4.896× 10−124 0 6.570× 10−56 2.312× 10−6 4.389× 10−60 3.665× 10−25 0 1
Variance 7.191× 10−246 0 1.279× 10−109 1.380× 10−11 5.447× 10−118 2.039× 10−48 0

F3 Mean 1.157× 10−16 4.465× 102 4.727× 100 4.884× 102 4.864× 10−18 2.713× 102 0 1
Variance 3.996× 10−31 5.162× 103 6.121× 102 4.800× 104 4.537× 10−34 1.289× 104 0

F4 Mean 0 0 1.253× 100 1.840× 102 0 1.584× 102 0 1
Variance 0 0 1.276× 101 2.235× 100 0 6.889× 102 0

F5 Mean 0 0 0 1.068× 10−4 0 2.009× 10−15 0 1
Variance 0 0 0 2.204× 10−8 0 7.976× 10−29 0

F6 Mean 3.200 × 10−3 2.556× 100 4.255× 100 4.276× 101 1.065× 100 1.070× 101 7.836× 10−1
2

Variance 2.669× 10−4 1.994 × 10−4 1.872× 101 2.316× 102 7.030× 10−2 2.577× 101 1.292× 10−1

F7 Mean 2.986× 10−47 4.810× 10−5 2.070× 10−5 3.483× 104 2.486× 10−31 2.307× 103 0 1
Variance 2.670× 10−92 6.248× 10−8 2.810× 10−9 7.286× 107 9.799× 10−61 4.206× 1035 0

F8 Mean 1.883× 10−22 6.529× 10−73 2.000× 10−3 4.204× 1010 1.108× 10−17 2.268× 101 2.005 × 10−171
1

Variance 1.049× 10−42 1.278× 10−143 5.591× 10−5 2.069× 1022 3.326× 10−34 2.993× 101 0

F9 Mean 3.720× 10−29 2.900× 10−2 1.571× 10−1 8.840× 104 3.332× 10−24 3.214× 103 1.397 × 10−307
1

Variance 1.534× 10−56 1.600× 10−3 1.688× 10−1 1.193× 109 2.478× 10−46 1.438× 106 0

F10 Mean 1.526× 10−24 3.420× 10−2 2.180× 10−2 7.245× 101 9.123× 10−15 1.660× 101 2.279 × 10−163
1

Variance 4.126× 10−47 3.059× 10−4 5.750× 10−4 5.554× 101 2.892× 10−28 6.801× 100 0

F11 Mean 9.498 × 10−1 2.870× 101 1.513× 102 7.802× 107 2.687× 101 3.491× 105 2.867× 101
3

Variance 2.631× 101 5.270× 10−2 2.747× 105 6.637× 1014 5.869× 10−1 5.022× 1010 7.900 × 10−3

F12 Mean 4.150 × 10−2 4.280× 100 4.792× 100 3.580× 104 6.929× 10−1 2.257× 103 2.147× 10−1
2

Variance 7.500 × 10−3 5.710× 10−2 1.925× 101 1.243× 108 9.330× 10−2 26.778× 105 1.470× 10−2

F13 Mean 8.072× 10−4 2.637 × 10−4 1.200× 10−2 4.074× 101 2.200× 10−3 3.343× 10−1 4.149× 10−4
2

Variance 4.622× 10−7 3.746 × 10−8 7.709× 10−5 4.146× 102 1.197× 10−5 3.324× 10−2 8.395× 10−8

F14 Mean 8.881 × 10−16 1.006× 10−15 7.587× 10−4 1.936× 101 1.125× 10−15 1.045× 101 8.881 × 10−16 1
Variance 0 4.207× 10−31 1.346× 10−6 4.988× 10−1 8.124× 10−31 1.131× 100 0

F15 Mean 1.700 × 10−3 7.790× 10−1 6.705× 10−1 1.333× 108 1.730× 10−2 2.145× 101 1.020× 10−2
2

Variance 1.3894 × 10−5 3.100× 10−3 4.802× 10−1 7.988× 1015 1.114× 10−4 2.754× 102 4.685× 10−5

F16 Mean 3.000 × 10−3 2.899× 100 1.744× 100 3.050× 108 1.039× 100 5.332× 104 2.730× 10−1
2

Variance 4.917 × 10−5 7.200× 10−3 3.261× 10−1 2.202× 1016 1.484× 10−1 6.837× 109 3.080× 10−2
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Figure 3. Computing time of different algorithms.
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Table 4. Test results (d = 100).

Function AVOA AOA WHO BA HPO ELBA HSIBA Rank

F1 Mean 6.165× 10−41 5.200× 10−3 5.610× 101 1.494× 109 5.112× 10−24 1.270× 108 0 1
Variance 1.130× 10−79 7.958× 10−4 2.828× 104 1.165× 1017 7.688× 10−46 2.551× 1014 0

F2 Mean 4.361× 10−117 0 3.140× 10−58 3.857× 10−1 1.086× 10−57 3.660× 10−26 0 1
Variance 5.707× 10−232 0 3.396× 10−114 3.771× 10−1 3.457× 10−113 8.986× 10−51 0

F3 Mean 6.732× 102 2.536× 103 8.348× 102 3.803× 103 2.400× 10−3 5.001× 103 0 1
Variance 5.815× 105 9.138× 104 1.945× 105 3.877× 105 1.001× 10−4 5.391× 106 0

F4 Mean 0 6.276× 10−15 4.129× 100 1.025× 103 0 7.706× 102 0 1
Variance 0 8.229× 10−28 4.756× 102 3.352× 104 0 2.110× 103 0

F5 Mean 0 0 0 4.256× 10−5 0 1.032× 10−15 0 1
Variance 0 0 0 4.949× 10−9 0 2.520× 10−29 0

F6 Mean 1.820 × 10−2 8.923× 100 5.580× 101 2.068× 102 6.795× 100 7.165× 101 3.759× 100
2

Variance 4.000× 10−3 7.433 × 10−5 1.570× 103 5.246× 103 2.441× 10−1 2.543× 102 5.136× 10−1

F7 Mean 2.405× 10−41 4.720× 10−2 3.900× 10−3 1.493× 105 1.572× 10−29 1.259× 104 0 1
Variance 1.735× 10−80 2.061× 10−4 4.630× 10−5 1.108× 109 2.915× 10−57 3.178× 106 0

F8 Mean 4.881× 10−26 5.178× 10−8 4.995× 101 2.953× 1045 1.525× 10−15 9.613× 101 2.084 × 10−174
1

Variance 5.429× 10−50 8.042× 10−14 1.034× 104 2.612× 1092 4.483× 10−29 7.017× 101 0

F9 Mean 1.706× 10−18 1.053× 100 4.046× 101 9.128× 105 3.201× 10−22 4.354× 104 5.542 × 10−294
1

Variance 7.407× 10−35 2.796× 10−1 3.198× 103 1.457× 1011 2.250× 106−42 1.310× 108 0

F10 Mean 1.534× 10−25 1.040× 10−1 1.554× 10−1 8.490× 101 1.326× 10−13 2.615× 101 8.600 × 10−168
1

Variance 6.484× 10−49 1.993× 10−4 3.410× 10−2 4.554× 101 6.859× 10−26 8.110× 100 0

F11 Mean 2.301 × 101 9.893× 101 4.541× 102 4.162× 108 9.830× 101 3.315× 106 9.811× 101
2

Variance 1.773× 103 3.100 × 10−3 3.781× 106 3.482× 1016 2.603× 10−1 8.023× 1011 3.200× 10−3

F12 Mean 7.231 × 10−1 1.995× 101 2.409× 101 1.496× 105 1.246× 101 1.357× 104 9.716× 10−1
2

Variance 2.355× 100 3.027× 10−1 2.334× 101 1.401× 109 9.962× 10−1 4.223× 106 1.600 × 10−1

F13 Mean 8.402× 10−4 3.776 × 10−4 1.500× 10−2 6.539× 102 1.700× 10−3 5.745× 100 7.208× 10−4
2

Variance 1.105× 10−6 1.392 × 10−7 1.116× 10−4 8.228× 104 3.663× 10−6 2.760× 100 6.438× 10−7

F14 Mean 8.881 × 10−16 1.990× 10−3 4.900× 10−3 1.989× 101 2.190× 10−15 1.205× 101 8.881 × 10−16
1

Variance 0 2.567× 10−6 5.982× 10−5 1.994× 10−1 8.254× 10−30 4.395× 10−1 0

F15 Mean 1.600 × 10−3 1.039× 100 1.152× 100 7.267× 108 3.030× 10−1 2.159× 104 8.800× 10−3
2

Variance 2.876 × 10−5 8.413× 10−4 2.842× 10−1 1.913× 1017 4.400× 10−3 1.165× 109 3.646× 10−5

F16 Mean 4.600 × 10−2 9.998× 100 1.295× 101 1.700× 109 9.254× 100 1.731× 106 7.374× 10−1
2

Variance 3.250× 10−2 1.000 × 10−3 1.098× 101 5.370× 1017 1.749× 10−1 1.743× 1012 3.240× 10−1

3. Throughput Optimization for EH-NOMA-CRN
3.1. System Model

As shown in Figure 4, we consider an underlay PB-assisted EH-NOMA-CRN, where
primary network (PN) includes a set of N PR nodes, Qn, n ∈ {1, 2, · · ·, N}, and SN consists
of a secondary source node S that employs the power domain NOMA technique to com-
municate with two secondary destination nodes D1 and D2 with the help of a secondary
decode-and-forward (DF) relay node R. Similar to [11,12,24], It is assumed that the inter-
ference from PN to SN is neglected. It is also assumed that all nodes except the PB node
W in our system model are equipped with a single antenna, and all SN nodes working in
half-duplex mode only use the energy harvested from RF signals of W installed M antennas.
All wireless channels are assumed to undergo quasi-static independent Rayleigh flat fading
where each channel coefficient keeps constant during a frame but varies independently
between different frames.

Let hj,k denote the fading channel coefficient corresponding to the link from node j
to k, where j ∈ {S, R, W}, k ∈ {Qn, R, D1, D2}, and j 6= k. Accordingly, The channel power

gain
∣∣∣hj,k

∣∣∣2 is exponentially distributed with expectation value 1
λj,k

; for example, λj,k = dξ
j,k,

where dj,k is the distance between node j and k, and ξ is the path loss factor. Moreover, it is

assumed that all Dn are closely located in one center point. Therefore,
∣∣hS,Qn

∣∣2 and
∣∣hR,Qn

∣∣2
are independent identically distributed random variables, respectively, i.e., λS,Qn = λS,Q,
and λR,Qn = λR,Q.

Similar to [33], the three-phase time division broadcasting protocol with precise syn-
chronization is adopted in our system model. Node l, l ∈ {S, R} simultaneously harvest
energy from RF signals of W for a duration of αT at the beginning of every frame, where
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T is the period of one frame, and 0 < α < 1 is EH ratio. During the EH phase, the energy
harvested by node l can be written as

El=
M

∑
m=1

η
(

Pt
∣∣hm,l

∣∣2)αT (20)

where 0 < η < 1 is the energy conversion efficiency, Pt is the transmit power of single W’s
antenna, and

∣∣hm,l
∣∣2 is the channel power gain of link from the W’s m-th antenna to node l,

m ∈ {1, 2, · · ·, M}, λm,l = λW,l , respectively. Subsequently, the phase (1− α)T is equally
divided into two time slots for the two-hop data transmission of SN. During the phase of
data transmission, the RF-EH circuit of node l is turned off, and the transceivers of R, D1
and D2 are turned on. We assume that regardless of energy harvested by node l in each
frame, they can be stored in its configured storage device (e.g., a supercapacitor) and can
be immediately applied for subsequent data transmission. Furthermore, the storage device
of node l lacks energy management function and has obvious leakage of electricity, which
causes the node l’s residual energy at the end of each frame to be completely leaked [24,33].

S R

W

D1

D2

Qn

Q1

QN……

Data link Interfernce link EH link

1,DRh

2,DRh

n
Q

Rh
,

RSh ,

nQSh ,

Rmh ,Smh ,
PN

SN

Figure 4. Network system model.

In underlay paradigm, the instantaneous transmit power of node l must be strictly
constrained such that the interference induced by node l remains below the threshold PI,
i.e., the peak interference power that Qn can tolerate. It is also assumed that the circuit
energy consumption of node l is ignored, i.e., the energy harvested by node l is only used
for data transmission. Consequently, the transmit power of node i can be set as

Pl = min
(

2El
(1− α)T

,
PI
Yl

)
= min

(
ρPtZl ,

PI
Yl

)
(21)

where ρ = 2ηα
1−α ,Zl =

M
∑

m=1

∣∣hm,l
∣∣2, and Yl = max

n=1,2,···,N

{∣∣hl,n
∣∣2}

Let S1(t) and S2(t) respectively denote the data signals transmitted to D1 and D2 by S
at time t. S produces the NOMA signal Ss(t) by allocating distinct power coefficients a1
and a2 for D1 and D2 respectively, i.e., the power Psa1and Psa2 are respectively allocated to
D1 and D2 at S. Moreover, it is assumed that D1 is near node and D2 is far node. Due to
the principle that lower power is allocated to near node D1 at S, a2 > a1 and a1 + a2 = 1.
During the first time slot of every frame, R receives the signal S(t) transmitted by S. Since
the far node D2’s data S2(t) with large power are firstly decoded and the near node D1 ’s
data S1(t) are secondly decoded using successfully perfect SIC [22] by R, the corresponding
signal-to-noise ratio (SNR) to S2(t) and S1(t) at R can be respectively given by

γR,S2 =
a2PSX1

a1PSX1 + σ2 (22)
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and
γR,S1 =

a1PSX1

σ2 (23)

where σ2 is the variance of additive complex white Gaussian noise, and X1 = |hS,R|2.
During the second time slot of every frame, R adopts superposition coding to make

the new NOMA signal SR(t) and send it to D1 and D2. Let b1 and b2 be the power allocation
coefficients at R for D1 and D2, respectively. Since D1 is closer to R than D2, higher power is
allocated to D2’s data in SR(t) at R as well, i.e., b2 > b1 and b1 + b2 = 1. Now the far node
D2 decodes its data S2(t) from the signals forwarded by R, and the corresponding SNR for
S2(t) at D2 can be expressed as

γD2,S2 =
b2PRX2

b1PRX2 + σ2 (24)

where X2 =
∣∣hR,D2

∣∣2
At the near node D1, the far node D2’s data S2(t) with larger power are first decoded

and later D1’s data S1(t) are decoded by achieving successfully perfect SIC [22]. Hence, the
corresponding SINRs for S2(t) and S1(t) at D1 can be respectively given as

γD1,S2 =
b2PRX3

b1PRX3 + σ2 (25)

and
γD1,S1 =

b1PRX3

σ2 (26)

where X3 =
∣∣hR,D1

∣∣2
3.2. Outage Probability Analysis of SN

In this section, the outage probability experienced by D1 and D2 will be studied. Let
R1 and R2 respectively denote the target rates for D1 and D2. Since two consecutive time
slots are needed to realize the communication from S to D1 and D2 in every frame, the
achieved rates are halved. Hence, the target SINRs for successful decoding of S1(t) and

S2(t) are respectively expressed as γ1 = 2
2R1
1−α − 1 and γ2 = 2

2R2
1−α − 1.

3.2.1. OP for D1

To achieve the reliable transmission of S1(t) from S to D1, both S1(t) and S2(t) should
be successfully decoded by R and D1. Accordingly, the OP for D1 is defined as

Pout,1 = 1− Pr
{

γR,S2 ≥ γ2, γR,S1 ≥ γ1, γD1,S2 ≥ γ2, γD1,S1 ≥ γ1
}

(27)

Proposition 1. Assuming 0 < a1 < 1
1+γ2

and 0 < b1 < 1
1+γ2

, OP expression for D1 is calculated
as

Pout,1 = 1−
(

N
∑

n=0

(
N
n

)
(−1)n 2λS,R

Γ(M)
C1

M
2 C2

M
2 −1KM

(
2
√

C1C2
))

×
(

N
∑

n=0

(
N
n

)
(−1)n 2λR,D1

Γ(M)
C3

M
2 C4

M
2 −1KM

(
2
√

C3C4
)) (28)

where Γ(·) and Kϑ(·) are respectively gamma function and the modified Bessel function of second
kind with order ϑ, and C1, C2, C3, and C4 are defined in Appendix A.

Proof. See Appendix A.
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3.2.2. OP for D2

For completing successful transmission of S2(t) from S to D2, at first both S1(t) and
S2(t) need to be reliably decoded by R; subsequently, S2(t) in SR(t) transmitted by R should
be successfully decoded at D2. Accordingly, OP for D2 is determined by

Pout,2 = 1− Pr
{

γR,S2 ≥ γ2, γR,S1 ≥ γ1, γD2,S2 ≥ γ2
}

(29)

Proposition 2. Assuming 0 < a1 < 1
1+γ2

and 0 < b1 < 1
1+γ2

, OP expression for D2 is given by

Pout,2 = 1−
(

N
∑

n=0

(
N
n

)
(−1)n 2λS,R

Γ(M)
C1

M
2 C2

M
2 −1KM

(
2
√

C1C2
))

×
(

N
∑

n=0

(
N
n

)
(−1)n 2λR,D2

Γ(M)
C5

M
2 C6

M
2 −1KM

(
2
√

C5C6
)) (30)

where C5 and C6 are defined in Appendix B.

Proof. See Appendix B.

3.3. Analysis and Optimization of SN’s Throughput

In this section, to achieve the maximization of SN’s throughput, the jointly optimal EH
ratio (α∗) and power allocation factors at S

(
a∗1 , a∗2

)
and R

(
b∗1 , b∗2

)
have to be determined.

Considering delay-limited transmission mode, where the fixed target rates at D1 and D2
are respectively R1 and R2, the throughput of SN is expressed as [14]

τ = R1(1− Pout,1) + R2(1− Pout,2) (31)

where Pout1 is the outage probability of SN1 and Pout2 is the outage probability of SN2.
For the purpose of maximize the throughput of SN, the resource allocation problem

with respect to EH ratio α and power allocation factors a1,a2,b1 and b2 can be formulated as

max
(α,a1,a2,b1,b2)=(α∗,a∗

1 ,a∗
2 ,b∗1 ,b∗2)

τ

s.t.a1 + a2 = 1, b1 + b2 = 1
0 <α < 1,a1 < a2, b1 < b2

 (32)

To our best knowledge, the convexity of the objective function is hard to be estimated
due to the complex expression of SN’s throughput. Consequently, the throughput opti-
mization problem is difficult to be settled in general methods, such as convex optimization.
For resolving the SN’s throughput optimization problem, a meta-heuristic algorithm based
on HSIBA is applied in our paper.

4. Optimization Results and Performance Analysis

In this section, to maximize the throughput of SN, we apply the HSIBA to optimize
the EH ratio and power allocation factors of the EH-NOMA-CRN. Without any loss of
generality, the network system environment follows by the system model described in
Section 3. The nodes S, R, W, D1, D2 and Qn are located at (−1, 0), (0, 0), (0, −1), (0.5, 0.5),
(1, 0) and (1, 1), respectively. Unless otherwise stated, the key simulation parameters are
listed in Table 5.

In Figures 5 and 6, we plot unoptimized SN’s throughput and the optimized SN’s
throughput by the proposed HSIBA as a function of Pt(PI) with different N(R1 and R2),
respectively. Moreover, we also compare the HSIBA with the exhaustive searching algo-
rithm. The results show that: (1) the throughput increases with the increase of Pt(PI) and
tends to be saturated gradually. That is because SN nodes’ transmission power increases
with the increase of Pt(PI), which leads to the throughput raise. Nevertheless, due to the
limitation of PI(Pt), SN nodes’ transmission power, OP and throughput of the SN all tend to



Mathematics 2022, 10, 4357 18 of 22

saturation; and (2) In Figure 5, for given Pt, the probability that interference channel obtains
higher power gain increases with increase of N, which leads to throughput increasing; and
(3) In Figure 6, for given PI, different values of R1 and R2 correspond to different SN’s
throughput; and (4) From Figures 5 and 6, it is distinctly observed that the optimized
throughput values are significantly higher than those unoptimized values either for given
Pt or PI; and (5) It also can be clearly observed that the optimal throughput curves by pro-
posed HSIBA extremely approximate the optimal curves by the greedy search algorithm.
However, the latter has to search the optimal solution in a three-dimensional continuous
space generated by α, a1 and b1, which results in a much higher computational complexity
than the former.

Table 5. Simulation parameters and values.

Description Value

Number of node Qn N = 5
Number of node W’s antennas M = 3

Peak interference power at node Qn PI = 10 dB
Single antenna’s transmission power of node W Pt = 40 dB

Noise power σ2 = 1
Energy conversion efficiency η = 0.8

Path loss factor ξ = 2.5
Energy harvesting ratio α = 0.5

Power allocation factors of node S a1 = 0.17, a2 = 0.83
Power allocation factors of node R b1 = 0.23, b2 = 0.77

The target rate of D1 R1 = 0.3 bit/s/Hz
The target rate of D2 R2 = 0.5 bit/s/Hz

Maximum number of iterations TM = 100
Bat population I = 30

Algorithmic dimension d = 3
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Figure 5. Throughput versus Pt for various N.

Figure 7 shows the relationship between optimal SN’s throughput value search of five
different optimization algorithms and the number of iteration t. It can be observed that:
(1) The four kinds of optimization algorithms except AOA can all effectively optimize the
proposed EH-NOMA-CRN and successively search the optimal SN’s throughput value; (2)
For HSIBA, HPO, AOVA, ELBA and standard BA, they need 8, 21, 31, 33 and 42 iterations
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to converge, respectively. Thus it can be seen that the HSIBA has better convergence speed
and higher stability.
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Figure 6. Throughput versus PI for various R1 and R2.
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5. Conclusions

In this paper, we propose a novel HSIBA with adaptive strategy and multiple flight
modes selection, and respectively derive the closed-form solutions of SN’s OP and through-
put. On the base of the throughput analysis, we further formulate the throughput maxima-
tion problem with regard to EH ratio and power allocation factors. In addition, due to the
complexity of throughput solution, we employ the HSIBA to jointly optimize EH ratio and
power allocation factors to maximize the SN’s throughput. Through comparing with other
advanced meta-heuristic algorithms, we confirm the correctness and effectiveness of pro-
posed HSIBA by a large number of benchmark functions’ test and numerical results. Based
on the network parameters setting and grasp of channel state information, the proposed
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HSIBA can achieve joint optimization to EH-NOMA-CRN based on three parameters with
faster convergence speed and higher stability.
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Appendix A

In this Appendix A, we offer a proof of Proposition 1. To simplify the derivation pro-
cess, we firstly provide the probability density function (PDF) and cumulative distribution
function (CDF) of Yl , Zl , and Ul = Pl

/
σ2 .

Note that Yl is the maximum of N independent exponential random variables (RVs)
with the same expectation value 1

/
λW,l , and Zl is the sum of M independent exponential

RVs with the same expectation value 1
/

λl,Q . Therefore, the CDF and PDF of Yl and Zl can
be respectively computed as

FYl (yl) =
(

1− e−λl,Qyl
)N

=
N

∑
n=0

(
N
n

)
(−1)ne−nλl,Qyl (A1)

fYl (yl) = Nλl,Q

N−1

∑
n=0

(
N − 1
n

)
(−1)ne−(n+1)λl,Qyl (A2)

FZl (zl) = 1−
Γ(M, zlλW,l)

Γ(M)
(A3)

and

fZl (zl) =
λM

W,l
zM−1

l e−λW,l zl

Γ(M)
(A4)

where Γ(.) is the upper incomplete gamma function.
Subsequently, we can calculate the CDF of Ul as follows

FUl (ul) = 1− Pr
{

Zl >
ulσ

2

ρPt

}
Pr
{

Yl <
PI

ulσ
2

}
= 1−

N
∑

n=0

(
N
n

)
(−1)n

Γ
(

M,
λW,l ul σ2

ρPt

)
Γ(M)

e
−

nλl,QPI
ul σ2

(A5)

Then, Equation (27) can be reformulated as

Pout,1 = 1− Pr
{

a2USX1

a1USX1 + 1
≥ γ2, a1USX1 ≥ γ1

}
︸ ︷︷ ︸

A00

Pr
{

b2URX3

b1URX3 + 1
≥ γ2, b1URX3 ≥ γ1

}
︸ ︷︷ ︸

A01

(A6)
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By conditioning A00 in Equation (A6) on X1 and taking the expected value of the
results over the distribution of X1, we can obtain

A00 = Pr{USX1 ≥ H | X1 = x1}

= 1−
∫ ∞

0
FUS

(
H
x1

)
λS,Re−λS,Rx1dx1

(A7)

where H = max
(

γ2
a2−a1γ2

, γ1
a1

)
Applying Equation (6.453) in [34], A00 can be expressed as

A00 =
N

∑
n=0

(
N
n

)
(−1)n 2λS,R

Γ(M)
C1

M
2 C2

M
2 −1KM

(
2
√

C1C2

)
(A8)

where C1 =
λW,S Hσ2

ρPt
and C2 =

nλS,QPI
Hσ2 + λS,R.

In the same manner, the term A01 in Equation (A10) can be obtained as

A01 =
N

∑
n=0

(
N
n

)
(−1)n 2λR,D1

Γ(M)
C3

M
2 C4

M
2 −1KM

(
2
√

C3C4

)
(A9)

where C3 =
λW,RGσ2

ρPt
, C4 =

nλR,QPI
Gσ2 + λR,D1 , and G = max

(
γ2

b2−b1γ2
, γ1

b1

)
The OP for D1 can be calculated by applying the results obtained from Equations (A8)

and (A9).

Appendix B

In this Appendix B, we provide a proof of Proposition 2. Equation (29) can be rewritten
as follows

Pout,2 = 1− Pr
{

γR,S2 ≥ γ2, γR,S1 ≥ γ1
}︸ ︷︷ ︸

A00

Pr
{

γD2,S2 ≥ γ2
}︸ ︷︷ ︸

B00

(A10)

The term A00 of Equation (A10) has been calculated in Appendix A, and the term B00
of Equation (A10) can be computed as

B00 = 1−
∫ ∞

0
FUR

(
V
X2

)
λR,D2e−λR,D2 x2dx2 (A11)

where V = γ2
b2−b1γ2

. Applying Equation (6.453) in [34], B00 can be presented as

B00 =
N

∑
n=0

(
N
n

)
(−1)n 2λR,D2

Γ(M)
C5

M
2 C6

M
2 −1KM

(
2
√

C5C6

)
(A12)

where C5 =
λW,RVσ2

ρPt
and C6 =

nλR,QPI
Vσ2 + λR,D2 .

The OP for D2 can be calculated by applying the results obtained from Equations (A8)
and (A12).
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