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1. Introduction
1.1. History

Entropy is a a very versatile measure of order (or of chaos). In the last few several
decades, the growing needs of modeling for stochastic phenomena contributed to the
apparition of many new different families of entropy functionals, with increasing levels of
generality, reliability and applicability [1–19]. One of the recent interesting new directions
of study uses the relative group entropies, based on group logarithms (see [20,21] and
references therein).

The geometrization method, a powerful tool in modelization, was applied in the
investigation of some statistical relevant parameters sets, beginning with the work of
the pioneers: Fisher, Rao, Efron and Amari [12,22,23]. This bridge allows the use of
the differential geometric machinery to understand the local and the global behavior of
statistical objects.

In particular, the Fisher (semi-Riemannian) metrics correspond to the Fisher Informa-
tion matrices. Their invariants, especially those tensor fields expressing different kinds of
curvature properties, are used in the parameters estimation theory as control tools. For
example, the scalar curvature function measures the average statistical uncertainty of a
density matrix [12,20,24].

Consider a statistical model, governed by a given entropy, and two or more fixed pa-
rameterized probability density functions (PDFs) within it. Various divergences (“distance-
like functionals”) can be defined in this framework, able to detect how these PDFs relate
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to each other. A kind of infinitesimal variation of such divergences, w.r.t. the parameters,
may provide interpretations for some Fisher-like metrics. Several types of divergences are
used, including the Kullback–Leibler and the Bregman ones. For recent viewpoints upon
divergences, see [14,25,26].

In 2002, Naudts introduced ([27]) the “φ-deformed entropy”, via a positive strictly
increasing function φ, which plays the role of a “generalized logarithm”. (We shall call it
“φ-deformed (Naudts) entropy” and not simply “φ-deformed entropy”, in order to avoid
confusion and to distinguish it from other “deformed” entropies, all originating—sooner
or later—from the Boltzman–Gibbs–Shannon (BGS) germ). This new entropy extends (with
some technical precautions) the Tsallis and the Kaniadakis entropies, among other ones.
Using it, new Fisher metrics were defined [27–29], ranging from simple ones to some more
“baroque” constructions. Their applicability covers a wide area, from Physics (the starting
point) to Information geometry [29–32].

Using a φ-deformed (Naudts) exponential family of PDFs, Matsuzoe et al. [33] investi-
gated the geometry of statistical manifolds derived from a sequence of escort expectations.

Korbel et al. [30] studied properties of the Fisher metrics associated with the φ-
deformed (Naudts) entropies, in the case of exponential-type PDFs. Particular choices
of the function φ provided examples based on (c, d)-entropies. Dealing with the MaxEnt
problem, they use the Fisher information of the φ-deformed (Naudts) exponential entropies,
in order to reveal a duality between the cases with linear constraints and those based on
escort constraints.

Inspired by these previous works, we believe that a systematic study of semi-Riemannian
metrics, canonically associated with the φ-deformed (Naudts) entropy, is necessary and
might provide useful statistical tools in the future. Our paper suggests a method of research,
which combines the beaten path with some new speculative ideas.

1.2. The Content of the Paper

In Section 2, we recall (in a creative manner) the notations and fix the conventions
concerning (the different variants of) entropy and divergence; we closely follow [34]. We
make some comments about the place of the Naudts’ φ-deformed entropy in the “Universe”
of generalized entropies. We recall here some other examples of remarkable entropies
(Tsallis, Kaniadakis, Sharma–Taneja–Mittal). Our main new idea is the distinction we
made between the “quotient” divergence and the “difference” divergence, in the context of
generalized logarithms; in the particular case of the Neperian logarithm, these two notions
coincide, but in other cases (such that of the φ-deformed (Naudts) entropy) they are distinct.

In Section 3, we fix the needed notions concerning the generalized Fisher-like met-
rics associated with the entropies and to the relative (group) entropies, following (espe-
cially) [20]. Following the previous distinction we made in Section 2, between the two
kinds of divergences, we introduce two generalized Fisher-like metrics (GFM1 and GFM2),
which coincide in the classical setting with the Fisher metric. Three other Fisher-like met-
rics are defined, in a formal way, as auxiliary (but eventually useful) by-products of the
former ones.

In Section 4, we determine the semi-Riemannian geometries of the generalized Fisher-
like metrics, associated with group relative entropies based on φ-deformed (Naudts) en-
tropies and divergences. Their coefficients are expressed in terms of both PDFs and of the
φ-deformed logarithm and may depend on a group logarithm too.

In the next section, we give seven families of examples of such metrics, for the case
when the involved PDFs are exponential. The scalar curvatures functions are computed,
and their variation is studied.

In Section 6, we define and solve the MaxEnt problem based on the φ-deformed
(Naudts) entropy, for univariate PDFs, and we generalize some thermodynamic relations.
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1.3. Conventions

Implicitly, the integrals are supposed to be correctly defined and to commute with their
derivatives. “Differentiable” means “smooth”, even if, sometimes, a weaker assumption
would be enough. When a symmetric matrix is called “a (semi-Riemannian) metric”, we
assume, implicitly that it is non-degenerate; the positive definiteness is not assumed, in
general, unless otherwise stated.

2. Entropies and Divergences—A Breviary

We consider a real valued random variable x on a domain X ⊂ Rm. We denote by
ρ = ρ(x) a fixed probability density function (PDF); then, ρ(x) ≥ 0 and

∫
X ρ(x)dx = 1.

We fix a real valued differentiable function ϕ, as a “controlling tool”. In this setting, the
generalized (normalized) entropy is

H[ρ] = −
∫

X
ρ(x)ϕ(ρ(x))dx. (1)

We shall use a similar notation for other entropy-like functionals too. In the literature,
the avatars of the “generalized logarithm” ϕ are subject to additional restrictions, imposed
through applications inspired axioms.

Let F : [0, ∞)× [0, ∞)→ R a smooth function and σ an additional fixed PDF. We define

D(ρ, σ) :=
∫

X
F(ρ(x), σ(x))dx. (2)

We suppose that D(ρ, σ) ≥ 0 and D(ρ, σ) = 0 if and only if ρ = σ. The number
D(ρ, σ) is called the (generalized) divergence between ρ and σ and measures to what
extent σ influences ρ. Sometimes, additional properties of the divergence function are
added, axiomatically.

Example 1. With the previous notations, we recall some well-known examples of entropies ([35–37]).
(i) In the particular case when ϕ(y) := log(y), from Formula (1), we obtain the Boltzmann–

Gibbs–Shannon (BGS) entropy.
(ii) Consider a fixed parameter q ∈ R\{1}. The Tsallis q-logarithm

ϕT
{q}(y) :=

y1−q − 1
1− q

(3)

provides a Tsallis entropy. Usually, for ϕT
{q}, we use the notation logT

{q}. When q → 1, the BGS
entropy is recovered.

(iii) Let us fix k ∈ [−1, 1]\{0}. The Kaniadakis k-logarithm

ϕK
{k}(y) :=

yk − y−k

2k
(4)

defines a Kaniadakis entropy (named also k-deformed entropy). Usually, ϕK
{k} is denoted logK

{k}.
When k→ 0, we recover again the BGS entropy.

(iv) Fix two real parameters k and r. The Sharma–Taneja–Mittal (k, r)-logarithm

ϕSTM
{(k,r)}(y) := yr · yk − y−k

2k

provides a Sharma–Taneja–Mittal (STM) entropy (also named (k, r)-deformed entropy). Instead
of ϕSTM

{(k,r)}, we shall denote logSTM
{(k,r)}. The Kaniadakis k- logarithm and the Tsallis q-logarithm are

recovered as particular cases, for r = 0 and for r = ± | k |, respectively. When (k, r) → (0, 0),
we recover the BGS entropy. Sometimes, additional restrictions are imposed on the domain of the
parameters, required by convergence conditions imposed on some integrals (see [38–40] for details).
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(v) ([27]) Let φ : (0, ∞) → R a positive, differentiable, strictly-increasing function. (Some-
times, in the literature, “non-decreasing” is required, instead of the “strictly-increasing” condition).
Define the φ-deformed (Naudts) logarithm

logN
φ (y) :=

∫ y

1

1
φ(z)

dz. (5)

The function ϕN
φ := logN

φ defines the φ-deformed (Naudts) entropy. The previous formula
may also be read “backwards”:

φ(y) = (
∂

∂x
ϕN

φ (y))−1. (6)

Moreover, given an arbitrary “generalized logarithm” ϕ as in (1), Formula (6) always provides
a differentiable function φ; if it is positive and strictly-increasing, we expressed ϕ like a φ-deformed
(Naudts) logarithm. Sometimes, this procedure works for some restrictions of the involved parameters
only. For example, the preceding four entropies are recovered as particular cases of φ-deformed
(Naudts) entropies, as follows: BGS for φ := id; Tsallis for φ(y) := yq with the restrictions q > 0
and y ∈ (0, ∞); Kaniadakis φ(y) := 2(yk−1 + y−k−1)−1 with the additional restriction

y2k <
k + 1
k− 1

,

for y ∈ (0, ∞); STM for

φ(y) := 2k[(k + r)yk+r−1 + (k− r)yr−k−1]−1,

with the additional restriction

y2k <
(r− k)(r− k− 1)
(r + k)(r + k− 1)

,

for y ∈ (0, ∞). These additional restrictions are imposed in order φ to be strictly-increasing.
(vi) Let G = G(t) be a formal group logarithm, which is a differentiable real valued function

with some special algebraic properties, inspired from the formal series linking Lie groups to Lie
algebras. More precisely,

G(t) :=
∞

∑
i=0

ci
ti+1

i + 1
,

where c0 = 1 and ci ∈ Q. Its inverse is

F(s) :=
∞

∑
i=0

γi
si+1

i + 1
,

where γi ∈ Q, γ0 = 1, γ1 = −c1, γ2 = 3
2 c2

1 − c2 and so on. (We refer to [20,21,41] for details
about these functions). The simplest example is G(t) = t.

We define the generalized group entropy functional (GGEF) associated with (1) by

SG(ρ) :=
∫

X
ρ(x)G(ϕ ◦ ρ(x))dx. (7)

In particular, for ϕ := −log, we recover the well-known group entropy functional ([20,41])
associated with (1)

SG(ρ) :=
∫

X
ρ(x)G(logρ(x)−1)dx. (8)

Similar GGEFs can be provided by replacing the Neperian logarithm by other “generalized”
logarithms (e.g., Tsallis, Kaniadakis, STM, etc). In Section 3, we shall introduce the geometries
associated with the GGEF, based on φ-deformed (Naudts) entropies. Accordingly, we shall use the
generalized logarithm logN

φ from (5).
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Example 2. With the previous notations, we recall some well-known examples of divergences.
(i) An important particular case is the generalized (quotient) relative entropy (a.k.a. generalized

divergence) between ρ and σ (see [34,42])

D̃(ρ ‖ σ) :=
∫

X
ρ(x)ϕ(

ρ(x)
σ(x)

)dx. (9)

The function F(z, y) := zϕ( z
y ). We accept (formally) that 0 · ϕ( 0

σ ) = 0, ρ · ϕ( ρ
0 ) = 0 and

ϕ(1) = 0. In particular, when ϕ := log, we recover the Kullback–Leibler divergence ([20]).
Another particular case considers f : [0, ∞) → (−∞, ∞] to be a convex function, with

f (1) = 0 and f (0) = lim
t→0+

f (t). For ϕ(y) := 1
y f (y), we recover the f -divergence ([43] and

references therein). The slightly more general notion of ( f , Γ)-divergence (see [44]) may be recovered
in a similar way.

(ii) In a similar way, we define the generalized (difference) relative entropy between ρ and σ, as

D(ρ ‖ σ) :=
∫

X
ρ(x)[ϕ(ρ(x))− ϕ(σ(x))]dx. (10)

The function F(z, y) := z[ϕ(z)− ϕ(y)]. In particular, when ϕ := log, D̃ coincides with D
and we recover the Kullback–Leibler divergence, as in (i). When ϕ := logN

φ , the divergence D was
considered in [27]; we mention that, in this case, D̃ does not coincide with D.

In general, a necessary and sufficient condition on ϕ, ρ and σ, in order that D = D̃, is the
vanishing of the mean function ϕ( ρ

σ )− ϕ(ρ) + ϕ(σ). A sufficient (but quite strong) condition is
provided by the functional equation ϕ( ρ

σ ) = ϕ(ρ)− ϕ(σ).
(iii) In the hypothesis of Example 1 (vi), we can define generalized divergences as relative group

entropies, which combine the formal group logarithm G, the ϕ-likelihood function and the previous
quotient or difference operation upon two PDFs. For example, the analogue of (10) is

DG(ρ ‖ σ) :=
∫

X
ρ(x) · G

(
ϕ(ρ(x))− ϕ(σ(x))

)
dx.

(iv) Consider two fixed PDFs ρ1 and ρ2. Denote ψ : R→ R as a fixed convex differentiable
function. In this setting, the Bregman divergence is

Dψ(ρ1 ‖ ρ2) :=
∫

X
{ψ(ρ1(x))− ψ(ρ2(x))− (ρ1(x)− ρ2(x))ψ′(ρ2(x))}dx. (11)

We mention that the function F(z, y) := ψ(z)− ψ(y)− (z− y) · ψ′(y) is convex too.

Let ρ = ρ(x, t) be a time-dependent PDF, where x, t ∈ R. Then, the entropy in (1) will
also depend on the parameter t, so H[ρ] = H[ρ](t). We consider a potential energy function
V = V(x) and its associated energy average function

U[ρ](t) :=
∫
R

V(x)ρ(x, t)dx. (12)

(If needed, restriction of these functions to open subsets is possible). This particular
framework will be used in Section 6 only.

3. Fisher-like Metrics Associated with Generalized Entropies and
Generalized Divergences

In this section, we recall the notion of Fisher metric associated with a family of
(generalized) entropies or divergences, defined on the space of parameters of an arbitrary
PDF, using mainly [20,34]. For a more general setting, see [34].

Consider the case when the PDF ρ in Section 2 depends, moreover, on n real parameters
θ1, . . . , θn, with θ := (θ1, . . . , θn) ∈ Θ, where Θ is an open set of Rn. Thus, ρ : X×Θ→ R,
ρ = ρ(x, θ). Let ϕ : R → R be a differentiable controlling function, ϕ = ϕ(y). The
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dependence on θ leads to a generalized entropy function H : Θ→ R, canonically derived
from Formula (1):

H(θ) = −
∫

X
ρ(x, θ) · ϕ(ρ(x, θ))dx. (13)

In a similar natural way, we can define generalized divergence functions, by θ-
parameterizing (2) and its avatars.

Define

gij(θ) := −
∫

X
ρ(x, θ)

∂2 ϕ(ρ(x, θ))

∂θi∂θ j dx , i, j = 1, n (14)

and

g̃ij(θ) :=
∫

X
ρ(x, θ)

∂ϕ(ρ(x, θ))

∂θi · ∂ϕ(ρ(x, θ))

∂θ j dx , i, j = 1, n. (15)

We suppose that the matrices (gij)i,j=1,n and (g̃ij)i,j=1,n are non-degenerated, and g has
constant index on Θ. We call g and g̃ generalized Fisher metrics of type 1 and type 2, respectively,
and denote GFM1 and GFM2. Both metrics are “means”, w.r.t. ρ, of some ϕ-mediated
“information matrices”: the Hessian of ϕ ◦ ρ and the matrix of the gradient of ϕ ◦ ρ with
its transpose, respectively. The diagonal coefficients g̃ii(θ), i = 1, n, generalize the Fisher
Information Numbers from [45], which can be recovered when ϕ is the Tsallis logarithm.

In general, the semi-Riemannian metric g and the Riemannian metric g̃ differ from
each other and differ from the Hessian (semi-Riemannian metric if non-degenerated)

hij(θ) :=
∂2H(θ)

∂θi∂θ j . (16)

We define, in a formal way, two auxiliary symmetric tensors of (0,2)-type α and β,
given by

αij(θ) :=
∫

X

∂2ρ(x, θ)

∂θi∂θ j · ϕ(ρ(x, θ))dx (17)

and

βij(θ) :=
∫

X

{∂ρ(x, θ)

∂θi · ∂ϕ(ρ(x, θ))

∂θ j +
∂ρ(x, θ)

∂θ j · ∂ϕ(ρ(x, θ))

∂θi

}
dx. (18)

We remark that, if non-degenerated, α and β provide semi-Riemannian metrics. In
this case, these metrics are also of Fisher type, as they express “means” w.r.t. the PDF ρ
of two “derived information matrices”, of coefficients ρ−1 · ρij · ϕ(ρ) and ρ−1 · (ρi · ϕj(ρ) +
ρj · ϕi(ρ)), respectively.

Example 3. Consider the particular case of the BGS-entropy, with ϕ := log.
(i) In this case, both previous GFM1 and GFM2 coincide with the classical (Riemannian)

Fisher metric g0 associated with H (or ϕ) [20].
In the general case, it would be interesting to find all the controlling functions ϕ, for which

g coincides with g̃. Does this property necessarily imply that ϕ is proportional with log, modulo
a non-null constant? A further step would be to look for appropriate functions ϕ, in order that g
and g̃: be homothetic or conformal; have the same geodesics; have the same curvature, etc. To this
differential geometric viewpoint, a statistical counterpart may eventually correspond.

(ii) Let X ⊂ Rm be an open set and let C = C(x), F1 = F1(x), . . . , Fn = Fn(x), ν = ν(θ) be
smooth functions on X. Consider ρ : X×Rn → R the PDF of exponential type, given by

ρ(x, θ) := exp{C(x)− ν(θ) +
n

∑
i=1

Fi(x)θi}.

The associated Fischer metric is g = Hessν, which is a Hessian metric.
(iii) For this choice of the function ϕ, we obtain αij = ρ−1 · ρij · log(ρ) and βij = 2ρ−2 · ρi · ρj,

for i, j = 1, n. The “perturbed” Hessian matrix associated with α is similar to the one studied in
some recent statistical applications (see, for example, [46]).
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Remark 1. (i) We give an interpretation and a motivation for the definition of the GFM1, in a
slightly more general case than [20]. Consider ϕ a fixed controlling function. Let ρ = ρ(x, θ) and
σ := ρ(x, θ0) be two families of parameterized PDFs over X ⊂ Rm, with θ, θ0 ∈ Rn, and let

D(ρ ‖ σ)(θ, θ0) :=
∫

X
ρ(x, θ) · [ϕ(ρ(x, θ))− ϕ(σ(x, θ0))]dx

be the generalized (difference) relative entropy between them, as in (10). Denote ∆θ := θ − θ0 and
suppose its norm to be infinitesimally small. We know that D(ρ ‖ σ) has a unique minimum for
ρ = σ, i.e., for θ0 = θ. The Taylor decomposition around θ = θ0 gives

D(ρ ‖ σ)(θ0, θ0) = −
1
2

∫
X

ρ(x, θ0) · ∆θi · ∆θ j ·
(

Hessϕ◦ρ
)

ij
(θ0) dx +O((∆θ)3) =

=
1
2
· ∆θi · ∆θ j · gij(θ0) +O((∆θ)3).

The second order approximation of this expression is precisely half of the GFM1 g, calculated
in θ0.

When ϕ := log, we recover the interpretation given in [20].
(ii) We do not know a similar interpretation for the GFM2 g̃.
(iii) The generalized group relative divergences from Example 2 (iii) provide analogous formulas.

We shall study them in the next section, in the particular case of the φ-deformed (Naudts) entropy.
(iv) The definition of Fisher metrics described previously is closely related to the need for under-

standing a variation of a PDF w.r.t. another (reference) one; the output of this “variational calculus
factory” are functions. We signal here the forthcoming book [47], containing new revolutionary ideas
in Variational calculus, including invariants of tensorial type, motivated by differential geometric
problems; this source provides new insights for the definition and the study of divergence-like tensor
fields, as a path toward a new bundle spaces approach in Statistics.

(v) All the previous tensor fields g, g̃, h, α, and β have constant index, one each connected
component of their definition domains.

An open problem is to find the more general hypothesis such that these tensor fields be non-
degenerated (in order to define semi-Riemannian metrics). Locally, the answer is simple: let θ0 be a
point in the parameters space, such that the determinant of the corresponding matrix, calculated
in θ0, is not null. Then, the tensor field is non-degenerated in an open neighborhood of θ0. For
many families of examples (and in Section 5 we add several more ones), this property holds true.
A common practice in the literature is to stop here, without investigating global conditions which
are fulfilled in general cases. To our knowledge, global existence results for Fisher metrics, in the
general setting, are not proven yet. Moreover, the eventual singular points have an interest in their
own, as they may signal—in a suitable statistical model—a phase transition ([48]).

We consider it useful to point out here the paper [49], where a different but correlated problem
is studied: namely, to what extent the Fisher metric is (globally) unique, modulo the action of a
diffeomorphism group.

4. The Fisher Geometries Associated with GGEFs Based on φ-Deformed (Naudts)
Entropies and Divergences

We particularize now the results from Section 3, for the case of the Naudts entropies.
Let us fix the context more precisely.

Consider φ a positive, differentiable and strictly-increasing function as in Example 1 (v)
and the φ-deformed (Naudts) logarithm logN

φ defined in Formula (5). Let ρ : X×Θ→ R,
ρ = ρ(x, θ) be a family of parameterized PDFs, as in Section 3. The associated GFM1 g and
the GFM2 g̃ are obtained as particular cases from (14) and (15):

gij(θ) := −
∫

X
ρ(x, θ)

∂2logN
φ (ρ(x, θ))

∂θi∂θ j dx , i, j = 1, n (19)
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and

g̃ij(θ) :=
∫

X
ρ(x, θ)

∂logN
φ (ρ(x, θ))

∂θi ·
∂logN

φ (ρ(x, θ))

∂θ j dx , i, j = 1, n. (20)

We suppose, as usual, that g and g̃ are non-degenerated and that g̃ has a constant
index on X.

We also consider, via (16), the associated Hessian metric h = h(θ)

hij(θ) = −
∂2

∂θi∂θ j

{ ∫
X

ρ(x, θ) · logN
φ (ρ(x, θ))dx

}
, i, j = 1, n. (21)

Proposition 1. With the previous notations, for every i, j = 1, n, we have

gij(θ) =
∫

X
ρ(x, θ)

{∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−2(ρ(x, θ)) · φ′(ρ(x, θ))− (22)

−∂2ρ(x, θ)

∂θi∂θ j · φ
−1(ρ(x, θ))

}
dx,

g̃ij(θ) :=
∫

X
ρ(x, θ) · ∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−2(ρ(x, θ))dx, (23)

and

hij(θ) =
∫

X

{
ρ(x, θ)

∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−2(ρ(x, θ)) · φ′(ρ(x, θ))− (24)

−∂2ρ(x, θ)

∂θi∂θ j · logN
φ (ρ(x, θ))− 2

∂ρ(x, θ)

∂θi · ∂ρ(x, θ)

∂θ j · φ−1(ρ(x, θ))−

−ρ(x, θ) · ∂2ρ(x, θ)

∂θi∂θ j · φ
−1(ρ(x, θ))

}
dx.

In this case, α and β are given by

αij(θ) :=
∫

X

∂2ρ(x, θ)

∂θi∂θ j · logN
φ (ρ(x, θ))dx

and

βij(θ) :=
∫

X

{∂ρ(x, θ)

∂θi ·
∂logN

φ (ρ(x, θ))

∂θ j +
∂ρ(x, θ)

∂θ j ·
∂logN

φ (ρ(x, θ))

∂θi

}
dx.

Corollary 1. In a condensed form, we have the following relation

h = g− α− β.

We consider now, in addition, a fixed formal group logarithm G, as in Example 1 (vi).
Let σ := ρ(x, θ0) be the associated parameterized PDFs and DG,φ = DG,φ(ρ ‖ σ)(θ, θ0)
be the generalized (difference) group relative entropy (a.k.a. the generalized (difference)
group divergence), as particularization from (10) and Remark 1 (i), (iii), written as

DG,φ(ρ ‖ σ)(θ, θ0) =
∫

X
ρ(x, θ) · G

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)
dx.

Denote the generalized group Fisher metric associated with DG,φ by

ĝjk(θ0) :=
∂2DG,φ(ρ ‖ σ)(θ, θ0)

∂θ j∂θk |θ=θ0 . (25)

This Hessian-type metric will be calculated in the next result.
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Proposition 2. With the previous notations, we have the relation

ĝjk(θ0) = G′(0) ·
{ ∫

X

∂2ρ(x, θ0)

∂θ j∂θk · ρ(x, θ0)

φ(ρ(x, θ0))
dx+ (26)

+2
∫

X
φ(ρ(x, θ0)) ·

∂

∂θ j logN
φ (ρ(x, θ0)) ·

∂

∂θk logN
φ (ρ(x, θ0))dx−

−
∫

X
ρ(x, θ0) · φ′(ρ(x, θ0)) ·

∂

∂θ j logN
φ (ρ(x, θ0)) ·

∂

∂θk logN
φ (ρ(x, θ0))dx

}
+

+G′′(0) ·
∫

X
ρ(x, θ0) ·

∂

∂θ j logN
φ (ρ(x, θ0)) ·

∂

∂θk logN
φ (ρ(x, θ0))dx,

which may be re-written as depending only on φ and ρ, in

ĝjk(θ0) = G′(0) ·
{ ∫

X

∂2ρ(x, θ0)

∂θ j∂θk · ρ(x, θ0)

φ(ρ(x, θ0))
dx+ (27)

+2
∫

X
φ−1(ρ(x, θ0)) ·

∂

∂θ j ρ(x, θ0) ·
∂

∂θk ρ(x, θ0)dx−

−
∫

X
ρ(x, θ0) · φ′(ρ(x, θ0)) · φ−2(ρ(x, θ0)) ·

∂

∂θ j ρ(x, θ0) ·
∂

∂θk ρ(x, θ0)dx
}
+

+G′′(0) ·
∫

X
ρ(x, θ0) · φ−2(ρ(x, θ0)) ·

∂

∂θ j ρ(x, θ0) ·
∂

∂θk ρ(x, θ0)dx.

Proof. We follow the line of reasoning from [20]. As

logN
φ (ρ(x, θ)) =

∫ ρ(x,θ)

1

1
φ(y)

dy,

we calculate
∂

∂θk logN
φ (ρ(x, θ)) =

∂ρ(x, θ)

∂θk · 1
φ(ρ(x, θ))

.

Suppose, for the moment, that θ0 is constant. Denote

A(θ) := DG,φ(ρ(x, θ) ‖ ρ(x, θ0)).

We calculate successively

∂A
∂θk (θ) =

∫
X

{∂ρ(x, θ)

∂θk · G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+ρ(x, θ) · G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
· ∂

∂θk logN
φ (ρ(x, θ))

}
dx =

=
∫

X

{∂ρ(x, θ)

∂θk · G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+ρ(x, θ) · G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
· 1

φ(ρ(x, θ))

∂ρ(x, θ)

∂θk

}
dx =

=
∫

X

∂ρ(x, θ)

∂θk ·
{

G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)}

dx

and
∂2 A

∂θ j∂θk (θ) =
∫

X

∂2ρ(x, θ)

∂θ j∂θk ·
{

G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+



Mathematics 2022, 10, 4311 10 of 26

+
ρ(x, θ)

φ(ρ(x, θ))
· G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)}

+

+
∂ρ(x, θ)

∂θk ·
{ ∂

∂θ j logN
φ (ρ(x, θ)) · G′

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)
+

+G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
·

∂ρ(x,θ)
∂θ j · [φ(ρ(x, θ))− ρ(x, θ) · φ′(ρ(x, θ)]

φ2(ρ(x, θ))
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′′

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)
· ∂

∂θ j logN
φ (ρ(x, θ))

}
dx =

=
∫

X

∂2ρ(x, θ)

∂θ j∂θk ·
{

G
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)}

+

+
∂ρ(x, θ)

∂θ j · ∂ρ(x, θ)

∂θk · 1
φ(ρ(x, θ))

·
{

G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
+

+G′
(

logN
φ (ρ(x, θ))− logN

φ (ρ(x, θ0))
)
· φ(ρ(x, θ))− ρ(x, θ) · φ′(ρ(x, θ)

φ(ρ(x, θ))
+

+
ρ(x, θ)

φ(ρ(x, θ))
· G′′

(
logN

φ (ρ(x, θ))− logN
φ (ρ(x, θ0))

)}
dx.

We replace θ := θ0, and we use the property G(0) = 0. It follows that

ĝjk(θ0) :=
∂2 A

∂θ j∂θk |θ=θ0=
∫

X

∂2ρ(x, θ0)

∂θ j∂θk ·
{

G(0) +
ρ(x, θ0)

φ(ρ(x, θ0))
· G′(0)

}
+

+
∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · 1
φ(ρ(x, θ0))

·
{

G′(0) +
ρ(x, θ0)

φ(ρ(x, θ0))
· G′′(0)+

+G′(0) · φ(ρ(x, θ0))− ρ(x, θ0) · φ′(ρ(x, θ0)

φ(ρ(x, θ0))

}
dx =

= G′(0) ·
∫

X

∂2ρ(x, θ0)

∂θ j∂θk · ρ(x, θ0)

φ(ρ(x, θ0))
dx+

+
∫

X
φ(ρ(x, θ0)) ·

∂

∂θ j logN
φ (ρ(x, θ0)) ·

∂

∂θk logN
φ (ρ(x, θ0))·

·G′(0) ·
{

2− ρ(x, θ0) · φ′(ρ(x, θ0))

φ(ρ(x, θ0))

}
dx+

+G′′(0) ·
∫

X
ρ(x, θ0) ·

∂

∂θ j logN
φ (ρ(x, θ0)) ·

∂

∂θk logN
φ (ρ(x, θ0))dx.

From the last suite of formulas, we obtain both (26) and (27).

Suppose, moreover, that G(t) = t. Then, we have

ĝjk(θ0) =
∫

X

{∂2ρ(x, θ0)

∂θ j∂θk
ρ(x, θ0)

φ(ρ(x, θ0))
+ 2

∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · 1
φ(ρ(x, θ0))

− (28)

−∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · ρ(x, θ0) · φ′(ρ(x, θ0))

φ2(ρ(x, θ0))

}
dx.

We re-write this formula in a condensed form, and we obtain the following result,
which completes Corollary 1.
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Corollary 2. With the previous notations, for G(t) = t, we obtain

ĝ = −h− α.

By analogy, starting with a generalized (quotient) group relative entropy (a.k.a. the
generalized (quotient) group divergence) D̃G,φ = D̃G,φ(ρ ‖ σ)(θ, θ0), as particularization
from (9), we shall obtain, in the sequel, other Fisher-like metrics, similar to the ones in
Proposition 2 and Corollary 2.

Denote the generalized group Fisher metric associated with D̃G,φ by

gjk(θ0) :=
∂2D̃G,φ(ρ ‖ σ)(θ, θ0)

∂θ j∂θk |θ=θ0 . (29)

Proposition 3. With the previous notations, we have the relation

g =
{

G′(0) ·
[ 2

φ(1)
− φ′(1)

φ2(1)

]
+ G”(0) · 1

φ2(1)

}
· g0, (30)

where g0 denotes the classical Fisher metric.

Proof. We adapt the proof of Proposition 2, from the divergence DG,φ to the divergence
D̃G,φ. Suppose that θ0 is constant. Denote

Ã(θ) := D̃G,φ(ρ(x, θ) ‖ ρ(x, θ0)).

It follows that

∂Ã
∂θk (θ) =

∫
X

{∂ρ(x, θ)

∂θk · G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· ∂

∂θk logN
φ

[ ρ(x, θ)

ρ(x, θ0)

]}
dx =

=
∫

X

{∂ρ(x, θ)

∂θk · G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· φ−1(

ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0) ·

∂ρ(x, θ)

∂θk

}
dx =

=
∫

X

∂ρ(x, θ)

∂θk ·
{

G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· φ−1(

ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0)

}
dx

and
∂2 A

∂θ j∂θk (θ) =
∫

X

∂2ρ(x, θ)

∂θ j∂θk ·
{

G
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+ρ(x, θ) · φ−1(
ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0) · G′

(
logN

φ

[ ρ(x, θ)

ρ(x, θ0)

])}
+

+
∂ρ(x, θ)

∂θk ·
{

φ−1(
ρ(x, θ)

ρ(x, θ0)
) · ρ−1(x, θ0) ·

∂ρ(x, θ)

∂θ j · G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
+

+G′
(

logN
φ

[ ρ(x, θ)

ρ(x, θ0)

])
· φ−2(

ρ(x, θ)

ρ(x, θ0)
) · ∂ρ(x, θ)

∂θ j ·
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·
[
ρ−1(x, θ0) · φ(

ρ(x, θ)

ρ(x, θ0)
)− ρ(x, θ) · ρ−2(x, θ0) · φ′(

ρ(x, θ)

ρ(x, θ0)

]
+

+ρ(x, θ) · φ−2(
ρ(x, θ)

ρ(x, θ0)
) · ρ−2(x, θ0) · G”

(
logN

φ

[ ρ(x, θ)

ρ(x, θ0)

])
· ∂ρ(x, θ)

∂θ j

}
dx .

We assign θ := θ0, and we use the property G(0) = 0. We obtain

gjk(θ0) :=
∂2 A

∂θ j∂θk |θ=θ0=
∫

X

∂2ρ(x, θ0)

∂θ j∂θk ·
{

G(0) +
1

φ(1)
· G′(0)

}
+

+
∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk · 1
ρ(x, θ0)

·
{ 1

φ(1)
· G′(0) + 1

φ2(1)
· G”(0)+

+G′(0) · φ(1))− φ′(1)
φ2(1)

}
dx =

[
G′(0 ·

( 2
φ(1)

− φ′(1)
φ2(1)

)
+ G”(0) · 1

φ2(1)

]
·

·
∫

X
ρ−1(x, θ0)) ·

∂ρ(x, θ0)

∂θ j · ∂ρ(x, θ0)

∂θk + G′(0) · 1
φ(1)

·
∫

X

∂2ρ(x, θ0)

∂θ j∂θk dx.

The first integral equals g0
jk(θ0). The second integral is null because

∫
X ρ(x, θ)dx = 1.

We obtained Formula (30).

Remark 2. (i) In Proposition 1, we establish the basic formulas for the future development of
associated Riemannian geometries determined by g, g̃, h, α, β, in terms of the function φ-deformed
(Naudts) entropy (curvature, geodesics, Riemannian distance in the positive definite case). Examples
of scalar curvature functions derived from these formulas will be shown in the next section. The
coefficients of GFM1 g extend known ones from [29], derived for PDFs of exponential type and for
particular functions φ. The other Fisher metrics are new.

An interesting consequence of Proposition 1 is the fact that g and g̃ do not coincide, as in the case
of the Neperian logarithm. This can be seen directly, by comparing their φ-dependent coefficients.

(ii) In Proposition 2, we derive the Fisher-like metric ĝ associated with the divergence DG,φ, as
a generalization of a construction in [30] for the case of a Kullback–Leibler divergence, of a trivial
group logarithm G = id and for PDFs of exponential type.

(iii) In Proposition 3, the Fisher-like metric ĝ associated with the divergence D̃G,φ is—to our
knowledge—completely new.

The metrics in Formula (30) are homothetic, via a constant kG,φ supposed—implicitly—to be
not null. It is interesting that kG,φ depends only on the behavior of the deformation function φ, for
or around 1 and on G, around 0. Its independence on the PDFs gives kG,φ an “universality” feature,
which corresponds—probably—to some special uncovered property of the statistical model.

Suppose, moreover, that G(t) = t. We replace in (30) the values G′(0) = 1 and G′′(0) = 0,
and we obtain

g =
[ 2

φ(1)
− φ′(1)

φ2(1)

]
· g0. (31)

5. Examples

We particularize now the results from Section 4, for the case when ρ is an exponential
PDF and m = 1, n = 2. The deforming function φ will be chosen conveniently, in order to
be able to compute the integrals.

Let X := R and ρ : R×R× (0, ∞)→ R be the exponential (normal) PDF given by

ρ(x; θ1, θ2) =
1√

2πθ2
· e−

(x−θ1)2

2(θ2)2 . (32)
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We denote the partial derivatives of ρ, with respect to the variables θ1 and θ2, by ρ1,
ρ2, ρ11, ρ12, ρ22. A short calculation ([34]) leads to the formulas

ρ1 =
x− θ1

(θ2)2 · ρ , ρ2 = { (x− θ1)2

(θ2)3 − 1
θ2 } · ρ,

ρ11 = { (x− θ1)2

(θ2)4 − 1
(θ2)2 } · ρ , ρ12 = { (x− θ1)3

(θ2)5 − 3(x− θ1)

(θ2)3 } · ρ,

ρ22 = { (x− θ1)4

(θ2)6 − 5(x− θ1)2

(θ2)4 +
2

(θ2)2 } · ρ.

The classical Fisher metric g0 has the coefficients g0
11 = (θ2)−2, g0

12 = g0
21 = 0 and

g0
22 = 2(θ2)−2 (see, for example, [2,34]).

For future calculations, we shall use the following simple result.

Lemma 1. Let c, k1, k2 be fixed real constants, with k1 6= 0, k2 6= 0. Then, the semi-Riemannian
metric

y−c ·
[

k1 0
0 k2

]
on the set y 6= 0 in R2 has the scalar curvature

− c
2k2
· yc−2.

In the sequel, we give examples of the semi-Riemannian metrics from Propositions 1–3,
under various particular assumptions.

I—The case of g. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (22), we calculate the coefficients

g11 = K1(c) · (θ2)c−3 , g12 = g21 = 0 , g22 = K2(c) · (θ2)c−3,

where

K1(c) = (2− c)−
3
2 · (
√

2π)c−1 , K2(c) = (c3 − 4c2 + 6c− 1) · (2− c)−
5
2 · (
√

2π)c−1.

There exists a unique c0 ∈ (0.18, 0.19) such that K2(c0) = 0. For this value, g is
degenerated. The metric g is Lorentzian, when c ∈ (0, c0) and is Riemannian, when
c ∈ (c0, 2).

The scalar curvature S{c} = S{c}(θ) of g is

S{c}(θ) =
1

2K2(c)
· (c− 3) · (θ2)1−c.

The scalar curvature S{c} does not vanish anywhere, and its sign is the opposite sign
of K2(c). Moreover, S{c} is constant if and only if c = 1, i.e., only in the case when g is the
classical Fisher metric g0. If we decide to use the scalar curvature as a control, this may
lead to a quick criterion to distinguish the BGS entropy case from the φ-deformed (Naudts)
entropy case. (The statistical interpretation of the scalar curvature of the Fisher metrics
may be found in [20]).

We depicted in Figure 1 (and magnified in Figure 2 around c = 1 and in Figure 3
around c = 0.19) how S{c} varies w.r.t. c and θ2 (denoted t).
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Figure 1. The variation of S{c} w.r.t. c ∈ (0, c0)
⋃
(c0, 2) and θ2 := t.

Figure 2. The variation of S{c} w.r.t. c ∈ (0.8, 1.2) and θ2 := t.
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Figure 3. The variation of S{c} w.r.t. c ∈ (0.18, 0.20) and θ2 := t.

II—The case of g̃. Suppose φ(t) := tc, with c ∈ (0, 3
2 ) an arbitrary fixed parameter.

From Formula (23), we calculate the coefficients

g̃11 = K̃1(c) · (θ2)2c−4 , g̃12 = g̃21 = 0 , g̃22 = K̃2(c) · (θ2)2c−4,

where

K̃1(c) = (3− 2c)−
3
2 · (
√

2π)2c−2 , K̃2(c) = (4c2 − 8c + 6) · (3− 2c)−
5
2 · (
√

2π)2c−2.

The scalar curvature S̃{c} = S̃{c}(θ) of the Riemannian metric g̃ is

S̃{c}(θ) =
1

K̃2(c)
· (c− 2) · (θ2)2−2c.

We mention that: the scalar curvature is negative; it decreases indefinitely as the
variable θ2 grows and the parameter c goes to 0; it tends to 0 as c goes to 3

2 . We depicted in
Figure 4 how S̃{c} varies w.r.t. c and θ2 (denoted t).



Mathematics 2022, 10, 4311 16 of 26

Figure 4. The variation of S̃{c} w.r.t. c and θ2 := t.

III—The case of h. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (24), we calculate the coefficients

h11 = h12 = h21 = 0 , h22 = K4(c) · (θ2)c−3,

where
K4(c) = −(2− c)

1
2 · (
√

2π)c−1.

As the (0,2)-type tensor field h is degenerated, it does not define a semi-Riemannian
metric. In this case, there is no scalar curvature to compute.

IV—The case of α. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (17) or from Proposition 1, we calculate the coefficients

α11 = K5(c) · (θ2)c−3 , α12 = α21 = 0 , α22 = K6(c) · (θ2)c−3,

where

K5(c) = −(
√

2π)c−1 · (2− c)−
3
2 , K6(c) = (1− 2c) · (2− c)−

5
2 · (
√

2π)c−1.

The (0,2)-type tensor field α is degenerated for c = 1
2 . If c ∈ (0, 1

2 ), then α is a
Lorentzian metric. If c ∈ ( 1

2 , 2), then (−α) is a Riemannian metric.
The scalar curvature U{c} = U{c}(θ) of (−α) is

U{c}(θ) =
1

2K6(c)
· (3− c) · (θ2)1−c.

and has the sign of K6. We depicted in Figure 5 how U{c} varies w.r.t. c and θ2 (denoted t).
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Figure 5. The variation of U{c} w.r.t. c and θ2 := t.

V—The case of β. Suppose φ(t) := tc, with c ∈ (0, 2) an arbitrary fixed parameter.
From Formula (18) or from Proposition 1, we calculate the coefficients

β11 = K7(c) · (θ2)c−3 , β12 = β21 = 0 , β22 = K8(c) · (θ2)c−3,

where

K7(c) = 2(
√

2π)c−1(2− c)−
3
2 , K8(c) = 2(c2 − 2c + 3) · (2− c)−

5
2 · (
√

2π)c−1.

The scalar curvature V{c} = V{c}(θ) of β is

V{c}(θ) =
1

2K8(c)
· (c− 3) · (θ2)1−c.

and takes negative values. We depicted in Figure 6 how V{c} varies w.r.t. c and θ2 (denoted t).
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Figure 6. The variation of V{c} w.r.t. c and θ2 := t.

VI—The case of ĝ. Suppose φ(t) := tc, with c ∈ (0, 3
2 ) an arbitrary fixed parameter.

From Formula (27), we calculate the coefficients

ĝ11 = K9(c) · (θ2)c−3 + K10(c) · (θ2)2c−3,

ĝ12 = ĝ21 = 0,

ĝ22 = K11(c) · (θ2)c−3 + K12(c) · (θ2)2c−3,

where
K9(c) = G′(0) · (

√
2π)c−1 · (2− c)−

3
2 ,

K10(c) = G”(0) · (
√

2π)2c−2 · (3− 2c)−
3
2 ,

K11(c) = −G′(0) · (
√

2π)c−1 · (2− c)−
5
2 · (c3 − 6c2 + 10c− 7),

K12(c) = G′′(0) · (
√

2π)2c−2 · (3− 2c)−
5
2 · (4c2 − 8c + 6).

We suppose that the group logarithm G is chosen such that ĝ be non-degenerated. The
scalar curvature Ŝ{c} = Ŝ{c}(θ) of ĝ is calculated using MAPLE:

Ŝ{c}(θ) =
1
4
· (θ2)−2 · (K12(θ

2)c + K11)
−2(K10(θ

2)c + K9)
−3 ·

{
(θ2)3 ·

[
K3

9K12c2−

−K3
9K12c− 18K2

9K10K11 − 3K2
9K10K11c2 + 11K9K10K11c− 6K3

9K12

]
+

+(θ2)3+c ·
[
− 18K2

9K10K12 − 18K9K2
10K11 + 2K2

9K10K12c− 5K9K2
10K11c2+

+16K9K2
10K11c + K2

9K10K12c2
]
+ (θ2)3+2c ·

[
− 18K9K2

10K12 − 2K3
10K11c2+

+7K3
10K11c + 7K9K2

10K12c− 6K3
10K11

]
+ (θ2)3−c ·

[
2K3

9K11c− 6K3
9K11

]
+

+(θ2)3+3c ·
[
4K3

10K12c− 6K3
10K12

]}
.



Mathematics 2022, 10, 4311 19 of 26

Interestingly, the scalar curvature Ŝ{c} is a rational function of θ2 and (θ2)c.
We particularize now the setting for the BGS group logarithm G(t) := t and replace

G′(0) = 1 and G′′(0) = 0 in the previous formulas. Then,

ĝ11 = K9(c) · (θ2)c−3 , ĝ12 = ĝ21 = 0 , ĝ22 = K11(c) · (θ2)c−3,

where
K9(c) = (

√
2π)c−1 · (2− c)−

3
2 ,

K11(c) = −(
√

2π)c−1 · (2− c)−
5
2 · (c3 − 6c2 + 10c− 7).

In this particular case, the scalar curvature Ŝ{c} = Ŝ{c}(θ) of the Riemannian metric ĝ
has the form:

Ŝ{c}(θ) =
1

2K11(c)
· (c− 3) · (θ2)1−c.

(The same formula may be recovered, directly, by using Lemma 1.) We mention that
Ŝ{c} takes negative values, for every c ∈ (0, 2). In Figure 7, we depicted how this particular
Ŝ{c} varies w.r.t. c and θ2 (denoted t).

Figure 7. The variation of Ŝ{c} w.r.t. c and θ2 := t.

VII—The case of g. From (30), we have the coefficients of g :

g11 = kG,φ · (θ2)−2 , g12 = g21 = 0 , g0
22 = 2kG,φ · (θ2)−2,

where

kG,φ = G′(0) ·
[ 2

φ(1)
− φ′(1)

φ2(1)

]
+ G′′(0) · 1

φ2(1)
.

For the moment, we suppose that G and φ are suitable chosen, such that kG,φ > 0. It
follows that g is a Riemannian metric. As the scalar curvature of g0 is a negative constant
S0 = − 1

2 , we deduce the scalar curvature of g is a negative constant S = − 1
2 · kG,φ w.r.t. θ

too. In what follows, we study the variance of S in two particular cases.
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VII1. Let G(t) := t be the BGS grup logarithm function and consider φ(t) := ta2
+ etb3

,
where the real parameters a and b satisfy a2 + eb3 < 2(1 + e). Denote the respective metrics

by g{a,b} and their scalar curvatures by S{a,b}. Then,

S{a,b}
= −1

2
·
{ 2

1 + e
− a2 + eb3

(1 + e)2

}
.

We mention that kG,φ > 0 (and hence S{a,b}
< 0). The dependency of S{a,b} w.r.t. a

and b may be seen in Figure 8.

Figure 8. The variation of S{a,b} w.r.t. a and b.

The family of Fisher-like Riemannian metrics g{a,b} may be considered as evolving
from the classical Fisher metric g0. Their evolution may be controlled through their scalar
curvature.

VII2. Let G(t) := e(1−q)t−1
1−q be the Tsallis grup logarithm function, where q 6= 1. Let us

define φ(t) := ta2
+ etb3

, with real parameters a and b satisfying a2 + e · b3 + q− 1 < 2(1+ e).

We denote the associated metric by g{a,b;q} and its scalar curvature by S{a,b;q}. Then,

S{a,b;q}
= −1

2
·
{ 2

1 + e
− a2 + eb3 + q− 1

(1 + e)2

}
.

We mention that kG,φ > 0 (and hence S{a,b;q}
< 0). The dependency of S{a,b;q} w.r.t. a

and b may be seen in Figure 9, for q taking successively the values 1,11,21,31 (from bottom
to top). The value q = 1 is no longer a forbidden (singular) one!
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Figure 9. The variation of S{a,b;q} w.r.t. a and b, when q ∈ {1, 11, 21, 31}.

The family of Fisher-like Riemannian metrics g{a,b;q} may be considered as evolving
from the classical Fisher metric g0, and also as “expanding” from the BGS group loga-
rithm to the q-dependent Tsallis group logarithm. The evolution of these metrics may be
controlled through their scalar curvature, which, in addition to the previous case VII1,
“foliates” following the values of q.

Remark 3. (i) The parameters’ domains are subsets of R× (0, ∞), which is two-dimensional.
Therefore, for all the metrics in this section, the scalar curvature coincides with the Gaussian
curvature. The coefficients of the metrics depend on the variable θ2 only, which has the signification
of standard deviation. It follows that the scalar curvature functions are also independent on the
mean of the PDF modeled by θ1. This dependence of the geometric invariants only on the standard
deviation suggests applications where a similar property appears: see, for example, [50–54].

(ii) Using general differential geometric arguments, we knew a priori that the metrics must be
(locally) conformal with the Euclidean (or Minkowskian) metric of the plane. However, we obtained
more: the conformal factors are explicitly derived, they are global and, as expected, they are also
independent of the mean θ1. Moreover, the metric g in example VII is even homothetic with the
Euclidean metric.

If we consider a curve in the parameters space, its length (w.r.t any of the respective metrics)
depends only on the standard deviation; instead, the angle of two such curves does not depend on
either the mean or the standard deviation.

(iii) The statistical significance of the sectional curvature of Fisher-like metrics g, g̃, h, β, ĝ, g
can be obtained by analogy with Ruppeiner’s geometric modelization of the Gaussian thermodynamic
fluctuations [55]. His “thermodynamic curvature” (R) corresponds to the sectional curvature and
measures the inter-particles interaction: when R = 0, there is no interaction, and the cases R > 0
or R < 0 correspond to repulsive or attractive interactions, respectively ([55], apud [48,56]). This
approach was developed and generalized by the Geometrothermodynamics theory [57].

Another viewpoint interprets the scalar curvature as a measure of the stability of the statistical
model, in a direct proportionality relation ([58], apud [59]).
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(iv) It may be worth noting the following special property, apparently collateral to the main
path of the discourse. Let us fix a value of the Tsallis parameter q0 and a value of the scalar curvature

S{a,b;q0} in example VII2, denoted by s0. Then, the solution of the equation

s0 = −1
2
·
{ 2

1 + e
− a2 + eb3 + q0 − 1

(1 + e)2

}
is an elliptic curve in the plane of coordinates (a, b), written in Weierstrass form. In Figure 10, we
drew these elliptic curves, corresponding to s0 = −1 and to q0 ∈ {1,−51,−101,−1001} (from
left to right).

Figure 10. The elliptic curves associated with s0 = −1 and q0 ∈ {1,−51,−101,−1001}.

6. The MaxEnt Problem for the φ-Deformed (Naudts) Entropy

Let V = V(x) be a fixed potential energy function, φ be a fixed positive strictly-
increasing function and U0 > 0 be a fixed real number. Consider ρ = ρ(x) a univariate
PDF, satisfying ∫

R
V(x)ρ(x)dx = U0

and let HN
φ [ρ] be its associated φ-deformed (Naudts) entropy, based on (5).

Theorem 1. The optimization problem

max HN
φ [ρ]

has the solution
ρME

φ (x) = expN
{φ}

[
γ + βV(x)

]
, (33)

where expN
{φ} is the inverse function of logN

{φ}; β and γ are the Lagrange multipliers determined by
the constraints, and satisfy the inequality γ + βV(x) > 0.

Proof. The proof is a standard one; see, for example, [60], §12.1.
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Remark 4. Under the previous hypothesis, we denote: the (maximal) φ-deformed (Naudts) entropy
H := HN

φ [ρME
φ ]; the mean force with respect to ρME

φ

U :=
∫
R

V(x) · ρME
φ (x)dx;

the φ-deformed generalized free energy

F := −γ

β
.

We obtain φ-deformed generalizations of the thermodynamic relations:

F = U +
1
β

H ,
d

dβ
(βF) = U.

In the previous relations, all the notions depend on φ; we skipped it, in order to keep the
formalism simpler. For some physical interpretations, we recommend [29,61,62]. In the particular
cases when the φ-deformed (Naudts) entropy is of Tsallis or of Kaniadakis type, we recover the
formulas from [38,39].

7. Conclusions

(i) In this paper, we refined the search of relevant semi-Riemannian metrics associated
in a canonical manner to manifolds of parameterized PDfs, via remarkable entropies and
divergences. We stress the main general ideas:

- We made the distinction between quotient divergence and difference divergence,
leading to different metrics g and g̃ (see Example 2 (i), (ii) and Formulas (14) and (15));

- We defined the (0,2)-type tensor fields α and β, as possible candidates for Fisher-like
metrics (see (17) and (18));

- We gave an interpretation of the GFM1, whose coefficients may be derived from a
variation of a generalized (difference) divergence (Remark 1 (i)).

(ii) In particular, based on the φ-deformed (Naudts) entropy, we focused on the
following topics:

- We calculated the coefficients of the metrics g, g̃, h, α, β, ĝ, g in terms of logN and of
the PDF ρ (Propositions 1–3);

- When the PDFs are normal, univariate and depending on two parameters, we pro-
vided seven families of examples of the previous metrics; we determined formulas for
their scalar curvature and we discussed its variation w.r.t. parameters;

- We proved a MaxEnt result (Theorem 1) for univariate PDFs and some extensions of
the thermodynamic relations (Remark 4).

(iii) Future work will be directed toward:

- The search of the statistical relevance of α and β and a statistical interpretation for
quotient divergences, similar to that for difference divergences (in the Remark 1 (i));

- The characterization of the case when the quotient divergence coincides with the
difference divergence; this kind of result might bring into light unexpected—and
eventually important—families of entropies;

- Refining the known families of deformation functions φ and finding new ones, rele-
vant for applications. The interplay between the choice of φ and of the group logarithm
G offers many modeling opportunities.

(iv) There exist two different but connected approaches to entropy: in Thermodynam-
ics and in Statistical mechanics. Its geometrization by means of Fisher metrics follows two
apparently different paths. The procedures to construct Fisher-like metrics from entropy
are analogous, as they originate from the same general differential geometric methods.
Instead, the basic manifold these metrics act upon (i.e., the space of the parameters) is
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essentially different. Moreover, entropy in Thermodynamics is “more deterministic” and
one does not use a log-likelihood function which “produces” it.

The first formalism is dominated by the ideas of Weinhold, Ruppeiner and
Quevedo [55,57,63], and is extensively used in models for the entropy of black holes
(see [64] and references therein).

Our paper engaged in the second path and is dependent of log-likelihood functions,
especially of the φ-deformed (Naudts) one. However, we are aware that more connections
between the two theories are needed, with refined comparisons of the Riemannian models
they both rely on.
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