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Abstract: The estimation of the covariance matrix is an important topic in the field of multivariate
statistical analysis. In this paper, we propose a new estimator, which is a convex combination of the
linear shrinkage estimation and the rotation-invariant estimator under the Frobenius norm. We first
obtain the optimal parameters by using grid search and cross-validation, and then, we use these
optimal parameters to demonstrate the effectiveness and robustness of the proposed estimation in the
numerical simulations. Finally, in empirical research, we apply the covariance matrix estimation to
the portfolio optimization. Compared to the existing estimators, we show that the proposed estimator
has better performance and lower out-of-sample risk in portfolio optimization.
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1. Introduction

With the development of information technology, the covariance matrix estimation
plays a crucial role in multivariate statistics analysis, and it is used widely in many fields,
such as finance, wireless communications, biology, chemometrics, social networks, health
sciences, etc. [1–5]. In particular, due to the high noise of the sample covariance ma-
trix, the properties of financial data are not characterized by multivariate normality and
stationarity [6]. As an essential input to many financial models, it is vital to remove the
sample noise to improve the estimation accuracy of the covariance matrix in asset allocation
and risk management [4,7,8]. It is known that the sample covariance matrix is no longer
a good estimator of the population covariance matrix when the dimension of the matrix
is close to or larger than the sample size. In fact, the sample covariance matrix becomes a
singular matrix in high-dimensional data. The so-called “high dimensions” mainly include
large orders of 30 in magnitude and high data dimensions [1–3]. So far, some popular
ways used to obtain a good estimator are the shrinkage estimation methods without prior
information, sparse estimation methods with prior information, the factor model [9,10], the
rank model [11], etc.

The shrinkage method, proposed by Stein [12], is one without prior information for
estimating the covariance matrix. The essential idea of this method is to pull extreme
eigenvalues of the sample covariance matrix toward the mean of the eigenvalues by
shrinking the eigenvalues when the dimension of the matrix is close to the sample size.
Ledoit and Wolf showed that the shrinkage estimation methods have an improvement
over the sample covariance matrix. Specifically, they proposed the shrinkage estimation
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methods provide good solutions to deal with the overfitting of the sample covariance
matrix [8,13,14].

Since the linear shrinkage method is the first-order approximation to a nonlinear
problem, as the dimension of the matrix becomes high, it is no longer suitable for the
improvement of the sample covariance matrix. Thus, they proposed the nonlinear shrinkage
method [15], which has better performance for high-dimensional asymptotics. Recently,
Ledoit and Wolf proposed optimal nonlinear shrinkage estimators [16], which are decision-
theoretically optimal within a class of nonlinear shrinkage estimators. For more details on
the shrinkage methods, refer to [2,3,17,18].

The sparse estimation with prior information is another one for estimating the co-
variance matrix, which estimates the sparse matrix directly and its inverse indirectly. In
the case of direct estimation, Bickel and Levina [19] showed that the estimation can be
obtained by the threshold methods under the hypothesis of the sparseness of the true
covariance matrix. In the case of no assumption of the sparse pattern, Rothman et al. [20]
proposed a new class of generalized threshold estimators to obtain the sparse estimation
by inducing sparsity and imposing the norm penalty. Theoretically, these methods are
shown to be superior, and the generalized thresholding estimators are consistent with
a large class of approximate sparse covariance matrices. In fact, the resulting estima-
tors are not always positive-definite. In order to guarantee the positive definiteness of
the covariance matrix estimation, Rothman et al. [21] built a convex optimization model
based on the quadratic loss function under the Frobenius norm (F-norm) and studied
the estimation of the high-dimensional covariance matrix. Subsequently, some convex
optimization models with penalty functions such as the L1 function were proposed [22,23],
and some nonconvex penalty functions were used to achieve both sparsity and positive
definiteness [24,25]. However, since the changes of the variance and covariance over time
are not considered, they are affected by dimensional disasters and large noise problems.
For more details about optimization algorithms and inverse matrix estimation methods,
refer to the literature [7,26–31] and the references therein.

In addition, Bun et al. [32] introduced the rotation-invariant estimation in which
they assumed that the estimator of the population correlation matrix shares the same
eigenvectors as the sample covariance matrix itself. The experiments’ results demonstrated
that the rotation-invariant estimator is more suitable for dealing with large dimension
datasets than the eigenvalue clipping methods and can be significantly improved over
the sample covariance matrix as the data size grows, but it did not perform well on a
small sample data. In a recent paper [33], Deshmukh et al. combined the shrinkage
transformation with the eigenvalue clipping to obtain the estimator of the covariance
matrix for the convex combination of the optimal parameters. This estimator can achieve
less out-of-sample risk in portfolio optimization for small datasets.

The research in this paper was mainly motivated by [32,33], and the novelties of this
study are as follows:

1. A new large covariance matrix estimator is proposed by constructing a convex combi-
nation of the linear shrinkage estimation and the rotation-invariant estimator under
the Frobenius norm.

2. Our new covariance matrix estimator improves the impact of the sample noise on
the covariance matrix by adjusting the parameters of the convex combination in
financial data.

3. The proposed estimator has better performance and lower out- of-sample risk in
portfolio optimization.

The rest of this paper is organized as follows: Section 2 describes the related work
of covariance matrix estimation. Section 3 introduces our new proposed estimator and
its application. Section 4 implements the numerical simulation and empirical research.
Section 5 gives the conclusions.
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2. Preliminaries
2.1. The Rotation-Invariant Estimator

First, we briefly introduce the basic idea of the rotation-invariant estimator. For more
details, we refer to [32].

Let r = (r1, r2, ..., rN) denote a T × N matrix of T independent and identically dis-
tributed (iid) observations on a system of N random variables with mean vector µ. N and
T denote the number of variable and the size of the variable, respectively. In this case, the
sample covariance matrix is given by

ΣSCM = (σij) =
1

N − 1

N

∑
i=1

(ri − µ)(ri − µ)
′
, (1)

Let N and T be asymptotic in the high-dimensional regime, i.e.,

N � T. (2)

In addition, the concentration ratio is given by

c =
N
T

. (3)

The construction steps of the rotation-invariant estimator are as follows:

• Step 1: Calculate the Stieltjes transform of the empirical spectral measure of S1 from

s(z) =
1
T

Tr(S1 − z)−1 (4)

where z denotes the spectral parameter and

S1 =
1

N − 1

N

∑
i=1

(ri − µ)
′
(ri − µ), (5)

The function (4) contains all the information about the eigenvalues of the matrix S1,
which has the same nonzero eigenvalues as ΣSCM.

• Step 2: Update (4) based on the nonzero eigenvalues of Y′Y and YY′, i.e.,

s(z) =
1
T

Tr(S1 − z)−1, (6)

where yi = ri − µ, Y = (y1, y2, ..., yN), and λi denotes the ith eigenvalue of the sample
covariance matrix ΣSCM.

• Step 3: Calculate the function δ̂i of the ith eigenvalue of S from

δ̂i =
1

λi|s(λi + iη)|2 . (7)

where s(·) is the empirical Stieltjes transform from (6) and parameter η = T−
1
2 .

• Step 4: Output the resulting covariance matrix estimator ΣRIE from

ΣRIE = UN D̂NU
′
N , (8)

where
D̂N = Diag(λ̂1, λ̂2, ..., λ̂N), (9)
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UN is an orthogonal matrix, whose columns [u1, u2, ..., uN ] are the corresponding
eigenvectors, with the eigenvalue of the rotation-invariant estimator defined by

λ̂i =

N
∑

i=1
λi

N
∑

i=1
δ̂i

δ̂i. (10)

One can easily verify that
N

∑
i=1

λ̂i =
N

∑
i=1

λi. (11)

This implies that the estimator ΣRIE has the same trace as the sample covariance matrix.
More literature reviews on rotation-invariant estimators are presented in the Table 1.

Table 1. The related literature review.

Author Brief Introduction Ref.

Ledoit, O., Wolf, M. Under the assumption of the large dimension
asymptotic, Ledoit and Wolf kept the eigen-
vectors of the sample covariance matrix and
shrunk the inverse sample eigenvalues to con-
struct a rotation-invariant estimator of the
large covariance matrix.

[34]

Donoho et al. Based on spiked covariance and the rotation-
invariant estimator, Donoho et al. demon-
strated that the optimal estimation of the pop-
ulation covariance matrix is related to the best
shrinker, which acts as an element of the sam-
ple eigenvalues.

[35]

J. Bun et al. J. Bun et al. established the asymptotic global
law estimate model for three general classes of
noisy matrices using the replica method and
introduced how to “clean” the noisy eigenval-
ues of the noisy observation matrix.

[36]

Debashis Paul, Alexander Aue Debashis Paul and Alexander Aue summa-
rized the random matrix theory (RMT) and
described how the development of high-
dimensional statistical inference theory and
practice is affected by the corresponding de-
velopment in the RMT field.

[37]

2.2. Improved Covariance Estimator Based on Eigenvalue Clipping

Deshmukh et al. [33] introduced an improved estimation based on eigenvalue clipping,
which takes the optimal parameters in the convex combination of the sample covariance
matrix ΣSCM, the shrinkage target ΣF

ΣF = ( fij), (12)

with

fij =


2√σiiσjj
N(N−1)

N−1
∑

i=1

T
∑

j=i+1

σij
σiiσjj

, i 6= j,

σii, i = j,
(13)
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and the matrix ΣMP obtained by applying eigenvalue clipping.
Let yi = ri − ri be independent, identically distributed, random variables with fi-

nite variance σ. The Marchenko–Pastur density ρΣSCM (λ) of the eigenvalues of ΣSCM is
defined by

ρΣSCM (λ) =
1
N

dn(λ)
dλ

. (14)

where n(λ) is the number of eigenvalues of the sample covariance matrix ΣSCM less than λ.
In the condition of the limit N → ∞, T → ∞, and 1

c ≥ 1, the density follows from (14):

ρΣSCM (λ) =
1

2πcσ2

√
(λmax − λ)(λ− λmin)

λ
, (15)

where
λmax = σ2(1 + c + 2

√
c), λmin = σ2(1 + c− 2

√
c). (16)

[λmin, λmax] represents the MP law bounds. In this case, the covariance matrix can be
cleaned by scaling the eigenvectors of ΣSCM with these new eigenvalues. ΣMP is obtained
by this method.

Let Σ be the population covariance matrix; the optimal parameters in convex combina-
tion can be found from the following optimization problem [33].

min
θ,φ

||Σ− Σest||F (17)

s.t.

{
Σest = φ(θΣF + (1− θ)ΣMP) + (1− φ)ΣSCM,
0 ≤ θ ≤ 1, 0 ≤ φ ≤ 1.

(18)

where θ and φ are the parameters of the convex combination.
Usually, the eigenvectors of the sample covariance matrix deviate from those of

the population covariance matrix under large-dimensional asymptotics. Correcting the
deviation of the eigenvalues of the sample covariance matrix can improve the performance
of the large covariance matrix. Although the estimation can adapt to changing the sampling
noise conditions by performing parameter optimization, the performance of the estimation
outperforms other estimations only for small-dimensional problems.

3. Proposed Estimator and Application in Portfolio Optimization
3.1. Proposed Estimator

For further improve the performance of the large covariance matrix, we replaced the
eigenvalues falling inside Marchenko–Pastur (MP) law bounds with the rotation-invariant
estimator ΣRIE and applied the linear shrinkage estimation to shrink the eigenvalues falling
outside the MP law bounds in this paper. Our new estimation is presented below.

min
θ,φ

||Σ− Σest||F (19)

s.t.

{
Σest = φ(θΣF + (1− θ)ΣRIE) + (1− φ)ΣSCM,
0 ≤ θ ≤ 1, 0 ≤ φ ≤ 1,

(20)

Thus, the estimation of the covariance matrix is given by

Σ∗ = φ∗(θ∗ΣF + (1− θ∗)ΣRIE) + (1− φ∗)ΣSCM. (21)

where θ∗ and φ∗ are the optimal parameters of the optimization problem given by (19) and (20).
It is well known that the financial data are heavy-tailed and non-normal [7,33]. How-

ever, the existing covariance matrix estimation methods generally requires the assumption
of normality [32,38]. For overcoming this drawback, we propose a new estimator, which is a
convex combination of the linear shrinkage estimation and the rotation-invariant estimator
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under the Frobenius norm. One advantage of the new estimation is that we can remove
the noise caused by the bulk eigenvalues and the extreme eigenvalues in the financial
data. Furthermore, we set five-fold cross-validation k = 5 to implement the simulation and
empirical research for improving the accurate estimation of the covariance matrix.

The detailed steps of our new estimation are as follows.

• Step 0: Input the sample data r = (r1, r2, ..., rN), and set k = 1.
• Step 1: Calculate ΣSCM, ΣF, and ΣRIE from (5), (12), and (8), respectively.

• Step 2: Calculate Σest from (20), and denote Σ
(θi ,φj)
est for θi, φj, i = 1, 2, ..., M, j = 1, ..., P,

where M and P are the numbers of θ and φ taken between 0 and 1, respectively.
• Step 3: Calculate the error:

∆
(θi ,φj)

k = ||Σ(θi ,φj)
est − Σ||F,

for θi, φj, i = 1, 2, ..., M, j = 1, ..., P, and let k = k + 1.
• Step 4: Repeat Steps 1–3 in the cross-validation until the folds k = 5.
• Step 5: Find the optimal parameters θ∗ and φ∗ in the convex combination from the

corresponding smallest error sum ∆sum given by

∆sum =
5
∑

k=1

M
∑

i=1

P
∑

j=1
∆
(θi ,φj)

k .

• Step 6: Output the proposed estimation Σ∗ from (21).

3.2. Minimum Variance Portfolio Optimization

According to Markowitz’s theory [39], we included an additional return constraint in
the portfolio because even a risk-averse investor would expect a minimal positive return.
The classic portfolio optimization model that satisfies the minimum expected return is
defined by

min
x

x
′
Σx (22)

s.t.


1
′
x = 1,

r
′
x ≥ rmin,

x ≥ 0,

where x, r, and rmin represent the weight of portfolio optimization, daily return, and the
minimum daily expected return, respectively. It is well known that the portfolio selection is
widely used in the financial field, which is a convex quadratic programming problem [39].

In the portfolio optimization, the weight of each asset is closely related to the co-
variance matrix. An accurate covariance matrix can achieve a more reasonable weight
distribution and better portfolio effect. Due to the heavy-tailed nature of financial data and
the availability of limited samples [8], many studies started concentrating on the global
minimum variance (GMV) portfolio. To improve the performance of the sample covariance
matrix in the portfolio optimization, DeMiguel [40] added the additional constraint and
regularizing asset weight vector into the minimum variance portfolio and showed that
the estimator always leads the constructed portfolio to achieve a smaller variance and a
higher Sharpe ratio than other portfolios. Furthermore, Ledoit and Wolf [18] applied the
estimation to the portfolio optimization to overcome the dimension and noise problems of
a high-dimensional covariance matrix, and the results were better than the linear shrinkage
estimation [13]. Moreover, due to the influence of financial market information on covari-
ance matrix estimation, the time-varying covariance matrix or the correlation matrix also
have practical significance in portfolio optimization. For more details, refer to [41] and the
references therein.



Mathematics 2022, 10, 4282 7 of 15

In this paper, we divided the sample data into in-sample data and out-of-sample data,
which were used for the estimation and prediction of the covariance matrix, respectively.
To measure the out-of-sample performance of the estimation of the covariance matrix
in portfolio optimization, we used the out-of-sample risk, the average return, and the
Sharpe ratio as the criteria of the measurement. The average return was annualized
by multiplying it by 252 (252 trading days per year), and the standard deviation was
annualized by multiplying it by

√
252. The out-of-sample performance of the portfolio

model was evaluated through the following procedure.

• Step 0: Input the returns of the current in-sample rin and out-of-sample data rout, the
expected return rmin, and the estimation of the covariance matrix Σ∗.

• Step 1: Set r := rin, and solve the optimal weight vector x∗ from Model (22) by the
quadratic optimizer called quadprog in Matlab.

• Step 2: Calculate the out-of-sample Σ̂∗ from (21), and obtain the out-of-sample stan-
dard deviation:

σout = var((x∗)
′
rout),

the average return:

rave = E((x∗)
′
rout),

and the Sharpe Ratio:

SR =
rave−r f

σout

where x∗ and r f represent the optimal weight vector and the risk-free interest, respec-
tively.

4. Numerical Simulation and Empirical Research
4.1. Numerical Simulation

In the simulation, we used the simulation data of Engle et al. [41], and the mean
return ranged between −0.0031 and 0.0036. We divided the dataset into in-sample data
and out-of-sample data, and both the sample sizes were T = 500. In pursuit of accuracy,
we implemented the five-fold cross-validation, and the parameter selection criterion was
the F-norm of the estimator and the population covariance matrix. We set three dimensions
for the return series, which were N = 100, 200, and 400, respectively. The maximum
concentration ratio is

c =
N
T

=
400
500

= 0.80. (23)

To measure the performance of the estimators, we compared the error between each
estimator and the population covariance matrix. The six estimators are shown in Table 2.

Table 2. The estimators for comparison.

The Formulation of Estimation Ref.

ΣSCM = 1
N−1

N
∑

i=1
(ri − µ)(ri − µ)

′ [42]

ΣIdentity = I [8,38]

ΣL = ρ̂ΣSCM + (1− ρ̂)ΣF [13]

ΣNL = UN Dor
N U∗N , λor

i = λi
|1−c−cλim̆F(λi)|

[15,18,43]

ΣD = φ(θΣF + (1− θ)ΣMP) + (1− φ)ΣSCM [33]

Σ∗ = φ(θΣF + (1− θ)ΣRIE) + (1− φ)ΣSCM /

In the five-fold cross-validation, we obtained the error between the proposed esti-
mation and the population covariance matrix for the different parameters θ and φ under
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three asset dimensions. In Figures 1–3, the horizontal and longitudinal axis represent the
different values of θ and φ, respectively, and the vertical axis represents the sum of the error.
It is obvious that there are two optimal parameters to minimizing the error between the
proposed estimator and the population covariance matrix for all θ and φ. The results are
shown in Table 3. To some degree, this ensures the effectiveness of the proposed estimation.

Table 4 shows that the F-norm error of our new estimation is the smallest in the ones
of the six estimations. Under this premise, we calculated the portfolio variance in the
minimum variance portfolio that satisfies the minimum 0.0015 expected return. The results
are shown in Table 5. Figures 4–6 show the mean return of out-of-sample data ranging from
the 1st asset to the 400th asset. We mark individual points on the graph. The horizontal
and longitudinal axis represent the order of assets in the total assets and the mean return
of this asset, respectively. We can see that the mean return of the point that is marked
is relatively high. Generally speaking, higher asset returns will also face relatively large
investment risks. To understand the following description, we divided the return into
three asset risk grades: high (rmin ≥ 0.001), middle (0.0005 ≤ rmin ≤ 0.001), and low
(rmin < 0.0005), respectively. In Table 5, it is obvious that the variance of ΣIdentity is the
largest in all asset dimensions. In the case of N = 200, the asset weights of the portfolio
model corresponding to ΣIdentity are distributed on the 15th, 51st, 71st, 75th, and 138th
assets in Figure 7, respectively, with 87% high-risk assets and 13% medium assets. However,
in the case of N = 400, the asset weights of the portfolio model corresponding to ΣIdentity
are distributed on twenty assets, with 60% high-risk assets, 39.5% medium assets, and only
0.5% low-risk assets, and we can see that the high-risk and medium-risk assets account
for the vast majority of the 20 assets. Instead, the portfolio model corresponding to our
new estimator Σ∗ distributed the weights on high-risk assets and medium-risk assets as
69% and 26.12%, respectively, to achieve the 0.0015 expected return. The remaining 5% was
distributed on low-risk assets to reduce investment risk. The corresponding results are
shown in Figures 8 and 9. Overall, the reasonable distribution of asset weights on high-,
medium, and low-risk assets can appropriately decrease investment risks. As the number
of the assets increased, the performance of our new estimator Σ∗ became better. At the
same time, the proposed estimation in the minimum variance portfolio was more dispersed
on the allocation of the assets.

Table 3. The optimal parameters θ and φ in convex combination and the sum of the corresponding error.

N θ φ Error

100 0.3333 0.3636 0.0273
200 0.3434 0.3939 0.0515
400 0.3939 0.4040 0.1080

Table 4. The error between each estimator and the population covariance matrix under the
optimal parameter.

N ΣSCM ΣIdentity ΣL ΣNL ΣD Σ∗

100 0.0132 9.9927 0.0121 0.0128 0.0117 0.0055
200 0.0291 14.1313 0.0261 0.0282 0.0256 0.0103
400 0.0580 19.9842 0.0508 0.0560 0.0498 0.0216

Table 5. The variance comparison of six estimations in the minimum variance portfolio.

N ΣSCM ΣIdentity ΣL ΣNL ΣD Σ∗

100 0.0011 0.9694 0.0011 0.0010 8.0298 * 7.0942 *
200 7.8576 * 0.3956 7.9096 * 7.7615 * 6.7529 * 5.9007 *
400 3.8828 * 0.1077 4.2676 * 3.8435 * 3.7395 * 3.1368 *

* denotes the unit is 10−4.
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Figure 1. The sum of the error of five-fold cross-validation between the proposed estimation and the
population covariance matrix under the different θ and φ for N = 100.

Figure 2. Thesum of the error of the five-fold cross-validation between the proposed estimation and
the population covariance matrix under the different θ and φ for N = 200.

Figure 3. The sum of the error of the five-fold cross-validation between the proposed estimation and
the population covariance matrix under the different θ and φ for N = 400.
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Figure 4. The mean return of the out-of-sample data for N = 100.

Figure 5. The mean return of the out-of-sample data range from the 101st asset to the 200th asset.

Figure 6. The mean return of the out-of-sample data range from the 201st asset to the 400th asset.
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Figure 7. The assets’ weights of each estimation under the out-of-sample data N = 200.

Figure 8. The assets’ weights of each estimation under the out-of-sample data for N = 400.

Figure 9. The assets’ weights of the identity matrix under the out-of-sample data N = 400.

4.2. Empirical Research

The data of this paper came from the component stock of CSI500, HS300, and SSE50
on the tushare financial website. The whole period of the samples was from 24 May 2017 to
1 July 2021. Removing the missing data of the samples from transaction, we finally obtained
426 component stocks of CSI500, 218 component stocks of HS300, and 41 component stocks
of SSE50.
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In this paper, we set T1 = 500 and T2 = 500 as the window of estimation and
prediction, respectively. The maximum concentration ratio is

c =
N
T1

=
426
500

= 0.852. (24)

We used the log return as we studied the object and divide all samples into two parts for
estimation and prediction. We constructed six portfolio optimization models by using the
estimator in Table 2. The procedures of estimation and prediction are as follows.

• Step 0: Input the sample data; divide the data into in-sample data T1 = 500 and
out-of-sample data T2 = 500.

• Step 1: Calculate ΣF, ΣRIE, and ΣSCM based on the in-sample data.
• Step 2: Set five-fold cross-validation; calculate the Σest from (20) for parameters

between 0 and 1; implement the minimum variance portfolio (22), where rmin takes a
value from the minimum to maximum mean return; solve the corresponding weight
vector x by multiple times of iteration over the values of both θ and φ in the convex
optimization.

• Step 3: Calculate the standard deviation based on the out-of-sample data, and record
the out-of-sample risk σout in each iteration.

• Step 4: Calculate the optimal parameters θ∗, φ∗ when the sum of σout of the five-fold
cross-validation achieves the minimum.

• Step 5: Implement the minimum variance portfolio (22) to obtain the assets’ weights,
the average return rave, and the out-of-sample risk σrisk when satisfying the minimum
0.002 return constraints under the θ∗ and φ∗.

• Step 6: Calculate the Sharpe ratio, where the risk-free interest is set as 1.75%.

In portfolio optimization, the reduction of volatility at the first decimal place is also
considered to be quite significant [13,33]. Tables 6 and 7 show the performance of the
six portfolio optimization model based on the different asset dimensions. For out-of-
sample data, we used the standard deviation as the performance metric. Furthermore, we
calculated the average return and the Sharpe ratio in the portfolio optimization model (22)
and the risk-free interest was set to 1.75%.

Tables 6–8 show that the average returns of each estimator are equal. Table 6 shows
that the standard deviation of the portfolio optimization model corresponding to ΣIdentity is
only 27.53%, which is the smallest in each estimator. The standard deviation of the portfolio
optimization model corresponding to our new estimator Σ∗ is 27.97%, and its performance
ranks fourth among all estimators.

Table 7 shows the performance of the portfolio optimization model corresponding to
each estimator with 218 assets. It can be seen that the performance of the estimator ΣIdentity
becomes weak. In this case, ΣIdentity is the worst estimator, which is expected as it assumes
zero correlations among stocks, and ΣSCM is the second-worst. The Sharpe ratio of the
portfolio optimization corresponding to ΣNL is the highest in each estimator followed by
the one of ΣD. At the same time, the performance of our new estimator Σ∗ ranks third
among all estimators. Comparing to the case of N = 218, the performance of our new
estimator improved as the asset dimension increased.

Table 8 compares the performance of each model with the number of assets of 426.
The result shows that the portfolio optimization model corresponding to our new estimator
Σ∗ obtaining the smallest standard deviation leads to the highest Sharpe ratio. Obviously,
compared with other estimators, especially with ΣIdentity, our new estimator has a signifi-
cant decrease in the out-of-sample standard deviation. Meanwhile, this also implies that
the performance of our new estimator Σ∗ is superior to the ones of the other five estimators
as the asset dimension increases.

The homogeneity of the variance test is a metric to measure whether the variances of
the two investment strategies are equal, and we used the improved bootstrap inference [44]
to test the significant variance difference between Σ∗ and other estimations excess returns.
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Table 9 shows that the test between Σ∗ and the alternative methods all reject the null
hypothesis of equal variances. Moreover, the sample variance of the excess return generated
corresponding to our new estimator Σ∗ is significantly lower than the other portfolio
optimization models as the number of assets increases. Therefore, our new estimation Σ∗ is
superior to other estimations.

Table 6. The out-of-sample performance comparison between each estimator of the 41 assets in SSE50.

Index Average Return * Standard Deviation * Sharpe Ratio

ΣSCM 50.40 27.98 1.7390
ΣIdentity 50.40 27.53 1.7399

ΣL 50.40 28.00 1.7375
ΣNL 50.40 27.95 1.7400
ΣD 50.40 27.96 2.7399
Σ∗ 50.40 27.97 1.7391

∗ denotes the unit is %.

Table 7. The out-of-sample performance comparison between each estimations of the 218 assets in
HS300.

Index Average Return * Standard Deviation * Sharpe Ratio

ΣSCM 50.40 18.69 2.6031
ΣIdentity 50.40 20.28 2.3990

ΣL 50.40 18.70 2.6017
ΣNL 50.40 17.79 2.7340
ΣD 50.40 17.81 2.7314
Σ∗ 50.40 18.68 2.6044

∗ denotes the unit is %.

Table 8. The out-of-sample performance comparison between each estimations of the 426 assets in
CSI500.

Index Average Return * Standard Deviation * Sharpe Ratio

ΣSCM 50.40 21.25 2.2899
ΣIdentity 50.40 23.04 2.1115

ΣL 50.40 21.24 2.2909
ΣNL 50.40 21.22 2.2927
ΣD 50.40 21.18 2.2970
Σ∗ 50.40 20.87 2.3315

∗ denotes the unit is %.

Table 9. The difference in the out-of-sample variance between Σ∗ and the alternative estimation with
all assets (the significance level is 5%).

Number of
Assets ΣSCM ΣIdentity ΣL ΣNL ΣD

41 −0.0001 0.0350 −0.0019 0.0011 0.0010
218 −0.0000 −0.1607 −0.0010 0.0986 0.0966
426 −0.0363 −0.1979 −0.0350 −0.0342 −0.0303

5. Conclusions

In this paper, we proposed a new estimator for the covariance matrix, which is a
convex combination of the linear shrinkage estimation and the rotation-invariant estimator
under the F-norm. We first obtained the optimal parameters through considerable nu-
merical operations, and then, we focused on the accuracy of the model and ignored the
complexity of the calculation. Moreover, we demonstrated the effectiveness of the model
in the simulation. Finally, we applied our estimation to the minimum variance portfolio
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optimization and showed that the performance of the proposed estimator is superior to the
other five existing estimators in the portfolio optimization for high-dimensional data.

In addition, we only considered the sample noise on the covariance matrix in this
article, but in the financial field, the covariance matrix estimation will vary with time
due to the influence of market information, and the covariance matrix estimation will be
affected by the market information. Therefore, the performance of our new estimation in
the dynamic conditional correlation model [41] can be investigated as part of future work
for a large-dimensional covariance matrix.
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