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Abstract: Energy management and heat control whenever a reactive viscous fluid is the working
medium has been one of the greatest challenges encountered bymany in the field of chemical and in‑
dustrial engineering. A mathematical approach to thedetermination of critical points beyond which
the working environment becomes hazardous is presented in the present investigation together with
the entropy generation analysis that guarantees the efficient management of expensive energy re‑
sources. In this regard, the nonlinear mixed convective flow behavior of a combustible third‑grade
fluid through a vertical channel with wall cooling by convection is investigated. The mathematical
formulation captures the nonlinearities arising from second‑order Boussinesq approximation and
exponential dependence of internal heat generation, viscosity, and thermal conductivity on temper‑
ature. The resulting nonlinear boundary value problems were solved based on the spectral Cheby‑
shev collocation method (SCCM) and validated with the shooting‑Runge–Kutta method (RK4). The
nonlinear effects on the flowvelocity, temperature distribution, entropy generation, andBejan heat ir‑
reversibility ratio are significant. Further analyses include the thermal stability of the fluid. Findings
from the study revealed that flow, temperature, and entropy generation are enhanced byincreasing
values of the Grashof number, the quadratic component of buoyancy, and the Frank‑Kameneskii pa‑
rameter, but are reducedbyincreasing the third‑grade material parameter. Moreover, it was shown
that increasing values of the third‑grade parameter encourages the thermal stability of the flow,while
increasing values of the linear and nonlinear buoyancy parameter destabilizes the flow. The present
result is applicable to thick combustible polymers with increased molecular weight.

Keywords: thermal stability; entropy generation; nonlinear buoyancy; variable properties

MSC: 37M20

1. Introduction
A renewed interest in energy utilization and management has led to a significant in‑

crease in studies centered on a broad range of reactive non‑Newtonian fluids in the last
few decades. A good number of researchers gave mathematical explanations from a fluid
dynamics viewpoint on how best to maximize exergy when working with reactive fluids.
For instance, Salawu et al. [1] reported the transient flow of a reactive fourth‑order fluid
through a horizontal channel

Permeated by a magnetic field, Cuiet al.in [2] investigated the two‑dimensional re‑
acting flow of hydromagnetic nano‑Oldroyd‑B fluid driven by mixed convection. In [3],
Salawu and his cohorts considered the slip flow of combustible MHD couple stress flu‑
ids with variable properties. Sadiq and Hayat [4] presented a model for optimizing en‑
tropy generation in Reiner–Rivlin flow over a stretched rotating disc. Okoya [5] reported
a numerical investigation of a time‑independent variable viscous third‑grade fluid flow
through a cylinder. Adesanya et al. [6] analyzed the flow of third‑grade fluid between two
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solid boundaries under Arrhenius kinetics. The study in [7] focused on the reactive flow
under the Erying–Powell constitutivemodel. More studies on reactive flows of third‑grade
fluid can be found in [8–14] and the literature cited therein.

The quantity of energy absorbed by the flow is defined by the degree of friction caused
by viscosity, which plays a crucial role in the creation of fluid measures for flow measure‑
ments. The changing viscosity in Couette and Poiseuille flows of a tangential hyperbolic
fluid via an inclined channel with porous media was explored by Zehra et al. [15]. The
fluid’s viscosity has been assumed in this research to be inversely proportional to a linear
function of pressure. It should go without saying that the viscosity and thermal conductiv‑
ity of any fluidmay be alteredas the temperature rises. This phenomenon therefore plays a
crucial role in the rate of heat transport near the surface, much as other thermophysical fea‑
tures. It is acknowledged that certain characteristics, particularly fluid viscosity, may vary
with temperature. This change in viscosity and thermal conductivity must be taken into
consideration in order to correctly forecast the flow and heat transfer rates. Jeffrey fluid
flow, heat transfer, and mass transfer via a permeable wave‑like channel with variable vis‑
cosity and thermal conductivity were studied by Manjunatha et al. in their study [16].
Qasim et al.’s [17] investigation on the impact of dissipation of a fluid flow through a
tiny needle takes these fluid parameters into account. Recently, Saraswathy et al. [18] in‑
vestigated these phenomena in order to use a numerical approach to investigate the so‑
lution for an asymmetric flow and heat transfer of a rotating fluid with the influence of
Arrhenius energy.

Additionally, while the first law of thermodynamics has been used by certain writ‑
ers, its efficacy has been shown to be inferior to that of the second law. Thermal efficiency
decreases and system entropy increases as a result of energy losses in engineering and ther‑
mal equipment. It is well known that the development of entropy during any thermal pro‑
cess determines the degree of irreversibility. The optimization procedures have recently
paid a lot of attention to this examination. Many thermal systems may include irreversible
processes. The second law of thermodynamics has been extensively employed in the liter‑
ature to enhance these types of irreversibility. In this light, Khan et al. [19] analyzed the
formation of entropy on an Erying–Powell liquid flowing via a permeable channel using
a homotopy analysis technique. Singh et al. [20] investigated the entropy generation im‑
pact in a micropolar fluid flowing through an aligned tube. Here, it is claimed that the
fluid’s viscosity and thermal conductivity both change with temperature. The conclusion
of their analysis shows that temperature‑dependent thermal and viscous conductivity fac‑
tors enhance the entropy production profile. Similar studies on entropy production rates
and irreversibility in convection‑based heat transport may be found in references [21–23].

In modeling the flow drivingmechanism, the nonlinear temperature‑density relation‑
ship has been established over the years to give a better approximation than the linearized
form of heat transfer in a wide range of buoyancy‑driven flows due to the considerable
difference in the fluid temperature and the ambient. Given these numerous applications,
Adesanyaet al. [24] focused on the entropy generation, flow, and nonlinear heat transfer
to a couple stress fluid flow through aporous medium. In the Xiaet al. [25] report, a math‑
ematical explanation for the nonlinear bio‑convective flow of hydromagnetic fluid con‑
taining microorganisms with Hall effect is discussed. Ibrahim and Gadisa [26] presented
a finite element residual approximation for Oldroyd‑B flow with internal heat generation.
Patilet al. [27] constructed the numerical approximation to nonlinear convective flow prob‑
lems with Brownian and thermophoresis. Waqaset al. [28] reported the steady develop‑
ing flow of Williamson fluid with variable diffusion and thermal conductivity. A semi‑
analytical approach is employed byYusuf et al. [29] to examine themagnetohydrodynamic
(MHD) nonlinear convective flow of a reactive non‑Newtonian fluid model with convec‑
tive heating. Other vital studies on nonlinear convective flows include refs. [30–32] and the
cited references.

Despite the huge body of literature surrounding heat irreversibility in a combustible
non‑Newtonian fluid flow, the nonlineardependence of some fluid parameters on temper‑
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atureremains poorly understood with respect to thermal stability for the determination of
safe working conditions and energy management or efficiency. The proposed nonlinear
coupled model will ensure that the thermal system is not underdetermined when used to
predict buoyancy‑induced flow and thermal behavior. The nonlinearity of the model sug‑
gests the non‑existence of a close‑form solution; therefore, the present work focuses on a
fast‑converging numerical approach totackling the coupled nonlinear convective flow and
heat transfer problem. To the best of our knowledge, the problem presented here has not
been undertaken byany researcher, and that explains the novelty of the work.

Including the nonlinear buoyancy approximation, nonlinear internal heat, and expo‑
nential dependence of fluid viscosity and thermal conductivity is expected to produce a
better approximation of reactive flow and heat transfer problems, especially during a num‑
ber of engineering processes, such as advanced powder synthesis by self‑propagating high‑
temperature, heat exchangers, loop/fluidized bed reactors, treatment of reactive hydrocar‑
bons, combustion chambers and many more engineering applications. In the next section,
the mathematical analysis of the problem is presented.

2. Mathematical Formulation
In themodel formulation, we consider a fully‑developedflowof a reactive third‑grade

fluid flow through a vertical channel with Newtonian cooling at the walls. The buoyancy
effect is felt upstream in the vertical x‑axis while the y‑axis is perpendicular to it, as shown
in Figure 1. All the fluid properties like viscosity, thermal conductivity, and internal heat
generation are assumed to varywith temperature in an exponentialmanner, except density
which has quadratic dependence.
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Figure 1. Flow geometry.

Under the flow assumptions, the vector form for the momentum equation becomes:

ρ
DV
Dt

= ρg + divτ (1)

where the operator,D(.)
Dt =

(
∂
∂t + V.∇

)
(.) is thematerial derivate acting on the velocity vec‑

tor V, and ρ, g‑density and gravitational force, respectively. The last term τ is the Cauchy
stress tensor defined as [14,33]

τ = −PI + µS1 + α1S2 + α2S2
1 + β1S3 + β2(S1S2 + S2S1) + β3

(
trS2

1

)
S1 (2)
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In (2), αn, (n = 1, 2, 3), βn, (n = 1, 2, 3) are material effects, (P, I, µ) are the pressure,
tensor identity andfluid viscosity, respectivelywhile Sn, (n = 1, 2, 3) represents theRilvin–
Ericksen tensors and are defined as

S1 = ∇V + (∇V)T

Sn = DSn−1
Dt + Sn−1∇V + (∇V)TSn−1, n > 1

(3)

The Clausius–Duhem inequality condition µ ≥ 0, α1 ≥ 0 , |α1 + α2| ≤
√

24µβ3 en‑
sures the thermodynamic process is consistent when β1 = β2 = 0 implies that β3 ≥ 0.

Therefore, (2) reduces to

τ = −PI +
(

µ + β3

(
trS2

1

))
S1 + α1S2 + α2S2

1 (4)

From (4), it is easy to note that the effective viscosity, which is assumed to be a non‑
linear function of temperature, becomes

µe f f = µ(T) + β3

(
trS2

1

)
(5)

As a consequence of (5), the momentum equation with the nonlinear temperature‑
dependent fluid density becomes

0 = −dP
dx

+
d

dy′

(
µ(T)

du′

dy′
+ 2β3

(
du′

dy′

)3
)

+ ρgϕ0(T − T0) + ρgϕ1(T − T0)
2 (6)

While the balanced energy equation with variability in thermal conductivity becomes

0 =
d

dy′

(
k(T)

dT
dy′

)
+ QC0 A

(
hT
υl

)m
e−

E
RT +

(
µ(T) + 2β3

(
du′

dy′

)2
)(

du′

dy′

)2

(7)

The fact that the heat transfer to the viscous non‑Newtonian fluid is irreversible sug‑
gests that the entropy generation profile is a nonlinear combination of heat transfer and
fluid friction, that is,

EG =
k(T)
T2

0

(
dT′

dy′

)2

+
1
T0

(
du′

dy′

)2
(

µ(T) + 2β3

(
du′

dy′

)2
)

(8)

Togetherwith the essential and temperature dependent natural boundary conditions

u′ = 0, −k(T) dT
dy′ = h1(T0 − T) y′ = 0

u′ = 0, −k(T) dT
dy′ = h2(T − T0) y′ = a

(9)

Of engineering interest is the wall skin friction and Nusselt number for heat transfer
at the wall

C f = µ0e−α(T−T0)
du′

dy′
+ 2β3

(
du′

dy′

)3
∣∣∣∣∣
y′=0

, qw = k0e−η(T−T0)
dT
dy′

∣∣∣∣
y′=0

(10)

The Reynold’s exponential dependence of viscosity and thermal conductivity on tem‑
perature is assumed to take the form

µ(T) = µ0e−α(T−T0), k(T) = k0e−η(T−T0) (11)

With the introduction of the following variables and parameters
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y = y′
a , u = u′

UG , θ = E(T−T0)

RT2
0

, α =
αRT2

0
E , γ = β3U2G2

µ0a2 , δ =
(

υι
ℏT0

)m µ0U2G2

QAC0a2 e
E

RT0

G = − a2

µ0UG
dP
dx = 1, Gr = ρgϕ0a2RT2

0
µ0EUG , σ =

ϕ1RT2
0

ϕ0E , λ =
(
ℏT0
υι

)m QEAa2C0
k0RT2

0
e−

E
RT0 , Bi1,2 =

h1,2a
k0

 (12)

We obtainthe following dimensionless, nonlinear, coupled, system of boundary
value problems

0 = 1 + d
dy

(
e−αθ du

dy

)
+ 6γ

(
du
dy

)2 d2u
dy2 + Gr

(
θ + σθ2), u(0) = 0 = u(1);

0 = d
dy

(
e−ηθ dθ

dy

)
+ λ

(
(1 + εθ)me

θ
1+εθ + δ

(
du
dy

)2
(

e−αθ + 2γ
(

du
dy

)2
))

,(
e−ηθ dθ

dy − Bi1θ
)∣∣∣

y=0
= 0 =

(
e−ηθ dθ

dy + Bi2θ
)∣∣∣

y=1
.


(13)

Please note that the special case of the coupled Equation (13) is the non‑reactive New‑
tonian flow when α = γ = Gr = η = 0, that was reported numerically in [33] by using
shooting‑Runge–Kutta scheme within Maple environment. In its dimensionless form, the
expression for the positive definite entropy generation becomes

NS = e−ηθ

(
dθ

dy

)2

︸ ︷︷ ︸
Nh

+
λδ

ε

((
du
dy

)2
(

e−αθ + 2γ

(
du
dy

)2
))

︸ ︷︷ ︸
N f

(14)

Component‑wise, the Bejan irreversibility ratio becomes

Be =
Nh
Ns

=
Nh

Nh + N f
(15)

While the expressions for the dimensionless skin friction and Nusselt
number becomes

S f =
ρa2C f

µ2
0

= e−αθ du
dy

+ 2γ

(
du
dy

)3
∣∣∣∣∣
y=0

, Nu =
aEqw

k0RT2
0
= e−ηθ dθ

dy

∣∣∣∣
y=0

(16)

3. Solution by Weighted Residual Method
A collocation method based on Chebyshev polynomials is considered here to obtain

numerical solutions of a differential equationin [0, L]. This technique approximatesa solu‑
tion to a differential equation

f (ϕ(x)) + g(x) = 0, in domain, D = [0, L] (17)

The approximate solution needs to satisfy the boundary conditions and it is given as

ψ(x) =
N
∑

i=0
ki
...
T i
( 2x

L − 1
)

(18)

where ϕ(x) is the unknown dependent function, f (x) is the source term, ki are undeter‑
mined coefficients,

...
T i
( 2x

L − 1
)
are shifted Chebyshev base functions from [−1,1] to [0, L].

To acquire the values of ki, Equation (18) is inserted into Equation (17) to yield resid‑
ual error Rψ(x, ki). Rψ(x, ki) is forced to be closer to zero using the collocation method
as follows;

for δ
(

x − xj
)
=

{
1, x = xj

0, otherwise,
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∫ 1
0 Rψ(x, ki)δ

(
x − xj

)
dx = Rψ(x, ki) = 0, for j = 1, 2, . . . N − 1 (19)

where xj = 1
2

(
1 − cos

(
jπ
N

))
are shifted Gauss–Lobatto points. Therefore, Equation (14)

as well as the equations generated from the boundary conditions constitute a system of
algebraic equations that must be solved in order to obtainthe constant coeficient values, ki.
In order to obtain the solutions of Equation (13), solutions are assumed for u(y) and θ(y),
respectively, in the form:

u(y) =
N
∑

i=0
ai
...
T i(2y − 1), θ(y) =

N
∑

i=0
bi
...
T i(2y − 1) (20)

where ai and bi are constants to be determined, and
...
T i(2y − 1) are the shifted Cheby‑

shev base functions. To obtain the values of ai and bi, to satisfy the boundary conditions,
Equation (20) is substituted into the boundary conditions in Equation (13) and thus have

N

∑
i=0

...
Tai(2y − 1)

∣∣∣∣∣
y=0

= 0 =
N

∑
i=0

...
Tai(2y − 1)

∣∣∣∣∣
y=1

, (21)

e
−η(

N
∑

i=0

...
T bi(2y−1)) N

∑
i=0

d
...
T i

dy bi(2y − 1)− Bi1
N
∑

i=0

...
Tbi(2y − 1)

∣∣∣∣∣∣
y=0

= 0

= e
−η(

N
∑

i=0

...
T bi(2y−1)) N

∑
i=0

d
...
T i

dy bi(2y − 1)− Bi2
N
∑

i=0

...
Tbi(2y − 1)

∣∣∣∣∣∣
y=1

(22)

Equation (15) is also substituted into Equations (9) and (10), resulting in resu(y, ai) and
resθ(y, ai, bi), respectively, as residues. At this juncture, the residues are forced to be zero
by applying collocation method as follows∫ 1

0 resuδ
(
y − yj

)
dy = resu

(
yj, ai

)
= 0, for j = 1, 2, . . . N − 1∫ 1

0 resθδ
(
y − yj

)
dy = resθ

(
yj, ai, bi

)
= 0, for j = 1, 2, . . . N − 1

(23)

where yj =
1
2

(
1 − cos

(
jπ
N

))
. Thus, Equations (16)–(18) form 2N + 2 system of algebraic

equations containing 2N + 2 undetermined coefficients (ai, bi). This procdeure is coded
in a mathematicalsymbolic software to solve the generated equations using the
Newton technique.

4. Solution by Shooting‑Runge–Kutta Method
To achieve a numerical solution by the Runge–Kutta scheme, we first apply the shoot‑

ing technique to the coupled problem by converting the second‑order differential equa‑
tions to a set of first‑order ordinary Lipshitz continuous differential equations.

z1 = u, z2 = u′, z3 = θ, z4 = θ′ (24)
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With (8), the coupled BVP becomes a coupled system of first order
differential equations



z1

z2

z3

z4



′

=


z2

αe−αz3−Gr(z3+σz2
3)−1

e−αz3+6γz2
2

z4

eηz3

(
ηe−ηz3 z2

4 − λ

{
(1 + εz3)

me
z3

1+εz3 + δz2
2(e

−αz3 + 2γe−αz3)

})
 (25)

with the set of initial conditions
z1(0)
z2(0)
z3(0)
z4(0)

 =


0

D1
z4(0)e−ηz3

Bi1
D2

 (26)

Since the derivatives are not specified at the initial point, D1,2 are therefore given ini‑
tial guess values that ensure the boundary conditions are okay at the wall y = 1. It is easy
to see that the sufficient condition that confirms the existence of a unique solution to the
system of Equations (24) and (25)is satisfied as long as the Lipchitz constant ∂ fi

∂xj
≤ K is

bounded. The first‑order equations are then carefully coded and solved by Runge–Kutta
using the Mathematica package.

5. Results and Discussion
In this section, a physical interpretation of the numerical results is presented and dis‑

cussed as regards the flow and thermal behavior. Tables 1 and 2 represent the validation of
the point collocationweighted residualmethodwith the shooting‑Runge–Kutta procedure
for the dimensionless momentum and energy equations. A good agreement is observed
between the two computations. This confirmed the uniqueness of the numerical solutions.
Table 3 shows the convergence of the of the spectral collocation solution. The convergence
of the solution to the highly nonlinear boundary value problem is seen to improve with
an increasing number of terms N used in the approximation. Table 4 represents the com‑
putational result of the thermal stability analysis of the fluid. As observed from the plot,
an increase in the nonlinear component of the Grashof number is seen to destabilize the
flow thermal structure due increasing buoyancy force over viscous forces in the flow field.
Additionally, an increase in the viscosity variation parameter is also observed to have a
destabilizing effect on the fluid flow. This is true, since viscosity is expected to drop and
fluid experiences shear thinning, which aids heat generation by kinetic theory of matter.
Moreover, a rise in the third‑grade parameter is seen to enhance thermal stability due to
the thickening effect of the fluid. The thermal conductivity variation parameter increase is
seen to discourage the thermal stability of the fluid flow. A similar behavior is seen with
increasing values of the Grashof number due to increasing buoyancy forces. Tables 5 and 6
revealed the accuracy of the solutionwhen comparedwith already‑published results in the
special case when the fluid is Newtonian, non‑reactive, with constant physical properties.
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Table 1. Validation of numerical results for velocity δ = 0.5, η = 0.1, α = 0.3, α = 0.1, N = 30,
γ = 0.3, Gr = 1, Bi1 = Bi2 = 10, λ = 0.4, ε = 0.1, m = 0.5.

y u(y)SCCM u(y)RK4 |u(y)CWRM − u(y)RK4|
0 −6.96195549259×10−18 0.000000000000000 6.961955492590054 × 10−18
0.1 0.04313941885340904 0.04313941993774605 1.084337016010739 × 10−9
0.2 0.07813634077297339 0.07813635190993772 1.11369643229775 × 10−8
0.3 0.10406977160813229 0.10406978921035206 1.760221977897824 × 10−9
0.4 0.12006990360382683 0.12006992567673559 2.207290876465872 × 10−8
0.5 0.12548527366302917 0.12548528888798596 1.522495679529001 × 10−9
0.6 0.12006990360382683 0.12006990533241987 1.728593046479432 × 10−9
0.7 0.1040697716081323 0.10406977022133693 1.386795372981808 × 10−9
0.8 0.07813634077297338 0.07813634228509685 1.512123468105919 × 10−9
0.9 0.043139418853409044 0.04313941955035403 6.96944987832459 × 10−10
1.0 −7.69196285588 × 10−18 −9.12736796 × 10−10 9.12736788740352 × 10−10

Table 2. Validation of numerical results for temperature.

y θ(y)SCCM θ(y)RK4 |θ(y)SCCM − θ(y)RK4|
0 0.022151849024484603 0.022151849374097372 3.496127692903528 × 10−10
0.1 0.04208489447368267 0.04208489042284373 4.050838935121259 × 10−9
0.2 0.05751544434774708 0.057515440006678895 4.341068185476082 × 10−9
0.3 0.06849268440471615 0.06849268031195316 4.092762989627019 × 10−9
0.4 0.07505930588225566 0.07505930197957113 3.902684536649659 × 10−9
0.5 0.07724467496042003 0.07724467142322092 3.537199116943057 × 10−9
0.6 0.07505930588225566 0.07505930282648429 3.055771372051374 × 10−9
0.7 0.06849268440471615 0.06849268167736071 2.727355438714163 × 10−9
0.8 0.05751544434774707 0.05751544180643439 2.541312688064678 × 10−9
0.9 0.04208489447368267 0.04208489220244641 2.271236268502896 × 10−9
1.0 0.022151849024484603 0.02215184702121924 2.003265362621187 × 10−9

Table 3. Fast convergence of critical values by weighted residual method when Gr = 3, δ = 0.2,
Bi1 = 10 = Bi2, m = 0.5, ε = 0.1.

N α σ γ η λc

5 0.1 0.1 0.3 0.1 3.369629994329486
10 0.1 0.1 0.3 0.1 3.329979429762467

15 0.1 0.1 0.3 0.1 3.3377915382719980
20 0.1 0.1 0.3 0.1 3.3375451276368135
25 0.1 0.1 0.3 0.1 3.3376391452777585
30 0.1 0.1 0.3 0.1 3.3376334297519272
35 0.1 0.1 0.3 0.1 3.3376356319779727

Table 4. Thermal stability with values when δ = 0.2, Bi1 = 10 = Bi2, m = 0.5, ε = 0.1.

σ α γ η Gr λc

0.1 0.1 0.3 0.1 3 3.337791538271998
0.3 0.1 0.3 0.1 3 3.294547099649542
0.5 0.1 0.3 0.1 3 3.251342585235665
0.1 0.3 0.3 0.1 3 3.327113416799457
0.1 0.5 0.3 0.1 3 3.3180031889548034
0.1 0.1 0.5 0.1 3 3.354693697420452
0.1 0.1 0.8 0.1 3 3.370237078964153
0.1 0.1 0.3 0.01 3 3.5150936154732557
0.1 0.1 0.3 0.001 3 3.5341579072708558
0.1 0.1 0.3 0.1 5 3.1911369048073452
0.1 0.1 0.3 0.1 7 3.0387490555917243
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Table 5. Validation with previous result when Bi1 = Bi2 = 10, Gr = 0 = γ = η, α = 0.1.

y u1(y)
Makinde & Aziz [34]

u2(y)
Present Result |u1(y)− u2(y)|

0 0.0000000000000000 1.9996146847 × 10−18 1.999614684734152 × 10−18
0.1 0.04500260897270728 0.04500261769036607 8.717658789292315 × 10−9
0.2 0.08000542199231503 0.08000543151384462 9.521529592548816 × 10−9
0.3 0.10500767322725557 0.10500768307611696 9.848861393102482 × 10−9
0.4 0.12000907000446212 0.12000908068447211 1.068000998749596 × 10−8
0.5 0.12500954265746725 0.12500954933196154 6.674494290592747 × 10−9
0.6 0.12000907650344211 0.12000908068447211 4.181029994443364 × 10−9
0.7 0.10500768080412677 0.10500768307611698 2.271990207081131 × 10−9
0.8 0.08000543108796186 0.08000543151384461 4.258827457359615 × 10−10
0.9 0.045002617803451495 0.04500261769036607 1.130854229702826 × 10−10
1.0 8.38288175864 × 10−10 2.13968421631 × 10−18 8.38288173724192 × 10−10

Table 6. Validation with previous result when Bi1 = Bi2 = 10, Gr = 0 = γ = η, α = 0.1.

y θ1(y)− SRK4
Makinde & Aziz [34]

θ2(y)− SCCM
Present Result |θ1(y)− θ2(y)|

0 0.0004166959732611298 0.00041669643079810236 4.57536972555978 × 10−10
0.1 0.0007242078568868499 0.0007242204230993113 1.256621246132922 × 10−8
0.2 0.0008700589609001264 0.0008700665516844415 7.59078431502528 × 10−9
0.3 0.0009242312498706879 0.0009242382030372055 6.953166517597101 × 10−9
0.4 0.0009367330606715411 0.0009367393712081855 6.310536644453524 × 10−9
0.5 0.0009375671371315745 0.0009375727826577018 5.645526127313893 × 10−9
0.6 0.000936734339945098 0.0009367393712081855 5.031263087466702 × 10−9
0.7 0.0009242337880723514 0.0009242382030372052 4.414964853774461 × 10−9
0.8 0.0008700627611325915 0.0008700665516844411 3.790551849616394 × 10−9
0.9 0.0007242172747296661 0.0007242204230993107 3.148369644634038 × 10−9
1.0 0.0004166939431660092 0.0004166964307981019 2.487632092722583 × 10−9

Figure 2 represents the variation of third‑grade material effect with velocity, temper‑
ature, entropy generation, and Bejan number, as shown in Figure 2a–d, respectively. The
thickening effect is manifested in Figure 2a as the third‑grade material parameter grows.
Likewise in Figure 2b, thickening of the fluid is seen to make the non‑Newtonian fluid
colder. This is physically correct because the kinetic energy of the flow decreases as a
result, the intermolecular bond is expected to increase. Therefore, the activation energy
requirement will be much higher to induce chemical reaction. The result from Figure 2c
reveals that as the third‑grade material parameter rises, there is drop in the entropy gen‑
eration at the cooled walls. This is reasonable, because a rise in the third‑grade mate‑
rial parameter has been shown to reduce the flow velocity and temperature maximum
in Figure 2a,b. Therefore, available energy for work is maximum with the thickened fluid.
Finally, in Figure 2d the result of the heat irreversibility ratio credited Bejan is presented. If
we suppose that the fluid velocity and density are both constant, thenwe have a case of slab
with Be = 1. However, for a variable viscous third‑grade flow, we have seen that velocity
is a decreasing function of the third‑grade parameter. As a result, the kinetic energy of the
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flow drops with increasing value of the parameter. Therefore, heat transfer irreversibility
is expected to gain dominance over frictional irreversibility as shown in the plot.
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Figure 2. Variation of third‑grade parameter.

Figure 3a–d represent the impact of buoyancy forces on the flow field on the velocity,
temperature, entropy generation rate, and the Bejan number respectively. From Figure 3a,
the velocity profile shows that when Gr = 1 implies a simple case when viscous force and
buoyancy force are equal. Further increase in the Grashof number implies that the con‑
tribution of viscous force is weaker when compared with buoyancy, therefore, the flow
velocity increases significantly in response to the nonlinear buoyancy forces. A similar be‑
havior is seen in the profile for fluid temperature (see Figure 3b) resulting from increase in
the kinetic energy of the fluid. Consequently in Figure 3c, the entropy profile is expected
to increase due to increase in both flow and temperature maximum. In Figure 3d, rise in
Grashof number implies increasing temperature as seen in Figure 3b. Therefore, increasing
temperature translates to a decreased rate of heat transfer, this shows that irreversibility
due to frictional interactions is more when compared with heat transfer irreversibility as
revealed in Figure 3d. The graphical representations of the effect of the nonlinear convec‑
tion component of the Grashof number on the flow velocity, temperature, entropy gen‑
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eration, and Bejan number respectively depicted in Figure 4a–d. The point when σ = 0
corresponds to the linearized buoyancy parameter when the nonlinear effect is neglected.
As shown in the Figure 4a, this parameter has a significant effect on the fluid flow and
cannot be neglected. Also, in Figure 4b, an increased value of the parameter is also seen
to elevate the fluid temperature maximum. Similar effect is noticed in Figure 4c, the rate
of entropy generation improves at both convective walls while in Figure 4d, the frictional
irreversibility decreases within the flow channel, due to a decrease in heat transfer.
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The influence of the reaction kinetics coefficient (λ) on the flow and thermal structure
is presented in Figure 5a. It is evidently shown that the velocity distribution enhanced for
larger λ. This is due to the thinning effect on the fluid viscosity and the heat transfer from
the strongly exothermic reaction to the fluid. In Figure 5b, similar behavior is experienced
with the fluid temperature, except at the cooled walls with increasing flow and tempera‑
ture. As expected the entropy generation rate is to rise for increased values of λ as shown
in Figure 5c, while larger λ significantly increase the Bejan profile. This in turn encourages
heat transfer irreversibility over fluid friction irreversibility as seen in Figure 5d.
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Finally, Figure 6a–c shows the bifurcation plots for different reaction kinetics
(m = −2, 0, 0.5). As observed from these plots, the blow‑up point increases with increas‑
ing values of the exponent, thus thermal stability is enhanced.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 21 
 

 

Figure -5.Variations in Frank-Kameneskii parameter. 

  

 

Figure -6.Bifurcation plots when 1,27, 0.1 , 0.2, 0.3, 10Gr Bi     = = = = = = = = . 

6. Concluding Remarks 

In this study, a time-independent flow and heat transfer of reactive third-order fluid 

has been investigated numerically, taking dependence of some physical properties on 

temperature into consideration. The nonlinear equations were solved numerically by us-

ing a spectral Chebyshev weighted residual method and validated by shooting-Runge–

Kutta approach. The main contributions to knowledge from the study are listed as follows: 

- Flow, temperature, and entropy generation are enhanced with increasing values of 

the Grashof number, the quadratic component of buoyancy and Frank-Kameneskii 

parameter but reduces with increasing third-grade material parameter. 

- Increasing values of third-grade parameter encourages the thermal stability of the 

flow, while increasing values of the linear and nonlinear buoyancy parameter desta-

bilizes the flow. 

Figure 6. Bifurcation plots when Gr = 7, σ = 0.1 = ε = η = α, δ = 0.2, γ = 0.3, Bi1,2 = 10.

6. Concluding Remarks
In this study, a time‑independent flow and heat transfer of reactive third‑order fluid

has been investigated numerically, taking dependence of some physical properties on tem‑
perature into consideration. The nonlinear equations were solved numerically by using a
spectral Chebyshev weighted residual method and validated by shooting‑Runge–Kutta
approach. The main contributions to knowledge from the study are listed as follows:
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‑ Flow, temperature, and entropy generation are enhanced with increasing values of
the Grashof number, the quadratic component of buoyancy and Frank‑Kameneskii
parameter but reduces with increasing third‑grade material parameter.

‑ Increasing values of third‑grade parameter encourages the thermal stability of the
flow, while increasing values of the linear and nonlinear buoyancy parameter desta‑
bilizes the flow.

‑ The Grashof number increase encourages the early occurrence of thermal runaway
and exergy loss in the flow domain.

Future directions on this study are not limited to the developing flow, mass transfer,
and elasto‑hydrodynamics aspects of the work.
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Nomenclature

(x, y′) dimensional Cartesian coordinates, (m)
y dimensional Cartesian coordinates
T0 referenced temperature, (K)
T dimensional fluid temperature (K)
θ dimensionless fluid temperature
u′ the dimensional flow velocity (m/s)
u the dimensionless flow velocity
E activation energy (E/mols)
Q reaction heat (J)
C0 initial specie concentration (mol)
A reaction rate constant
m reaction exponent
ε dimensionless activation energy
R universal rate constant J/(K.mol)
µ0 constant dynamic viscosity (Poise)
ρ fluid density (Kg/m3)
g gravitational acceleration m/s2
ℏ Planck’s constant (Js)
υ frequency of vibration N.s/m2

P fluid pressure (N/m2)
k0 referenced thermal conductivity J/(mK),
(α, η) viscosity and thermal conductivity, respectively(1/K).
(α, η) dimensionless variation parameters for viscosity and thermal conductivity, respectively.
Gr modified Grashof number
σ coefficient of the quadratic thermal expansion,
λ Frank‑Kameneskii parameter
δ Viscous dissipation parameter
Bi Biot number
γ non‑Newtonian material parameter
h1,2− coefficient of heat transfer 1/K
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