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Abstract: A theoretical analysis of the dynamic impacts of a novel model in the microelongated-
stimulated semiconductor medium is investigated. The influence of the magnetic field of the optically
excited medium is taken into consideration according to the photothermal transport processes. The
governing equations were created during the electronic (ED) and thermoelastic (TED) deformation
processes. Thermal conductivity of the semiconductor microelongation medium is taken as tem-
perature dependent. The interaction of thermal, microelongate, plasma, and mechanical waves is
examined. Dimensionless formulae are used to solve the main equations in two dimensions (2D)
using the harmonic wave method. The physical field equations have complete solutions when some
conditions are applied to the semiconductor surface. The theoretical microelongated semiconductor
model employed in this experiment was confirmed by comparing it to certain earlier studies. The
numerical simulation for the principal physical field distributions is graphically displayed when
silicon (Si) material is employed. The topic of the discussion was the impact of several factors,
such as the magnetic field, thermal memory, and microelongation, on the propagation of waves for
major fields.

Keywords: photo-generated; semiconductor; microelongation; magnetic field; carrier density; ther-
moelasticity

MSC: 74A15

1. Introduction

Recent years have seen increased acceptance of the photothermal (PT) technique
as a helpful tool for analyzing the thermal and electrical properties of semiconductor
materials. Due to its critical role in a variety of contemporary industries, such as sensors,
solar cells, energy storage, cathodes of Li-O2 batteries, energy conversion, and enhanced
medical devices, semiconductors are a family of materials that have undergone recent
intensive research. It is significant to highlight that the majority of renewable energy
production requires knowledge of semiconductor nature. Substances that are insufficiently
conductive and dielectric are known as semiconductors. When optical energy reaches
a semiconductor material’s surface, its intrinsic holes and electrons are activated, and
the outcome is the development of electronic deformation (ED). Ghini et al. [1] explored
novel energy storage methods that utilize green energies while maintaining self-sufficiency
using metal oxide, which was prompted by the increased demand for self-powered devices
nanocrystals. The excited electrons are propelled quickly to the surface by the thermal
impact of light (optical energy), where they produce an electron cloud that is comparable
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to convective density or plasma waves. Thermoelastic deformation (TED) is a modification
of a material’s internal structure brought on by photo-excitation and the ensuing heat
effect [2]. The thermal excitation and transit of electrons result in mechanical (elastic)
vibrations, and it is crucial to take into account how thermal conductivity alters as a
result. As a result, the theory of thermoelasticity is utilized to research semiconductors
in addition to the photothermal theory. The microinertia transport of the semiconductors’
microelements should be taken into account with the internal changes predicted by ED and
TED. According to Optoelectronics processes, many applications are investigated in solar
cells using the optical properties of ZnS quantum dots [3]. On the other hand, Li et al. [4]
used a combination of density functional o (DFT) theory to explain the prospects of sensor
performances of two-dimensional. Amouami et al. [5] studied the impact of geometrical
shape according to the implementation of quantum dots to investigate the characteristic of
dot solar cells.

Microelongation should be taken into account as the research of semiconductors pro-
gresses and becomes more dependent on the rotational movements (micro-deformation)
of the interior particles [6]. Eringen [7,8] presented several theories that describe the mi-
cropolar theory of the internal particles of elastic bodies under the microstructure. The
microstretch thermoelasticity theory has been introduced as a particular instance of the
micromorphic theory. Numerous researchers have recently focused on the theory of
microstretch thermoelasticity through the investigation of numerous theoretical applica-
tions [9–13]. The thermo-microstretch theory was utilized by Lotfy and Othman et al. [14]
to analyze the propagation of waves through an elastic body. They did this by using the
action of a magnetic field through a gravity field with starting stress. A hydromechanics
viscoelastic porous medium’s governing equations have been studied using the theory
of thermo-microstretch by certain researchers [15,16]. The impact of diverse heat sources
on a functionally graded microelongated elastic media was investigated [17,18] while ac-
counting for the impact of microelongation parameters. According to the thermoelasticity
theory, when the microelongated elastic media is taken into account under the influence of
an internal heat source, Ailawalia et al. [19–21] investigated the plane strain deformation.
However, Marin et al. [22–27] developed the micropolar and microstretch theories based
on harmonic vibrations using the dipolar elastic bodies.

The first appearance of employing the photothermal theory occurred lately when
a beam of laser beams was studied on a sample of a semiconductor material [28]. The
photothermal technique was employed in photoacoustic spectroscopy (PAS) of semicon-
ductor materials to comprehend the wave propagation characteristics of semiconductor
materials [29]. Numerous contemporary electrical engineering applications for the usage
of semiconductors in numerous sectors have evolved in the context of photothermal ex-
citation techniques [30–32]. To examine the 2D deformation of thermoelastic interactions
in semiconductors, Hobiny and Abbas [33] looked into the photothermal technique. The
optically induced mechanism according to the ED in the context of the PAS approach
for microcantilevers semiconducting was examined by Todorovic et al. [34,35]. Examin-
ing the overlap in the governing equations between the theories of thermoelasticity and
photothermal. Lotfy et al. [36–40] investigated the thermal impact of light and laser on
semiconductors. As a result, the photo-thermoelasticity theory was developed. When a
polymer semiconductor material is utilized, the effect of the magnetic field with the Thom-
son effect is applied to explore the photo-thermoelasticity theory following the hyperbolic
two-temperature theory [41–45]. LEDs and transistors are examples of semiconductors
constructed of synthetic polymers. Such “conjugated polymers” are plastic substances that,
when doped, transform from insulators to semiconductors [46].

When investigating semiconductors in the past, the majority of studies did not include
the impact of microelongation parameters on the optical properties in addition to the
impact of the magnetic field [41–45]. The current study proposes a novel model that, when
microelongation properties of semiconductors are taken into consideration, describes the
interaction between the thermoelastic theory and the photothermal theory. According to the
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2D deformation, the impact of the magnetic field is also investigated on the microelongated
semiconductor (TED and ED). The novel model, which is described as being dimensionless,
is known as the photothermal-microelongated model. The harmonic waves technique
is used to obtain the analytical solutions of the primary physical fields during optical
excitation. According to some numerical simulations, the theoretical analysis outcomes are
graphically displayed and assessed. The theoretical discussion addresses some parameters’
primary effects.

2. The Main Equations and Mathematical Model

In this section, the Materials and Methods are described in sufficient detail. When a uni-

form magnetic field
⇀
H = (0, H0, 0) in the direction of y-axial is applied to a microelongated

stimulated semiconductor medium. The induced magnetic field
⇀
h = (0, h, 0) is created

in this instance in the same direction. However, the induced electric field
⇀
E = (0, 0, E)

is generated in the vertical direction, resulting in the current density
⇀
J = (Jx, Jy, Jz) (see

Figure 1). According to a microelongated semiconductor medium that is flowing slowly

and has a particle velocity of
.
⇀
u . In 2D,

⇀
u (= (u, 0, w) = ui) is the displacement vector,

u = u(x, z, t) and w = w(x, z, t) are the components of the displacement vector and the
strain takes the form e = ∂u

∂x + ∂w
∂z (cubical dilatation). Since the electric permeability is ε0

and the magnetic constant permeability is µ0, the linearized electromagnetic Maxwell’s
equations are written as follows:

⇀
J =

⇀
∇ ×

⇀
h − ε0

.
⇀
E ,

⇀
∇ ×

→
E = −µ0

.
⇀
H,

⇀
E = −µ0(

.
⇀
u ×

⇀
H),

⇀
∇ ·

⇀
H = 0,

⇀
h = H0 (0, e, 0).


(1)
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Using the elimination method, Equation (1) produces:

Ex = µ0 H0
.

w, Ey = 0, Ez = −µ0 H0
.
u,

Jx = − ( ∂ h
∂ z + µ0 H0 ε0

..
w), Jy = 0, Jz = ∂ h

∂ x + µ0 H0 ε0
..
u,

Hx = 0, Hz = 0, Hy = H0 + h (x , y , z),
⇀
F = µ0(

⇀
J ×

⇀
H) = (−µ0H0

∂h
∂x − ε0µ2

0H2
0

∂2u
∂t2 , 0,−µ0H0

∂h
∂z − ε0µ2

0H2
0

∂2w
∂t2 ).

 (2)

Dot notation is used to represent the differentiation for time, where
⇀
F = µ0(

⇀
J ×

⇀
H)

is Lorentz’s electromagnetic force. Utilizing the 2D Cartesian coordinates (x, 0, z) (see
Figure 1), all main fields depend on (x, z, t). The following present the other significant
quantities in this work: the carrier density N(x, z, t) (plasma waves or carrier concentration,
which measure the number of charge carriers per volume, in SI units; it is measured
in m−3), the scalar microelongational function ϕ(x, z, t), and the temperature T(x, z, t)
(thermal waves). When the microelongated semiconductor medium is homogeneous,
isotropic, and linear in this situation, the primary governing equations can be introduced
following the microelongated photo-thermoelasticity theory as follows:

(I) The constitutive relations for a microelongated semiconductor photo-thermoelastic
medium have the following tensor form [17–21]:

σi j = (λo ϕ + λur,r )δi j + 2µuj,i − γ̂(1 + vo
∂
∂t )Tδi j − ((3λ + 2µ)dnN)δi j,

mi = a0 ϕ,i,

s− σ = λoui,i −β1(1 + vo
∂
∂t )T +−((3λ + 2µ)dnN)δ2i + λ1 ϕ.

 (3)

where the comma notation followed by a subscript denotes partial differentiation
with respect to the corresponding coordinates.

(II) The equations for thermal waves and plasma waves are [28]:

.
N = DEN,ii −

N
τ
+ κT (4)

(III) The motion equation affected by the electromagnetic field and the semiconductor
medium’s microelongation equation with the microelongation and microinertia pro-
cesses are found in [45,46]:

(λ + µ)uj,ij + µui,jj + λo ϕ,i − γ̂(1 + vo
∂

∂t
)T,i − δnN,i +

⇀
F = ρ

..
ui (5)

αo ϕ,ii − λ1 ϕ− λouj,j + γ̂1(1 + vo
∂

∂t
)T =

1
2

jρ
..
ϕ (6)

(IV) According to the interplay of optical, thermal, elastic, and microelongation waves, the
general version of the heat Equation is [23]:

(KT,i),i − ρCE(n1 + τo
∂

∂t
)

.
T − γ̂To(n1 + noτo

∂

∂t
)

.
ui,i +

Eg

τ
N = γ̂1To

.
ϕ (7)

where κ = ∂n0
∂T

T
τ denotes the coupling thermal activation parameter in the case of

temperature change, and αt2 is the coefficient of the microelongational linear thermal
expansions, γ̂1 = (3λ+ 2µ)αt2 is the microelongational thermal expansion, and n1 and
no are two chosen constants. In Equation (7), the third component quantifies the heat
produced by stress waves, whereas the second term on the right side characterizes the
effect of heat generation by the sample’s carrier volume and surface de-excitations.
The third and fourth terms in the elastic Equation (5), respectively, describe the
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source term and the effect of the thermal wave and plasma wave on the elastic wave.
Equations (4) through (7) in the 2D deformations can be generally recast as [46]:

(λ + µ)
(

∂2u
∂x2 +

∂2w
∂x∂z

)
+ µ

(
∂2u
∂x2 +

∂2u
∂z2

)
+ λo

∂ϕ
∂x

−γ̂
(

1 + vo
∂
∂t

)
∂T
∂x − δn

∂N
∂x − µ0H0

∂h
∂x − ε0µ2

0H2
0

∂2u
∂t2 = ρ

(
∂2u
∂t2

)
 (8)

(λ + µ)
(

∂2u
∂x∂z +

∂2w
∂z2

)
+ µ

(
∂2w
∂x2 + ∂2w

∂z2

)
+ λo

∂ϕ
∂z

−γ̂
(

1 + vo
∂
∂t

)
∂T
∂z − δn

∂N
∂z − µ0H0

∂h
∂z − ε0µ2

0H2
0

∂2w
∂t2 = ρ

(
∂2w
∂t2

)
 (9)

αo

(
∂2 ϕ

∂x2 +
∂2 ϕ

∂z2

)
− λ1 ϕ− λoe + γ̂1

(
1 + vo

∂

∂t

)
T =

1
2

jρ
∂2 ϕ

∂t2 (10)

(
K(T)

(
∂T
∂x + ∂T

∂z

))
,i
− ρCE

(
n1 + τo

∂
∂t

)
∂T
∂t − γ̂ To

(
n1 + noτo

∂
∂t

)
∂e
∂t +

Eg
τ N =

γ̂1 To
∂ϕ
∂t

 (11)

It is possible to select the thermal conductivity of a microelongated semiconductor
material as a variable case, which can be expressed as a linear function of temperature.
According to the thermal effect of light beams in this situation, the thermal conductivity
can be expressed as follows [36,37]:

K(T) = K0(1 + K1T) (12)

The kind of thermal conductivity is determined by the non-positive parameter K1 ≤ 0.
When the medium is independent of temperature, the physical constant K0 (reference) is
thermal conductivity. To convert the nonlinear terms in the thermal conductivity equation
into linear terms, one can use the integral form of Kirchhoff’s theory of temperature [45].

Θ =
1

K0

T∫
0

K(ϑ)dϑ (13)

where κ = ∂n0
∂T

T
τ is the parameter controlling the coupling’s thermal activation (n0 rep-

resents the equilibrium carrier concentration). Equations (6) and (7), which fulfill the
following differentiation relations, can be used to include the variable thermal conductivity
in calculations:

K0Θ,i = K(T)T,i, also K0
∂Θ
∂t = K(T) ∂T

∂t ,
K0

K(T)Θ,i = T,i,

K0Θ,ii = (K(T)T,i),i.

 (14)

If the map transform and differentiation impacts are used, Equation (2) can be rewritten
as follows:

∂
∂t

∂N
∂xj

= DE
∂N,ii
∂xj
− 1

τ
∂N
∂xj

+ κ ∂T
∂xj
⇒

∂
∂t

∂N
∂xj

= DE
∂N,ii
∂xj
− 1

τ
∂N
∂xj

+ κK0
K

∂Θ
∂xj
⇒

∂
∂t

∂N
∂xj

= DE
∂N,ii
∂xj
− 1

τ
∂N
∂xj

+ κ ∂Θ
∂xj

.

 (15)

where the non-linear terms were disregarded, and the Taylor expansion was applied to the
final term in the preceding Equation (13), as follows:

κK0
K

∂Θ
∂xj

= κK0
K0(1+K1T)

∂θ
∂xj

= κ(1 + K1T)−1 ∂Θ
∂xj

= κ(1− K1T + (K1T)2 − . . . ) ∂Θ
∂xj

=

κ ∂Θ
∂xj
− κK1T ∂Θ

∂xj
+ (K1T)2 ∂Θ

∂xj
− . . . = κ ∂Θ

∂xj

(16)
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Integrating Equation (15) to spatial coordinates xi results in:

∂N
∂t

= DEN,ii −
1
τ

N + κΘ. (17)

However, the map Equation (7) can rewrite the microelongated Equation (5) as
shown below:

Θ,ii −
1
k
(n1 + τo

∂

∂t
)

∂Θ
∂t
− γ̂To

K0
(n1 + noτo

∂

∂t
)

.
ui,i +

Eg

K0τ
N =

γ̂1T0

K0

.
ϕ (18)

where the thermal diffusivity is 1
k = ρCE

K0
.

The values of the parameters no and n1 can be chosen based on the photo-
thermoelasticity models (selected constants). On the other hand, the thermal memories
determine the coupled-dynamical model (CD), Green and Lindsay (GL), and Lord and
Shulman (LS) models or determine the types of microelongated photo-thermoelasticity
models [45–47]. The following dimensionless quantities can be used to present the main
equations in a condensed manner:

N = δn
2µ+λ N, (xi, ui) =

1
ω∗CT

(xi, ui), (t, τo, νo) =
(t, τo ,νo)

ω∗ ,

C2
T = 2µ+λ

ρ , Θ = γ̂ Θ
2µ+λ , σi j =

σi j
2µ+λ , ϕ =

ρC2
T

To γ̂ ϕ, ω∗ = K0
ρCEC2

T
,

(Π′, ψ′) = (Π,ψ)
(CTω∗)2 , C2

L = µ
ρ , h′ = h

H0
.

 (19)

The main equations using the dimensionless Equation (19) can be written as follows
(remove the superscripts to write the equations in a simple form (for convenience)):

(∇2 − ε3 − ε2
∂

∂t
)N + ε4Θ = 0 (20)

∂2u
∂t2 = (λ+µ)

ρC2
T

∂e
∂x + µ

ρC2
T
∇2u + To γ̂λo

(ρC2
T)

2
∂ϕ
∂x − (1 + vo

∂
∂t )

∂Θ
∂x −

∂N
∂x −

µ0 H2
0

ρω∗CT
∂h
∂x −

ε0µ2
0 H2

0
ρ

∂2u
∂t2

 (21)

∂2w
∂t2 = (λ+µ)

ρC2
T

∂e
∂z +

µ

ρC2
T
∇2w + To γ̂λo

(ρC2
T)

2
∂ϕ
∂z − (1 + vo

∂
∂t )

∂Θ
∂z −

∂N
∂z −

µ0 H2
0

ρω∗CT
∂h
∂z −

ε0µ2
0 H2

0
ρ

∂2w
∂t2

 (22)

(∇2 − C3 − C4
∂2

∂t2 )ϕ− C5e + C6(1 + vo
∂

∂t
)Θ = 0 (23)

∇2T − (n1 + τo
∂

∂t
)

∂Θ
∂t
− ε(n1 + noτo

∂

∂t
)

∂e
∂t

+ ε5N = ε1
∂ϕ

∂t
(24)

Helmholtz’s theory is applied for further simplification, and the displacement components
can be expressed as follows in terms of the vector space–time function Ψ(x, z, t) = (0, ψ, 0)
and potential scalar function Π(x, z, t):

→
u = grad Π + curl Ψ, u =

∂Π
∂x
− ∂ψ

∂z
, w =

∂Π
∂z

+
∂ψ

∂x
(25)

Equation (18) substituted for the primary Equations (14)–(17) results in:

(α∇2 −RH
∂2

∂t2 )Π + (1 + vo
∂

∂t
)Θ + a1 ϕ− N = 0, (26)

(∇2 −RHa3
∂2

∂t2 )ψ = 0, (27)
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(∇2 − C3 − C4
∂2

∂t2 )ϕ− C5∇2Π + C6(1 + vo
∂

∂t
)Θ = 0 (28)(

∇2 − (n1
∂

∂t
+ τo

∂2

∂t2 )

)
Θ− ε(n1

∂

∂t
+ noτo

∂2

∂t2 )∇
2Π + ε5N − ε1

∂ϕ

∂t
= 0 (29)

On the other hand, it is possible to derive the constitutive Equations (3) for 2D defor-
mation as follows [33,35]:

σxx = ∂u
∂x + a2

∂w
∂z − (1 + vo

∂
∂t )Θ − N + a1 ϕ,

σzz = a2
∂u
∂x + ∂w

∂z − (1 + vo
∂
∂t )Θ − N + a1 ϕ,

σxz = a4 (
∂u
∂z + ∂w

∂x ).

 (30)

where

a1 = To γ̂λo

(ρC2
T)

2 , a2 = λ
ρC2

T
, a3 =

ρC2
T

µ , ε = γ̂2ω∗To
K0ρ , ε1 = γ̂1γ̂2ω∗To

K0ρ(2µ+λ)
, ε2 =

ω∗C2
T

DE
, a4 = µ

ρC2
T

,

C4 =
ρjC2

T
2α0

,ε3 =
ω∗2C2

T
τDE

, ε4 = κdnω∗2ρ
DEαt1

, ε5 =
Egγ̂ω∗2C2

T
τK0δn

, C3 =
λ1C2

Tω∗2

α0
,

C5 =
λoρC4

Tω∗2

α0T0γ̂ ,C6 = γ̂1ρω∗2To
γ̂α0

, RH = 1 + ε0µ2
0H2

0 /ρ, α = 1 + µ0 H2
0

ρω∗CT
.

The symbol ε1, ε5, ε4 are the coupling thermoelastic, coupling thermo-energy, and
thermo-electric parameters, and RH is the electromagnetic number that refers to the effect
of the external magnetic field.

3. Analyze Harmonic Waves

The harmonic wave method that is used to find comprehensive solutions in 2D for the
fundamental fields is what drives the normal mode analysis. For a function f (x, z, t), the
solutions for harmonic waves can be written as follows [47–49]:

f (x, z, t) = f (x) exp(ωt + ibz). (31)

The function f (x) expresses the amplitude of f (x, y, t), i =
√
−1, b is the wave number

andω = ω0 + iζ denotes the complex time-frequency. Equation (24) from the normal mode
approach is applied to Equations (20) and (26)–(29), resulting in:

(D2 − α1)N + ε4Θ = 0, (32)

(αD2 − A1)Π + A2Θ + a1 ϕ− N = 0, (33)

(D2 − A3)ψ = 0, (34)

(D2 − A4)ϕ− C5(D2 − b2)Π + A5Θ = 0, (35)

(D2 − A6)Θ− A7(D2 − b2)Π + ε5N − A8 ϕ = 0 (36)

σxx = Du + iba2 w− A2Θ − N + a1 ϕ,

σzz = a2Du + ibw− A2 Θ − N + a1 ϕ,

σxz = a4 (ibu + Dw).

 (37)

where

α1 = b2 + ε3 + ε2ω, A1 = αb2 +RHω2, A2 = 1 + νoω, A3 = b2 +RHa3ω2,

D = d
dx , A4 = b2 + C3 + C4ω2, A5 = C6(1 + νoω),

A6 = b2 + ω(n1 + τoω), A7 = ε(n1ω + noτoω2), A8 = ε1ω .

 (38)
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The elimination method for the functions ϕ, N, T and Π is used to solve the system of
Equations (32), (33), and (35). Equations (35) and (36) to produce the following solution:{

D8 −C1D6 +C2D4 −C3D2 +C4

}
(ϕ, N, Θ, Π) = 0 (39)

where

C1 = −(−A2 A7 + C5a1 − A1 − A4 − A6 − α1)α
−1,

C2 =

(
(A2 A7 − C5a1 + A1 + A4 + A6)α1 + (A7 − ε3)ε4+(

b2 A7 + A4 A7 − A8
)

A2 − b2C5a1 − A5 A7a1 − A6C5a1 − A1 A4 + A1 A6 + A4 A6

)
α−1,

C3 =

 −
(
(−A2 A7 + C5a1)b2 − A2 A4 A7 + A5 A7a1 + A6C5a1 − A1 A4 − A1 A6 + A2 A8 − A4 A6

)
α1

(−C5a1 + A1 + A4)ε4ε3 +
(
−b2 A7a2 − A4 A7a2 + A8

)
ε4 + (−A2 A4 A7 + A5 A7a1+

A6C5a1)b2 − A1 A4 A6 + A2 A4 A8 − A5 A8a1

α−1,

C4 =

( ((
b2C5a1 − A1 A4

)
ε3 + b2 A4 A7 − A4 A8

)
ε4+(

(A2 A4 A7 − A5 A7 − A6C5a1)b2 + A1 A4 A6 − A2 A4 A8 + A5 A8a1
)
α1

)
α−1.

The decomposition (factorization) of the ordinary differential Equation (39) is
as follows: (

D2 − k2
1

)(
D2 − k2

2

)(
D2 − k2

3

)(
D2 − k2

4

){
Θ, N, Π, ϕ

}
(x) = 0 (40)

The quantities k2
n(n = 1, 2, 3, 4) represent the roots of the characteristic equation.

The following formulation can be used to represent the linear general solutions of
Equation (39) for the key fields:

Θ(x) =
4

∑
i=1

Qi(b, ω)e−kix. (41)

ϕ(x) =
4

∑
i=1

Q′ i(b, ω)e−kix =
4

∑
i=1

h1iQi(b, ω)e−kix, (42)

Π(x) =
4

∑
i=1

Q′′ i(b, ω)e−kix =
4

∑
i=1

h2iQi(b, ω)e−kix, (43)

N(x) =
4

∑
i=1

Q′′′ i(b, ω)e−kix =
4

∑
i=1

h3iQi(b, ω)e−kix. (44)

where Qi i = 1, 2, 3, 4,Q′′′ i,Q′ i and Q′′ i are unspecific parameters.

h1i =
(d1k4

i +d2k2
i +d3)

(k6
i +d4k4

i +d5k2
i +d6)

, h3i = − (ε4)

(k2
i−α1)

, h2i =
(A2k4

i +d7k2
i +d8)

(k6
i +d4k4

i +d5k2
i +d6)

,

d1 = A2C5 − A5, d2 = −A2b2C5 − A2C5α1 − C5a2ε4 + A1 A5 + A5α1,

d3 = b2 A2C5α1 + b2C5a2ε4 − A1 A5α1, d4 = C5a1 − A1 − A4 − α1,

d5 = −b2C5a1 − C5a1α1 + A1 A4 + A1α1 + A4α1, d6 = b2α1a1C5 − A1 A4α1,

d7 = −A2 A4 − A2α1 + A5a1 − a2ε4, d8 = A2 A4α1 + A4a2ε4 − a1 A5α1.

However, Equation (34) can be broken down into the following parts:(
D2 − k2

5

)
ψ(x) = 0 (45)

where k2
5, the fifth root of Equation (34), has the following form:

k5 = ±
√

A3 = ±ω
√

a3 (46)
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Equation (45), when resolved, yields:

ψ(x) = Q5(b, ω) exp(−k5x) (47)

When the normal mode analysis is used, the displacement components (elastic waves)
and the stress (mechanical waves) components can be recast terms Qi according to
Equations (25) and (30), respectively.

u(x) = −
4

∑
i=1

Qih2ikie−kix − ibQ5e−k5x, w(x) =
4

∑
i=1

ibh2iQie−kix − k5Q5e−k5x (48)

σxx =
4
∑

n=1
Qn(h2i(k2

n − b2a2)− A2 − h3i + a1h1i)e−knx − ibk5(a2 − 1)Q5e−k5x,

σzz =
4
∑

n=1
Qn(h2i(a2k2

n − b2)− A2 − h3i + a1h1i)e−knx − ibk5(1− a2)Q5e−k5x,

σxz =
4
∑

n=1
ibQnkn(h2i − 1)e−knx + (1 + k2

5)Q5e−k5x.


(49)

where the roots can be chosen in the positive real form Re(kn) > 0.

4. Boundary Conditions

To achieve the whole solution, unknown parameters Qn must be identified. The outer
microelongated semiconductor surface (at x = 0) is subjected to a few conditions in this
instance [50].

At x = 0, the following mechanical loads with load pressure P conditions under
harmonic wave analysis can be taken (Figure 1):

σxx = −P⇒⇒ σxx = −p exp(ωt + ibz),
P(x, z, t) = p(x) exp(ωt + ibz)

}
(50)

The other mechanical condition for the tangent stress component can be chosen as a
traction free

σxz = 0⇒⇒ σxz = 0, atx = 0. (51)

In a thermally isolated application that has the following formulation, the thermal
condition at x = 0 is chosen:

∂Θ
∂x

= 0⇒⇒ dΘ
dx

= 0 (52)

The elongation case for the microelongation condition at the free surface is derived at
negative elongation function φ as:

ϕ = −φ (53)

Recombination operations can be used to determine the carrier density condition,
which can be used to estimate the electron concentration and velocity at x = 0 as:

dN
dx

= − s̃n0

DE
(54)

The following relationships can be recast as follows, using Equations (50)–(53) and the
values of T, σxx, σxz, ϕ, and:

4
∑

n=1
Qn(h2i(k2

n − b2a2)− A2 − h3i + a1h1i)− ibk5(a2 − 1)Q5 = −p exp(ωt + ibz),

4
∑

n=1
ibQnkn(h2i − 1) + (1 + k2

5)Q5 = 0.

 (55)
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4

∑
i=1
−kiQi(b, ω) = 0,

4

∑
i=1

h1iQi(b, ω) = 0,
4

∑
i=1

h3ikiQi(b, ω) =
s̃n0

DE
(56)

When the parameters Qn are definite while solving the system of Equations (54) and (55),
complete solutions are found.

5. Validation
5.1. Generalized Microelongation Thermoelasticity Theory

When the plasma wave’s carrier density N(x, y, t) is disregarded (i.e., N = 0), the
microelongation magneto-thermoelasticity theory is produced without consideration of
optical energy. The governing Equations (2)–(5) are reduced to [16,17] in this situation:

(λ + µ)uj,ij + µui,jj + λo ϕ,i − γ̂ (1 + vo
∂
∂t )T,i +

⇀
F = ρ

..
ui,

αo ϕ,ii − λ1 ϕ− λouj,j + γ̂1 (1 + vo
∂
∂t )T = 1

2 jρ
..
ϕ,

(KT,i),i − ρCE(n1 + τo
∂
∂t )

.
T − γ̂ To(n1 + noτo

∂
∂t )

.
ui,i = γ̂1 To

.
ϕ.

 (57)

5.2. The Generalized Theory of Photothermoelasticity

The magneto-photo-thermoelasticity theory is obtained when the elongation parame-
ters are ignored (αo = λo = λ1 = 0). Equations (2)–(5) of the system are reduced to:

.
N = DEN,ii − N

τ + κ T,

(λ + µ)uj,ij + µui,jj − γ̂(1 + vo
∂
∂t )T,i − δnN,i +

⇀
F = ρ

..
ui,

(KT,i),i − ρCE(n1 + τo
∂
∂t )

.
T − γ̂To(n1 + noτo

∂
∂t )

.
ui,i +

Eg
τ N = 0.

 (58)

This issue is investigated by [28,30].

5.3. Different Magneto-Photo-Thermoelasticity Models for Microelongation

According to the various values of the thermal memory (τo, vo) and the constants n1
and no, the various models in this work can be obtained as follows [49]:

(I) When n1 = 1 , no = τo = vo = 0, the coupled thermoelasticity (CD) model was
visible [49].

(II) When n1 = no = 1, vo = 0, τo > 0, the Lord and Shulman (LS) model was visible [48].
(III) When n1 = 1, no = 0, vo ≥ τo > 0, the Green and Lindsay (GL) model was visible [47].

5.4. The Variable Thermal Conductivity

When the negative parameter is ignored, K1 = 0, and the microelongated semiconduc-
tor medium is independent of the gradient temperature, K = K0. In this instance, the issue
is investigated when thermal conductivity is constant while considering the effects of the
magnetic field.

5.5. Influence of Electromagnetic Field

The induced magnetic field and induced electric field are also disregarded when the
effect of a uniform magnetic field is disregarded (H0 = 0). When the thermal conductiv-
ity changes without a magnetic field, Lorentz’s electromagnetic force disappears in this
situation, and the system explains the microelongation photo-thermoelasticity hypothesis.

The relationship between T and Θ can be discovered under the map transform, which
is described in Equations (6) and (7) as follows:

Θ =
1

K0

T∫
0

K0(1 + K1T)dT = T+
K1

2
T2 =

K1

2
(T +

1
K1

)
2
− 1

2K1
(59)
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T =
1

K1

[√
1 + 2K1Θ− 1

]
=

1
K1

[√
1 + 2K1Θ exp(ωt + ibz)− 1

]
(60)

6. Discussion and Numerical Outcomes

This section simulates the wave propagation of the primary fields within the microe-
longated semiconductor medium. The physical constants of silicon (Si) are utilized as an
example of a semiconductor medium to carry out this simulation numerically. This numeri-
cal simulation was completed graphically using MATLAB (2022a) on a personal computer.
The physical constants entered for silicon material are as follows in Table 1 [50,51].

Table 1. The physical input parameters of Si medium in SI units.

Unit Symbol Value Unit Symbol Value

Nm−2 λ
µ

6.4× 1010

6.5× 1010 m3 dn −9 × 10−31

kg/m3 ρ 2330 sec (s) τ0 0.00005

K T0 800 m2 j 0.2× 10−19

sec (s) τ 5 × 10−5 N α0 0.779× 10−9

K−1 αt1 0.04 × 10−3 Nm−2 λ0 0.5× 1010

Wm−1K−1 K0 150 Nm−2 k 1010

J/(kg K) CE 695 Nm−2 λ1 0.5× 1010

m2/s DE 2.5× 10−3 K−1 αt2 0.017 × 10−3

m/s s̃ 2 m−3 ñ0 1020

H/m µ0 4π × 10−7 sec (s) ν0 0.0005

F/m ε0 8.85× 10−12 sec (s) t 0.001

When the following parameters are selected without dimension, as in b = 1 and p = 2
during a small time t = 0.001 in the range 0 ≤ x ≤ 5 at z = −1 andω = ω0 + iζ (ζ = 0.05
and ω0 = −2.5), the transient waves in this simulation are graphed. On the other hand,
the boundary surface conditions have an impact on the transient waves that are graphed.

According to the ED and TED, the principal physical distributions’ wave propagation
s varies with the axial horizontal distance under the influence of variable thermal conduc-
tivity, and the magnetic field, as shown in Figure 1. According to the three different models
CD, LS, and GL, the distributions of the thermal wave (temperature), microelongation
wave function, and the elastic wave of displacement, carrier intensity in the context of
the plasma wave, and the two mechanical waves σxx and σxz are investigated during the
photo-thermoelasticity theory. n0 and n1 are two factors and thermal memory values that
determine the three different models of photo-thermoelasticity.

Figure 2 overall perspective shows that every physical quantity being studied sat-
isfies the surface requirements of the microelongated semiconductor. The thermal wave
(Figure 2a) and carrier density distribution start at zero and positive values, respectively,
and increase in amplitude to reach their maximum values under the pressure force of the
electromagnetic field and the thermal impact of light. The temperature distribution drops
exponentially with wave behavior until it converges with the zero line as the distance
grows, at which point it reaches its lowest value. However, the plasma wave (Figure 2d) in
the second band exhibits a wave behavior, decreasing and increasing until it converges to
the zero line. The two subfigures show that the thermal wave and plasma wave behaviors
match those of the experiments reported in [51]. The microelongation wave propagation
(Figure 2b), which starts at the surface from zero and declines in the closed initial range
due to the magnetic pressure force and grows then decreases regularly with the wave
behavior, can be used to characterize the microelongation scalar function. Due to the weak
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magnetic field far from the semiconductor surface, the microelongation wave eventually
converges to the zero line and establishes equilibrium inside the medium. The elastic wave
(Figure 2c), which has a displacement component that can be defined, begins on the surface
and rapidly rises as a result of an increase in particle vibrations caused by the magnetic
field’s pressure force and thermal stimulation to reach its maximum value. However, in the
second range, the elastic wave alternates between periodic drops and increases as wave
behavior spreads with the convergence of the zero line, eventually reaching the equilibrium
state. The distribution of mechanical waves (Figure 2e) are represented by the tangent
stress component σxz and normal stress component σxx. The normal distributions σxx
decline in the first range, increase in the second range, and then regularly decrease and
grow with wave behavior until they reach the equilibrium state. The tangent distribution
σxz, (Figure 2f) on the other hand, starts at zero and decreases close to the surface until it
approaches the minimal value. In the second range, as the distance increases, the tangent
distribution σxz gradually grows until it hits the zero line (state of equilibrium). The wave
propagations of the physical fields are impacted by the various relaxation time values. All
of the subforms exhibit the same behavior for wave propagation processes with varied
photothermal elasticity model values, but the extent of the differences depends on the
values of the various relaxation times.
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microelongation-magneto-photo-thermoelasticity models.
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Figure 3a−f compare the primary physical fields in two separate situations when
a magnetic field was present at the same time for relatively brief periods. When the
silicon material’s microelongation properties are disregarded, the first scenario is obtained.
However, when the microelongation characteristics of the microelongated silicon material
are taken into consideration, the second scenario is explored. According to the GL model,
all calculations are carried out within the framework of the magneto-photo-thermoelasticity
theory. This figure shows how the microelongation settings affect wave propagations and
their magnitudes.
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wave propagations of main physical fields with horizontal non-dimensional axis according to the GL
model and a magnetic field both with and without microelongation parameters.

The behavior of wave propagations with distance in two situations is explained
in Figure 4a–f. The first scenario demonstrates how the main physical fields change
when a magnetic field is present (with a magnetic field). However, the second scenario
demonstrates how the primary physical fields change when the magnetic field is absent
(without the magnetic field). The GL model is used to implement the comparisons under
the influence of microelongation parameters for the same short non-dimensional period.
All wave propagations in all fields are significantly impacted by the magnetic field.



Mathematics 2022, 10, 4270 14 of 18Mathematics 2022, 10, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 4. ((a) temperature distribution, (b) microelongation distribution , (c) displacement distribu-

tion, (d) carrier density distribution, (e) normal stress distribution, and (f) tangent stress distribu-

tion) The wave propagations of main physical fields with horizontal non-dimensional axis accord-

ing to the GL model, as affected by microelongation parameters both with and without a magnetic 

field. 

Figure 5a–f explain how wave propagation with distance behaves in three different 

circumstances. The first case shows how the main physical fields alter when thermal con-

ductivity becomes temperature-independent. The second and third cases, on the other 

hand, show how the fundamental physical fields alter when the thermal conductivity is 

temperature-dependent. For the same brief non-dimensional period, comparisons are im-

plemented using the GL model under the effect of microelongation parameters. The mag-

netic field has a substantial effect on all wave propagations in all fields. 

Figure 4. ((a) temperature distribution, (b) microelongation distribution, (c) displacement distribution,
(d) carrier density distribution, (e) normal stress distribution, and (f) tangent stress distribution) The
wave propagations of main physical fields with horizontal non-dimensional axis according to the GL
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Figure 5a–f explain how wave propagation with distance behaves in three different
circumstances. The first case shows how the main physical fields alter when thermal
conductivity becomes temperature-independent. The second and third cases, on the other
hand, show how the fundamental physical fields alter when the thermal conductivity is
temperature-dependent. For the same brief non-dimensional period, comparisons are
implemented using the GL model under the effect of microelongation parameters. The
magnetic field has a substantial effect on all wave propagations in all fields.

Photothermal technology (PTT) is used in modern medicine as a non-invasive, selective
treatment strategy for many different types of cancer. This technique is based on the
conversion of light energy into heat on near-infrared laser irradiation. This is one of the
most recent applications of this technology [52]. In modern industries, semiconductors are
used to generate and store clean energy.
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29 

Figure 4 shows the wave propagations of physical fields with horizontal axes in accordance 

with the GL model under the impact of magnetic field, as affected by microelongation 

parameters both different values of variable thermal conductivity.  

(a) (b)

(c) (d)

(e) (f)

Figure 5. ((a) temperature distribution, (b) microelongation distribution, (c) displacement distribution,
(d) carrier density distribution, (e) normal stress distribution, and (f) tangent stress distribution) The
wave propagations of main physical fields with horizontal non-dimensional axis according to the
GL model under the impact of the magnetic field, as affected by microelongation parameters with
different values of variable thermal conductivity.

7. Conclusions

The photo-thermoelasticity theory is investigated when the microelongated semicon-
ductor material is used, and a novel model is used to do so. When considering thermal-
photo-excitation transport processes, the electromagnetic field is taken into consideration
when the thermal conductivity is variable. According to the TD and TED with the modi-
fication of thermal memory, the governing equations describe the overlapping between
the magneto-mechanical-thermal-plasma waves in 2D. According to the harmonic waves
technique, the main equations are analyzed using the normal mode analysis. For the physi-
cal fields to reach an equilibrium condition, the wave distributions must disappear. The
thermal memories that govern the CD, LS, and GL models are what determine how waves
propagate. Therefore, the amplitude of wave propagation is greatly influenced by thermal
memories. The wave propagation distributions are impacted by the microelongation factors.



Mathematics 2022, 10, 4270 16 of 18

On the other hand, the magnetic field increases the particle vibrations, which has an impact
on how waves behave when electronics are deformed again. Many different industries,
including sensors, medical devices, solar cells, and electrical circuits, use materials that are
microelongated.
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Nomenclature

λ, µ Lame’s parameters (N/m2).
δn = (3λ + 2µ)dn Deformation potential difference (Nm).
dn Coefficient of ED (m3)
T0 Reference temperature in its natural state (K)
γ̂ = (3λ + 2µ)αt1 Volume thermal expansion (NK/m2).
σij Microelongational elastic stress (N/m2)
ρ The density of the microelongated sample (kg/m3)
αt1 Linear thermal expansion (K−1)
n0 Equilibrium carrier concentration
CE Specific heat at constant strain (J/(kg K))
K Thermal conductivity (Wm−1K−1)
DE Carrier diffusion coefficient (m2/s)
τ The lifetime of photogenerated carriers (s)
Eg Energy gap (eV)
ei j Components of the strain tensor
j0 Microinertia of microelement (m2)
a0, α0, λ0, λ1 Microelongational material parameters (N,N, Nm−2,Nm−2)
τ0, ν0 Thermal relaxation times (s)
ϕ Scalar microelongational function
mk Components of the microstretch vector
s = skk Stress tensor component (N/m2)
δik Kronecker delta
s̃ Recombination velocities (m/s)

References
1. Ghini, M.; Curreli, N.; Camellini, A.; Wang, M.; Asaithambi, A.; Kriegel, I. Photodoping of metal oxide nanocrystals for

multi-charge accumulation and light-driven energy storage. Nanoscale 2021, 13, 8773. [CrossRef] [PubMed]
2. Almoneef, A.; El-Sapa, S.; Lotfy, K.; El-Bary, A.; Saeed, A. Laser Short-Pulse Effect on Thermodiffusion Waves of Fractional Heat

Order for Excited Nonlocal Semiconductor. Adv. Condens. Matter. Phys. 2022, 2022, 1523059. [CrossRef]
3. Singh, R.; Singh, R.R. Optical properties of ZnS quantum dots: Applications in solar cells and biomedicine. Biointerface Res. Appl.

Chem. 2022, 13, 158–167.

http://doi.org/10.1039/D0NR09163D
http://www.ncbi.nlm.nih.gov/pubmed/33959732
http://doi.org/10.1155/2022/1523059


Mathematics 2022, 10, 4270 17 of 18

4. Li, J.-H.; Wu, J.; Yu, Y.-X. DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work
function and band gap changes and I–V responses. Appl. Surf. Sci. 2021, 546, 149104. [CrossRef]

5. Amouami, E.I.; Perez, L.M.; Feddi, K.; El-Yadri, M.; Dujardin, F.; Suazo, M.J.; Laroze, D.; Courel, M.; Feddi, E. Influence of
geometrical shape on the characteristic of the multiple InN/LnxGa1-xN quantum dot solar cells. Nanomaterials 2021, 11, 1317.
[CrossRef] [PubMed]

6. Eringen, A.C. Microcontinuum Field Theories. In Foundations and Solids; Springer: New York, NY, USA, 1999; Volume 1.
7. Eringen, A.C. Linear theory of micropolar elasticity. J. Math. Mech. 1966, 15, 909–923.
8. Eringen, A.C. Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 1990, 28, 1291–1301. [CrossRef]
9. Singh, B. Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Eng. Sci. 2001, 39,

583–598. [CrossRef]
10. Othman, M.; Lotfy, K. The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with

thermal relaxation. J. Comp. Theor. Nanosci. 2015, 12, 2587–2600. [CrossRef]
11. Cicco, D.; Nappa, L. On the theory of thermomicrostretch elastic solids. J. Therm. Stress. 1999, 22, 565–580.
12. Othman, M.; Lotfy, K. On the plane waves of generalized thermo-microstretch elastic half-space under three theories. Int. Comm.

Heat Mass Trans. 2010, 37, 192–200. [CrossRef]
13. Abouelregal, A.; Marin, M. The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and

Rectified Sine Wave Heating. Mathematics 2020, 8, 1128. [CrossRef]
14. Othman, M.; Lotfy, K. Effect of rotating on plane waves in generalized thermo-microstretch elastic solid with one relaxation time.

Multidis. Model. Mat. Str. 2011, 7, 43–62. [CrossRef]
15. Ramesh, G.; Prasannakumara, B.; Gireesha, B.; Rashidi, M. Casson fluid flow near the stagnation point over a stretching sheet

with variable thickness and radiation. J. Appl. Fluid Mech. 2016, 9, 1115–1122. [CrossRef]
16. Ezzat, M.; Abd-Elaal, M. Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous

medium. J. Frankl. Inst. 1997, 334, 685–706. [CrossRef]
17. Shaw, S.; Mukhopadhyay, B. Periodically varying heat source response in a functionally graded microelongated medium. Appl.

Math. Comput. 2012, 218, 6304–6313. [CrossRef]
18. Shaw, S.; Mukhopadhyay, B. Moving heat source response in a thermoelastic micro-elongated Solid. J. Eng. Phys. Thermophys.

2013, 86, 716–722. [CrossRef]
19. Ailawalia, P.; Sachdeva, S.; Pathania, D. Plane strain deformation in a thermo-elastic microelongated solid with internal heat

source. Int. J. Appl. Mech. Eng. 2015, 20, 717–731. [CrossRef]
20. Sachdeva, S.; Ailawalia, P. Plane strain deformation in thermoelastic micro-elongated solid. Civ. Environ. Res. 2015, 7, 92–98.
21. Ailawalia, P.; Kumar, S.; Pathania, D. Internal heat source in thermoelastic micro-elongated solid under Green Lindsay theory.

J. Theor. Appl. Mech. 2016, 46, 65–82. [CrossRef]
22. Marin, M.; Lupu, M. On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vibrat. Control 1998, 4, 507–518.

[CrossRef]
23. Marin, M.; Stan, G. Weak solutions in Elasticity of dipolar bodies with stretch. Carpath. J. Math. 2013, 29, 33–40. [CrossRef]
24. Marin, M. Harmonic Vibrations in Thermoelasticity of Microstretch Materials. J. Vib. Acoust. Trans. ASME 2010, 132, 044501.

[CrossRef]
25. Marin, M.; Othman, M.; Abbas, I. An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic

material with voids. J. Comp. Theor. Nanosci. 2015, 12, 1594–1598. [CrossRef]
26. Othman, M.; Said, S.; Marin, M. A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under

the effect of gravity with three-phase-lag model. Int. J. Num. Meth. Heat Fluid Flow 2019, 29, 4788–4806. [CrossRef]
27. Hobiny, A.; Alzahrani, F.; Abbas, I.; Marin, M. The effect of fractional time derivative of bioheat model in skin tissue induced to

laser irradiation. Symmetry 2020, 12, 602. [CrossRef]
28. Gordon, J.P.; Leite, R.C.C.; Moore, R.S.; Porto, S.P.S.; Whinnery, J.R. Long-transient effects in lasers with inserted liquid samples.

Bull. Am. Phys. Soc. 1964, 119, 501–510. [CrossRef]
29. Kreuzer, L.B. Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 1971, 42, 2934. [CrossRef]
30. Tam, A.C. Ultrasensitive Laser Spectroscopy; Academic Press: New York, NY, USA, 1983; 108p.
31. Tam, A.C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381. [CrossRef]
32. Tam, A.C. Photothermal Investigations in Solids and Fluids; Academic Press: Boston, MA, USA, 1989; 33p.
33. Hobinya, A.; Abbas, I. A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys.

2019, 15, 102588. [CrossRef]
34. Todorovic, D.M.; Nikolic, P.M.; Bojicic, A.I. Photoacoustic frequency transmission technique: Electronic deformation mechanism

in semiconductors. J. Appl. Phys. 1999, 85, 7716–7726. [CrossRef]
35. Song, Y.Q.; Todorovic, D.M.; Cretin, B.; Vairac, P. Study on the generalized thermoelastic vibration of the optically excited

semiconducting microcantilevers. Int. J. Solids Struct. 2010, 47, 1871. [CrossRef]
36. Lotfy, K. A novel model for Photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to

mechanical ramp type with two-temperature theory and magnetic field. Sci. Rep. 2019, 9, 3319. [CrossRef] [PubMed]
37. Lotfy, K. Effect of Variable Thermal Conductivity during the Photothermal Diffusion Process of Semiconductor Medium. Silicon

2019, 11, 1863–1873. [CrossRef]

http://doi.org/10.1016/j.apsusc.2021.149104
http://doi.org/10.3390/nano11051317
http://www.ncbi.nlm.nih.gov/pubmed/34067706
http://doi.org/10.1016/0020-7225(90)90076-U
http://doi.org/10.1016/S0020-7225(00)00051-3
http://doi.org/10.1166/jctn.2015.4067
http://doi.org/10.1016/j.icheatmasstransfer.2009.09.017
http://doi.org/10.3390/math8071128
http://doi.org/10.1108/15736101111141430
http://doi.org/10.18869/acadpub.jafm.68.228.24584
http://doi.org/10.1016/S0016-0032(96)00095-6
http://doi.org/10.1016/j.amc.2011.11.109
http://doi.org/10.1007/s10891-013-0887-y
http://doi.org/10.1515/ijame-2015-0047
http://doi.org/10.1515/jtam-2016-0011
http://doi.org/10.1177/107754639800400501
http://doi.org/10.37193/CJM.2013.01.12
http://doi.org/10.1115/1.4000971
http://doi.org/10.1166/jctn.2015.3934
http://doi.org/10.1108/HFF-04-2019-0359
http://doi.org/10.3390/sym12040602
http://doi.org/10.1063/1.1713919
http://doi.org/10.1063/1.1660651
http://doi.org/10.1103/RevModPhys.58.381
http://doi.org/10.1016/j.rinp.2019.102588
http://doi.org/10.1063/1.370576
http://doi.org/10.1016/j.ijsolstr.2010.03.020
http://doi.org/10.1038/s41598-019-39955-z
http://www.ncbi.nlm.nih.gov/pubmed/30824782
http://doi.org/10.1007/s12633-018-0005-z


Mathematics 2022, 10, 4270 18 of 18

38. Alharthi, H.A. Characterization of the Vibration and Strain Energy Density of a Nanobeam under Two-Temperature Generalized
Thermoelasticity with Fractional-Order Strain Theory. Math. Comput. Appl. 2021, 26, 78. [CrossRef]

39. Abbas, I.; Alzahrani, F.; Elaiw, A. A DPL model of photothermal interaction in a semiconductor material. Waves Rand. Comp.
Media 2019, 29, 328–343. [CrossRef]

40. Khamis, A.; El-Bary, A.; Lotfy, K.; Bakali, A. Photothermal excitation processes with refined multi dual phase-lags theory for
semiconductor elastic medium. Alex. Eng. J. 2020, 59, 1–9. [CrossRef]

41. Lotfy, K. A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress.
Waves Ran. Comp. Med. 2021, 31, 83–100. [CrossRef]

42. Alzahrani, F.S.; Abbas, I. Photo-Thermal Interactions in a Semiconducting Media with a Spherical Cavity under Hyperbolic
Two-Temperature Model. Mathematics 2020, 8, 585. [CrossRef]

43. Lotfy, K.; Kumar, R.; Hassan, W.; Gabr, M. Thermomagnetic effect with microtemperature in a semiconducting Photothermal
excitation medium. Appl. Math. Mech. Engl. Ed. 2018, 39, 783–796. [CrossRef]

44. Yadav, A. Photothermal plasma wave in the theory of two-temperature with multi-phase-lag thermo-elasticity in the presence of
magnetic field in a semiconductor with diffusion. Waves Random Complex Media 2022, 32, 2416–2444. [CrossRef]

45. Lotfy, K.; Hassan, W.; El-Bary, A.; Kadry, M. Response of electromagnetic and Thomson effect of semiconductor medium due to
laser pulses and thermal memories during photothermal excitation. Results Phys. 2020, 16, 102877. [CrossRef]

46. Mun, J.; Ochiai, Y.; Wang, W.; Zheng, Y.; Zheng, Y.Q.; Wu, H.C.; Matsuhisa, N.; Higashihara, T.; Tok, J.B.; Yun, Y.; et al. A design
strategy for high mobility stretchable polymer semiconductors. Nat Commun. 2021, 12, 3572. [CrossRef] [PubMed]

47. Lord, H.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solid. 1967, 15, 299–309. [CrossRef]
48. Green, A.; Lindsay, K. Thermoelasticity. J. Elast. 1972, 2, 1–7. [CrossRef]
49. Biot, M. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [CrossRef]
50. Mandelis, A.; Nestoros, M.; Christofides, C. Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at

elevated temperatures. Opt. Eng. 1997, 36, 459–468. [CrossRef]
51. Liu, J.; Han, M.; Wang, R.; Xu, S.; Wang, X. Photothermal phenomenon: Extended ideas for thermophysical properties characteri-

zation. J. Appl. Phys. 2022, 131, 065107. [CrossRef]
52. Han, H.S.; Choi, K.Y. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications.

Biomedicines 2021, 9, 305. [CrossRef]

http://doi.org/10.3390/mca26040078
http://doi.org/10.1080/17455030.2018.1433901
http://doi.org/10.1016/j.aej.2019.11.016
http://doi.org/10.1080/17455030.2019.1566680
http://doi.org/10.3390/math8040585
http://doi.org/10.1007/s10483-018-2339-9
http://doi.org/10.1080/17455030.2020.1854489
http://doi.org/10.1016/j.rinp.2019.102877
http://doi.org/10.1038/s41467-021-23798-2
http://www.ncbi.nlm.nih.gov/pubmed/34117254
http://doi.org/10.1016/0022-5096(67)90024-5
http://doi.org/10.1007/BF00045689
http://doi.org/10.1063/1.1722351
http://doi.org/10.1117/1.601217
http://doi.org/10.1063/5.0082014
http://doi.org/10.3390/biomedicines9030305

	Introduction 
	The Main Equations and Mathematical Model 
	Analyze Harmonic Waves 
	Boundary Conditions 
	Validation 
	Generalized Microelongation Thermoelasticity Theory 
	The Generalized Theory of Photothermoelasticity 
	Different Magneto-Photo-Thermoelasticity Models for Microelongation 
	The Variable Thermal Conductivity 
	Influence of Electromagnetic Field 

	Discussion and Numerical Outcomes 
	Conclusions 
	References

