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Abstract: In this paper, bifurcations in the solution of the Navier–Stokes equations are studied and
multiple solutions of the driven semi-elliptical cavity flow are presented. The two-dimensional
steady incompressible driven viscous flow in a semi-elliptical cavity is solved numerically. To this
end, the problem is formulated using an elliptic coordinate system that transforms the geometry
conformally and provides a body fitted coordinate system. The presented results show that above
a bifurcation Reynolds number the solution of the governing flow equations bifurcates and there
exist multiple solutions for a particular Reynolds number when the aspect ratio of the semi-elliptical
cavity geometry is 0.26 6 D 6 0.8. The bifurcation Reynolds numbers for different aspect ratios and
also multiple solutions at different Reynolds numbers are presented in detail.

Keywords: Navier–Stokes equations; semi-elliptical cavity flow; bifurcation Reynolds number;
multiplicity of solutions
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1. Introduction

The governing Navier–Stokes equations in fluid mechanics are the nonlinear systems
of equations and they can possess more than one solution by nature [1,2]. The non-
uniqueness of solutions of the Navier–Stokes Equations is primarily due to the nonlinearity
of the differential equations, or variation of geometric or fluid mechanical parameters [1].
Finding and dealing with flow problems that have multiple solutions is a challenging
and arduous task. These flow problems with multiple solutions exhibit interesting flow
features; therefore, they are interesting and intriguing for applied mathematicians and fluid
dynamics researchers.

In the literature, there are some studies that present particular fluid flow problems
that have multiple solutions at a given Reynolds number. As an example of such flow
problems that have multiple solutions, Lemée et al. [3] and Prasad et al. [4] presented
multiple solutions to square cavity flow driven by two opposite-facing walls. Similarly,
Wahba [5] and Perumal et al. [6] presented multiple solutions of square cavity flow driven
by two non-facing walls. Moreover, Zhuo et al. [7], Wahba [5] and Perumal et al. [6]
presented multiple solutions of square cavity flow driven by four side walls. These studies
are examples for flow problems with square cavity geometry that has multiple solutions.

As an example of different geometry flow problems, Albensoeder et al. [8] studied the
rectangular cavity flow driven by two facing side walls using the finite volume method.
Their [8] results showed that the solution of two-dimensional steady incompressible flow
in a rectangular cavity has several bifurcations and they [8] have presented different non-
unique solutions of rectangular cavity flow for different aspect ratios. Chen et al. [9] also
studied the two-sided driven rectangular cavity flow and presented multiple solutions.

We note that these flow problems, i.e., the square cavity flow driven by two opposite-
facing walls [3,4] or driven by two non-facing walls [5,6] or driven by four side walls [7],
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have mirror symmetry in geometry and also in boundary conditions. The same is true
for the rectangular geometry flow problem which is driven by two facing side walls also.
In these flow problems, it is possible to draw a mirror symmetry line such that across this
line the geometry and also boundary conditions have mirror symmetry. Although these
flow problems have mirror symmetry by definition, the multiple solutions can exhibit
mirror symmetric and non-symmetric behavior [8].

Unlike the mirror-symmetric flow problems mentioned above, Erturk [10] has pre-
sented multiple solutions for arc-shaped cavity flow. The arc-shaped cavity flow problem,
by definition, does not have a mirror-symmetry line. Erturk [10] showed that above a
bifurcation Reynolds number, the driven flow in an arc-shaped cavity with an arc length
ratio less than 1/2, has two different multiplicity solutions at a given particular Reynolds
number. Erturk [10] presented bifurcation Reynolds numbers for arc-shaped cavity geom-
etry with different arc length ratios and also presented multiple solutions of arc-shaped
cavity flow at various Reynolds numbers.

The driven semi-elliptical cavity flow problem looks very similar to the driven arc-
shaped cavity flow problem considered by Erturk [10] in terms of the geometry with a
straight moving lid at the top together with a non-moving stationary curved bottom wall
at the bottom.

In the literature, to the best of our knowledge, there are only two studies that consider
the flow in a semi-elliptical cavity with an aspect ratio less than unity (D < 1). Idris et al. [11]
studied the lid-driven cavity flow inside a semi-ellipse shallow cavity using a non-uniform
mesh. They [11] considered three different aspect ratios (1:4, 1:3 and 3:8) for the semi-ellipse
geometry and presented solutions for a range of Reynolds numbers between Re = 100
and Re = 2000. Ren and Guo [12] studied the steady flow in a two-dimensional lid-driven
semi-elliptical cavity using the lattice Boltzmann simulation method. They [12] considered
a wide range of aspect ratios for the elliptic cavity with values less and also greater than
unity (0.1 ≤ D ≤ 4). They presented detailed solutions of steady flow in a semi-elliptical
cavity up to Re = 5000. Aside from these two studies [11,12], the flow in a semi-elliptical
cavity is not completely understood, especially in terms of bifurcation of the solution at
high Reynolds numbers and this constitutes the main motivation of the present study.

At high Reynolds numbers (high inertial forces, i.e., high velocity, with respect to
small viscous forces, i.e., very small viscosity) stationary flow loses stability and undergoes
transition to turbulence eventually [13]. By nature, turbulence is three-dimensional and
unsteady. Along with transient solutions, stationary steady solutions of Navier–Stokes
equations still exists at high Reynolds number regimes. For the theory of the Navier–Stokes
model, it is important to study the stationary solution at high Reynolds numbers even
when the flow loses stability [14–16].

The aim of this study is then to solve the semi-elliptical cavity flow numerically,
especially at high Reynolds numbers and present bifurcation Reynolds number and also
present multiple solutions of the Navier–Stokes equations as the Reynolds number increases
for different aspect ratios of the elliptic cavity geometry. In Section 2, the numerical
simulation details are given. Comparison of the numerical solutions with the available
solutions found in the literature, discussions of the bifurcation and detailed multiple
solutions of the semi-elliptical cavity flow are presented in Section 3. Finally, in Section 4,
the conclusions are presented.

2. Numerical Method

The schematic and the geometry of the driven semi-elliptical cavity flow problem is
given in Figure 1a. The top wall of the semi-elliptical cavity is moving while the curved
bottom wall is stationary. The incompressible two-dimensional viscous flow inside the
driven semi-elliptical cavity is governed by the Navier–Stokes equation and we consider the
streamfunction and vorticity formulation of the Navier–Stokes equation as the following

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω (1)
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∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
=

1
Re

(
∂2ω

∂x2 +
∂2ω

∂y2

)
(2)

where Re is the Reynolds number based on the top wall velocity (U) and the width of the
top wall (L) which are both equal to unity.

By nature, the geometry of the semi-elliptical cavity flow problem suggests that the
problem is best solved by using an elliptic coordinate system since the elliptic coordinate
system transforms the geometry conformally and automatically generate a body fitted coor-
dinate system. The elliptic coordinate system consists of confocal ellipses and hyperbolae,
as shown in Figure 1b. The transformation from elliptic coordinates (ξ, η) to the Cartesian
(x, y) coordinates is given by

x + iy = c cosh (ξ + iη) (3)

where i is the imaginary number, the elliptic coordinates ξ ≥ 0 and 0 ≤ η ≤ 2π and also c
is the elliptical eccentricity such that

c =
√

a2 − b2 (4)

and a and b denote the semi-major and semi-minor axes of the ellipse as shown in Figure 1a.
In our case, the length of the top wall of the ellipse is equal to unity such that a = 0.5.
Different ellipses are defined by the vertical-to-horizontal semi-axis ratio, i.e., the aspect
ratio (D), defined as the following

D =
b
a

(5)

U=1 , V=0

U=0
V=0

x=−0.5 x=0.5a=0.5

a

y=0

y=−b

b
b

D=

(a) (b)

Figure 1. The schematic of driven semi-elliptical cavity flow, the geometry and the elliptic coordi-
nate system. (a) Schematic of semi-elliptical cavity flow. (b) Elliptic coordinate system.

The Cartesian coordinates can be defined in terms of elliptic coordinates as the follow-
ing

x = c cosh ξ cos η (6)

y = c sinh ξ sin η (7)

Using the elliptic coordinate transformation (3), the streamfunction and vorticity
equations in elliptic coordinates are given by

∂2ψ

∂ξ2 +
∂2ψ

∂η2 = −Jω (8)

∂ψ

∂η

∂ω

∂ξ
− ∂ψ

∂ξ

∂ω

∂η
=

1
Re

(
∂2ω

∂ξ2 +
∂2ω

∂η2

)
(9)
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where J denotes the Jacobian of the transformation and it is defined as the following

J =
∂x
∂ξ

∂y
∂η

− ∂x
∂η

∂y
∂ξ

(10)

We note that the governing equations of the driven semi-elliptical cavity flow are
nonlinear ((8) and (9)); therefore, they are solved in an iterative manner. For this, we assign
pseudo time derivatives to the governing equations as the following

∂ψ

∂t
=

∂2ψ

∂ξ2 +
∂2ψ

∂η2 + Jω (11)

∂ω

∂t
=

1
Re

(
∂2ω

∂ξ2 +
∂2ω

∂η2

)
− ∂ψ

∂η

∂ω

∂ξ
+

∂ψ

∂ξ

∂ω

∂η
(12)

and then solve these equations through the pseudo time until steady state solution (i.e., ∂ψ
∂t ≈

∂ω
∂t ≈ 0) is obtained. We use the ADI (Alternating Implicit Direction) method in order to

advance the above equations in the pseudo time. The ADI method involves a two step
iteration process. In the first step, using the following implicit system, the solution is
advanced to intermediate half time level by using a tri-diagonal solver.

ψn+ 1
2 − ψn

∆t
2

=
∂2ψ

∂ξ2

n+ 1
2

+
∂2ψ

∂η2

n

+ Jωn (13)

ωn+ 1
2 − ωn

∆t
2

=
1

Re
∂2ω

∂ξ2

n+ 1
2

+
1

Re
∂2ω

∂η2

n

− ∂ψ

∂η

n ∂ω

∂ξ

n+ 1
2
+

∂ψ

∂ξ

n ∂ω

∂η

n
(14)

Here, the superscript denotes the pseudo time level. After obtaining the solution at the
intermediate half time level (i.e., ψn+ 1

2 and ωn+ 1
2 ), in the second step, using the following

implicit system, the solution is advanced to a new time level (i.e., ψn+1 and ωn+1) again
using a tri-diagonal solver.

ψn+1 − ψn+ 1
2

∆t
2

=
∂2ψ

∂ξ2

n+ 1
2

+
∂2ψ

∂η2

n+1

+ Jωn+ 1
2 (15)

ωn+1 − ωn+ 1
2

∆t
2

=
1

Re
∂2ω

∂ξ2

n+ 1
2

+
1

Re
∂2ω

∂η2

n+1

− ∂ψ

∂η

n+ 1
2 ∂ω

∂ξ

n+ 1
2
+

∂ψ

∂ξ

n+ 1
2 ∂ω

∂η

n+1
(16)

We note that in order to start the iteration process we assign initially guessed values
to the variables (i.e., ψ0, ω0) and then using the ADI method as described above advance
the solution in the pseudo time.

Using the chain rule, in elliptic coordinate system the U and V velocities in x- and
y-directions are defined as the following

U =
∂ψ

∂y
=

∂ψ

∂ξ

∂ξ

∂y
+

∂ψ

∂η

∂η

∂y

V = −∂ψ

∂x
= −∂ψ

∂ξ

∂ξ

∂x
− ∂ψ

∂η

∂η

∂x
(17)

The no-slip no-penetration boundary conditions state that on the top moving wall
the fluid velocities are U = 1 and V = 0 and on the curved bottom wall they are U = 0 and
V = 0, as shown in Figure 1a. These boundary conditions state that on the wall the value
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of the streamfunction is zero (i.e., ψ = 0). Using the streamfunction Equation (8) and also
Equation (17), the value of the vorticity on the wall is calculated as the following

ω0 =
1
J
−2ψ1

∆η2 +
1
J

2U

∆η
∂η
∂y

(18)

where subscript 0 refers to wall grid points, 1 refers to adjacent grid points next to the wall,
∆η refers to grid spacing and U refers to wall velocity such that it is equal to 1 on the top
moving wall and 0 on the stationary curved bottom wall.

During the numerical iterations, the following residuals are monitored at each pseudo
time step

Residualψ = max

(∣∣∣∣∣ψ
n+1
i,j − ψn

i,j

ψn
i,j

∣∣∣∣∣
)

Residualω = max

(∣∣∣∣∣ω
n+1
i,j − ωn

i,j

ωn
i,j

∣∣∣∣∣
)

(19)

where subscripts show the grid index and max denote the maximum absolute value in
the whole computational domain. By definition, these residuals show the change in
the streamfunction and vorticity variables between two consecutive pseudo time steps
normalized by the streamfunction and vorticity value at the previous pseudo time step.
In the present study we continue the iterations until both Residualψ and Residualω are less
than 10−10, which means that at the convergence the streamfunction and vorticity values
change only 0.00000001% between two iteration steps at a grid point as the maximum and
even less in the other grid points in the computational domain. This convergence criterion
is used for every multiple solution presented in the current study.

The numerical algorithm followed in the present study is given schematically in
Figure 2.

START

ASSIGN
initially guessed values for

ψ 0 , ω 0

SOLVE
equations (13) and (14) for

ψ n+1/2 , ω n+1/2

LOOP
iterations

OUTPUT
results

END

SOLVE
equations (15) and (16) for

ψ n+1 , ω n+1

APPLY
boundary conditions

FALSE

LOOP
next

TRUEIF
convergence is

achieved

Figure 2. The numerical algorithm.
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3. Results and Discussions

Figure 3 shows semi-elliptical cavity geometries that are considered in the present
study. In the present study, numerical solutions of driven semi-elliptical cavity flow with
aspect ratios (D) of 0.26, 0.5 and 0.8 will be presented in detail even though many more
aspect ratios are considered. In all of the considered aspect ratio ellipses, first grid refined
studies are carried out such that all of the solutions presented here are grid independent
solutions.

Figure 3. Semi-elliptical cavity geometries with different aspect ratios.

First, we compare our numerical solutions with those of Idris et al. [11] and Ren and
Guo [12] and consider the same semi-ellipse cases and Reynolds numbers. Idris et al. [11]
considered aspect ratios of 1:4, 1:3 and 3:8 in their study. Their definition of aspect ratio
corresponds to D = 0.5, 0.6667 (2/3) and 0.75, respectively, with the definition used
in the present study. For these aspect ratios, Idris et al. [11] present numerical data for
minimum and also maximum streamfunction values at the primary and secondary vortex
centers and the (x,y) location of the these centers for Re = 100, 500, 1000, 1500 and 2000.
Table 1 tabulates present results at the same Reynolds numbers along with those from
Idris et al. [11].

Table 1. Comparison of flow properties for D = 0.5, 0.6667 and 0.75 aspect ratio semi-ellipses.

D Re = 100 Re = 500 Re = 1000 Re = 1500 Re = 2000

0.5

Present Study

ψmin −0.03656 −0.03819 −0.04069 −0.04018 −0.03917
(x, y) (0.5507, 0.1679) (0.7300, 0.1661) (0.7429, 0.1603) (0.7587, 0.1610) (0.7759, 0.1623)

ψmax - - - 0.00089 0.00206
(x, y) (0.5050, 0.0583) (0.5000, 0.0770)

Idris et al. [11]

ψmin −0.03650 −0.03803 −0.04055 −0.03983 −0.03858
(x, y) (0.5490, 0.1658) (0.7357, 0.1658) (0.7464, 0.1600) (0.7464, 0.1600) (0.7879, 0.1658)

ψmax - - - 0.00096 0.00213
(x, y) (0.5123, 0.0567) (0.5123, 0.0777)

0.6667

Present Study

ψmin −0.04827 −0.05291 −0.05335 −0.05208 −0.05078
(x, y) (0.5849, −0.1089) (0.7100, −0.1199) (0.7094, −0.1258) (0.7275, −0.1234) (0.7433, −0.1210)

ψmax - - 0.00076 0.00283 0.00405
(x, y) (0.3733, −0.2490) (0.3625, −0.2053) (0.3265, −0.1894)

Idris et al. [11]

ψmin −0.04811 −0.05257 −0.05291 −0.05133 −0.05005
(x, y) (0.5855, −0.2288) (0.7138, −0.1200) (0.7138, −0.1276) (0.7357, −0.1200) (0.7571, −0.1200)

ψmax - - 0.00082 0.00301 0.00505
(x, y) (0.3786, −0.0864) (0.3666, −0.2051) (0.3201, −0.1919)

0.75

Present Study

ψmin −0.05396 −0.05941 −0.05950 −0.05820 −0.05690
(x, y) (0.5970, −0.1215) (0.6925, −0.1385) (0.6906, −0.1444) (0.7080, −0.1429) (0.7213, −0.1404)

ψmax - - 0.00119 0.00341 0.00472
(x, y) (0.3101, −0.2491) (0.3019, −0.2077) (0.2791, −0.1915)

Idris et al. [11]

ψmin −0.05376 −0.05888 −0.05874 −0.05716 −0.05538
(x, y) (0.5975, −0.1176) (0.6913, −0.1350) (0.6913, −0.1435) (0.7138, −0.1435) (0.7357, −0.1350)

ψmax - - 0.00126 0.00379 0.00505
(x, y) (0.3201, −0.2518) (0.3087, −0.2083) (0.2862, −0.1928)
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In their study, Ren and Guo [12] also considered aspect ratios of D = 0.25 and 0.5 for
Reynolds number of Re = 500, 1000, 3000 and 5000. Table 2 tabulates present data for the
same cases in comparison with those of Ren and Guo [12].

Table 2. Comparison of flow properties for D = 0.25 and 0.5 aspect ratio semi-ellipses.

D Re = 500 Re = 1000 Re = 3000 Re = 5000

0.25

Present Study

ψmin −0.0184 −0.0183 −0.0202 −0.0199
(x, y) (0.5660, 0.0833) (0.6307, 0.0845) (0.7986, 0.0819) (0.8298, 0.0849)

ψmax - - - 4.9552 ×10−4

(x, y) (0.7107, 0.0326)

Ren and Guo [12]

ψmin −0.0182 −0.0181 −0.0200 −0.0197
(x, y) (0.5640, 0.0835) (0.6294, 0.0840) (0.7979, 0.0825) (0.8296, 0.0845)

ψmax - - - 4.6623 ×10−4

(x, y) (0.7119, 0.0332)

0.5

Present Study

ψmin −0.03819 −0.04069 −0.03708 −0.03410
(x, y) (0.7300, 0.1661) (0.7429, 0.1603) (0.8048, 0.1667) (0.8347, 0.1729)

ψmax - - 0.003400 0.005116
(x, y) (0.3970, 0.0950) (0.2639, 0.1175)

Ren and Guo [12]

ψmin −0.0376 −0.0401 −0.0365 −0.0335
(x, y) (0.7295, 0.1670) (0.7441, 0.1602) (0.8047, 0.1670) (0.8350, 0.1729)

ψmax - - 0.0033 0.0050
(x, y) (0.4033, 0.0938) (0.2676, 0.1172)

Both Tables 1 and 2 show that our numerical results are in very good agreement with
those of Idris et al. [11] and Ren and Guo [12], although we believe that our results are
more accurate due to the body fitted fine mesh used in the numerical simulation together
with the very low residuals considered for the convergence.

In a study, Erturk [10] considered the flow inside a driven arc-shaped cavity and
reported that when the arc length ratio is less than 1/2, above a bifurcation Reynolds
number the arc-shaped cavity flow has multiple solutions for a given particular Reynolds
number. Erturk [10] finds that below a bifurcation Reynolds number, a single solution
exists for the governing Navier–Stokes equations for the arc-shaped cavity flow; however,
above the bifurcation Reynolds number, two different solutions exist for a given particular
Reynolds number. Erturk [10] also finds that this bifurcation Reynolds number varies as
the arc length ratio changes. For arc-shaped cavity geometries with various arc length
ratios, Erturk [10] presented the bifurcation Reynolds number at which multiple solutions
start to exist and also presented the two different solutions of the Navier–Stokes equations
at various Reynolds numbers above the bifurcation Reynolds number. Erturk [10] called
the only solution that exists below the bifurcation Reynolds number the “1st solution” and
also the new solution that starts to exist above the bifurcation Reynolds number the “2nd
solution”. In order to obtain the “1st solution” and also the “2nd solution”, Erturk [10]
made the following statements:

• Below the bifurcation Reynolds number, if the homogeneous solution is used as an
initial guess for the iterations, the obtained solution is the 1st solution.

• Above the bifurcation Reynolds number, if the homogeneous solution is used as an
initial guess for the iterations, the solution always converges to the 2nd solution.

• Below the bifurcation Reynolds number, the 2nd solution does not exist. The 2nd
solution exists only above the bifurcation Reynolds number.

• If the 1st solution with previous smaller Reynolds number is used as an initial guess
for the iterations, it is possible to obtain the 1st solution even above the bifurcation
Reynolds number. The 1st solution exists above the bifurcation Reynolds number.

In the present study, we use the same classification used in Erturk [10] and name the
only solution “1st solution” when the Reynolds number is below the bifurcation Reynolds
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number and also name the new solution that starts to appear above the bifurcation Reynolds
number “2nd solution”. In order to obtain the bifurcation Reynolds number and also the
multiple solutions of the flow problem we follow the procedure given by Erturk [10].

First, we start with a semi-ellipse with D = 0.5 aspect ratio. In order to obtain the
bifurcation Reynolds number whereby the governing flow equations start to have multiple
solutions, we solve the flow problem at incrementally increasing Reynolds numbers using
the homogeneous initial guess for the numerical iterations. Figure 4 shows the stream-
function contours of the solutions obtained at Re = 5058 and also at Re = 5059 when
homogeneous initial guess is used for the considered aspect ratio ellipse (D = 0.5). One can
see that when the Reynolds number is incremented only by “1”, the vortex structure of the
flow and the solution of the governing equations change dramatically. For D = 0.5 aspect
ratio semi-ellipse, the bifurcation Reynolds number is Re = 5059 and starting from this
Reynolds number and above a second solution starts to exist at any considered Reynolds
number. We note that we considered only integer Re values.

(a) (b)

Figure 4. Bifurcation of the solution in driven semi-elliptical cavity flow with D = 0.5 aspect ratio.
(a) Re = 5058 (1st solution). (b) Re = 5059 (2nd solution).

Below the bifurcation Reynolds number, only one solution exists for the governing flow
equations, i.e., the 1st solution, even if different initial guesses are used for the iterations.
Figure 5 shows the evolution of the 1st solution at various Reynolds numbers below the
bifurcation Reynolds number of Re = 5059.

(a) (b)

(c) (d)

Figure 5. The evolution of the 1st solution of driven semi-elliptical cavity flow until Re = 5000 for
D = 0.5 aspect ratio. (a) Re = 1000 (1st solution). (b) Re = 2000 (1st solution). (c) Re = 3000 (1st
solution). (d) Re = 5000 (1st solution).

In order to obtain the 1st solution above the bifurcation Reynolds number, for example,
at Re = 6000, we use the 1st solution at Re = 5058 as initial guess for the iterations.
The obtained 1st solution at Re = 6000 is given in Figure 6a. In order to obtain the 2nd
solution above the bifurcation Reynolds number, for example, at Re = 6000, we use the
2nd solution at Re = 5059 as initial guess for the iterations. The obtained 2nd solution
at Re = 6000 is given in Figure 6b. Then, using the corresponding 1st or 2nd solutions
at previous smaller Reynolds numbers, we solve for the 1st or 2nd solutions at higher
Reynolds numbers. We note that we advance the Reynolds number by incrementing 1000.
Using the previous 1st solution at smaller Reynolds number as initial guess for the next
higher Reynolds number, we were able to obtain the 1st solution until Re = 14,000 at
maximum. Moreover, using the previous 2nd solution at smaller Reynolds number as
initial guess for the next higher Reynolds number, we were able to obtain the 2nd solution
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until Re = 30,000 at maximum. Figure 6 shows the streamfunction contours of both the
1st and 2nd solutions at various same Reynolds numbers until Re = 14,000, i.e., until
the maximum Reynolds number for the 1st solution. Above Re = 14,000, only the 2nd
solution exists and Figure 7 shows the streamfunction contours of the 2nd solution at
various Reynolds numbers until Re = 30,000.

(a) (b)

(c) (d)

(e) (f)

Figure 6. The 1st and 2nd solutions of driven semi-elliptical cavity flow with D = 0.5 aspect
ratio at various same Reynolds numbers. (a) Re = 6000 (1st solution). (b) Re = 6000 (2nd solu-
tion). (c) Re = 10,000 (1st solution). (d) Re = 10,000 (2nd solution). (e) Re = 14,000 (1st solution).
(f) Re = 14,000 (2nd solution).

(a) (b)

(c) (d)

Figure 7. The evolution of the 2nd solution of driven semi-elliptical cavity flow above Re = 14,000 for
D = 0.5 aspect ratio. (a) Re = 15,000 (2nd solution). (b) Re = 20,000 (2nd solution). (c) Re = 25,000
(2nd solution). (d) Re = 30,000 (2nd solution).

For future references, for the 1st and 2nd solutions given in Figures 4–7 we tabulate the
streamfunction (ψ) and vorticity (ω) values at the center of the strongest clockwise rotating
vortex (i.e., at the location of ψmin) and also at the center of the strongest counterclockwise
rotating vortex (i.e., at the location of ψmax) together with the x-y locations of these centers
for the 1st solution in Table 3 and the same for the 2nd solution in Table 4.
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Table 3. Minimum and maximum streamfunction values in the 1st solution, corresponding vorticity
values and (x,y) locations for D = 0.5 aspect ratio.

Re ψ ω x y

ψmin

1000 −4.0692 × 10−2 −10.4608 0.2429 −0.0898
2000 −3.9172 × 10−2 −11.4166 0.2759 −0.0877
3000 −3.7078 × 10−2 −12.3001 0.3048 −0.0833
5000 −3.4102 × 10−2 −13.5900 0.3347 −0.0771
5058 −3.4034 × 10−2 −13.6213 0.3347 −0.0771
6000 −3.3017 × 10−2 −14.0960 0.3439 −0.0744

10,000 −2.9954 × 10−2 −15.6555 0.3677 −0.0693
14,000 −2.7920 × 10−2 −16.8082 0.3813 −0.0652

ψmax

1000 - - - -
2000 2.0556 × 10−3 2.2127 0.0000 −0.1730
3000 3.3996 × 10−3 2.5158 −0.1030 −0.1551
5000 5.1156 × 10−3 3.0504 −0.2361 −0.1325
5058 5.1566 × 10−3 3.0451 −0.2361 −0.1325
6000 5.7257 × 10−3 3.1173 −0.2500 −0.1276

10,000 6.6387 × 10−3 3.2087 −0.2795 −0.1130
14,000 6.7587 × 10−3 3.3534 −0.3047 −0.1046

Table 4. Minimum and maximum streamfunction values in the 2nd solution, corresponding vorticity
values and (x,y) locations for D = 0.5 aspect ratio.

Re ψ ω x y

ψmin

5059 −3.9349 × 10−2 −12.5971 0.2996 −0.0845
6000 −3.8767 × 10−2 −12.9444 0.3086 −0.0841

10,000 −3.6024 × 10−2 −14.2291 0.3351 −0.0786
14,000 −3.3975 × 10−2 −15.1813 0.3503 −0.0739
15,000 −3.3868 × 10−2 −7.1281 0.0328 −0.1112
20,000 −3.3634 × 10−2 −7.2142 0.0631 −0.1126
25,000 −3.3185 × 10−2 −7.2723 0.0862 −0.1116
30,000 −3.2660 × 10−2 −7.3086 0.1024 −0.1129

ψmax

5059 3.8239 × 10−3 4.1063 0.0688 −0.1827
6000 4.2541 × 10−3 4.2504 0.0979 −0.1806

10,000 5.0907 × 10−3 4.9392 0.1681 −0.1680
14,000 5.3289 × 10−3 5.5900 0.2045 −0.1641
15,000 5.3516 × 10−3 5.7343 0.2111 −0.1629
20,000 5.3594 × 10−3 6.3386 0.2375 −0.1594
25,000 5.2923 × 10−3 6.8076 0.2564 −0.1549
30,000 5.1990 × 10−3 7.1876 0.2712 −0.1530

After obtaining the 1st and 2nd solutions of the flow in a driven semi-elliptical cavity
with D = 0.5 aspect ratio, we then extend the analysis for smaller aspect ratios. We first
solve the semi-elliptical cavity flow with D = 0.4 aspect ratio and then solve it for D = 0.3
aspect ratio by repeating the same procedure we follow for the D = 0.5 aspect ratio semi-
ellipse as described above. For D = 0.4 and D = 0.3 aspect ratio semi-elliptical cavity
flows, the bifurcation Reynolds numbers are 5546 and 6673, respectively. The D = 0.4 and
D = 0.3 aspect ratio semi-ellipse cavity geometries are shown in blue color in Figure 3
for comparison with other semi-ellipse geometries. Following this, we then repeat the
same analysis for D = 0.25 aspect ratio semi-elliptical cavity flow. However, for this aspect
ratio, we did not observe any bifurcation in the solution as the Reynolds number increases
such that there was only one solution for any considered Reynolds number. Multiplicity
in the solution does not arise for the D = 0.25 aspect ratio semi-elliptical cavity flow case.
This fact shows that there is a minimum aspect ratio for semi-elliptical cavity flow to have
multiplicity in the solution. In order to find this minimum aspect ratio for the semi-elliptical
cavity flow to have multiple solutions, we start to solve for different aspect ratio cases
incrementing the aspect ratio by 0.01. For any aspect ratio semi-ellipse with D = 0.26 and
above, we find bifurcation in the solution at a certain Reynolds number such that there
exists multiplicity in the solution. However, for any aspect ratio semi-ellipse with D = 0.25
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and below, there is no bifurcation in the solution such that only one solution exists for every
Reynolds number. Thus, the minimum aspect ratio for the semi-elliptical cavity flow such
that multiplicity in the solution exists is D = 0.26.

For this obtained minimum D = 0.26 aspect ratio semi-elliptical cavity flow, Figure 8
shows the solution for Re = 7412 and also for Re = 7413 when homogeneous initial guess
is used for the iterations. As seen in Figure 8a at Re = 7412 in the 1st solution, there is
one counter-rotating vortex just above the curved bottom wall. However, at Re = 7413 in
Figure 8b which is the bifurcation Reynolds number, different than the 1st solution, there are
two separate counter-rotating vortices just above the curved bottom wall in the 2nd solution.

(a) (b)

Figure 8. Bifurcation of the solution in driven semi-elliptical cavity flow with D = 0.26 aspect ratio.
(a) Re = 7412 (1st solution). (b) Re = 7413 (2nd solution).

Figure 9 shows the evolution of the 1st solution of the driven semi-elliptical cavity
flow with D = 0.26 at various Reynolds numbers below the bifurcation Reynolds number.

(a) (b)

(c) (d)

Figure 9. The evolution of the 1st solution of driven semi-elliptical cavity flow until Re = 7000 for
D = 0.26 aspect ratio. (a) Re = 1000 (1st solution). (b) Re = 3000 (1st solution). (c) Re = 5000 (1st
solution). (d) Re = 7000 (1st solution).

For D = 0.26 aspect ratio semi-ellipse, we were able to advance the 1st solution until
a Reynolds number of 16,000. Figure 10 shows both the 1st and 2nd solutions at various
same Reynolds numbers until Re = 16,000.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. The 1st and 2nd solutions of driven semi-elliptical cavity flow with D = 0.26 aspect
ratio at various same Reynolds numbers. (a) Re = 8000 (1st solution). (b) Re = 8000 (2nd solution).
(c) Re = 10, 000 (1st solution). (d) Re = 10,000 (2nd solution). (e) Re = 13,000 (1st solution).
(f) Re = 13,000 (2nd solution). (g) Re = 16,000 (1st solution). (h) Re = 16,000 (2nd solution).
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Above Re = 16,000, only the 2nd solution exists for the driven semi-elliptical cavity
flow with D = 0.26 aspect ratio. For this case, we were able to advance the 2nd solution
until a Reynolds number of 23,000. Figure 11 shows the 2nd solution at various Reynolds
numbers until Re = 23,000 for D = 0.26 aspect ratio semi-elliptical cavity flow.

(a) (b)

(c) (d)

Figure 11. The evolution of the 2nd solution of driven semi-elliptical cavity flow above Re = 16,000 for
D = 0.26 aspect ratio. (a) Re = 17,000 (2nd solution). (b) Re = 19,000 (2nd solution). (c) Re = 21,000
(2nd solution). (d) Re = 23,000 (2nd solution).

Similarly, for future references, for the driven semi-elliptical cavity flow with aspect
ratio D = 0.26, we tabulate the streamfunction (ψ) and vorticity (ω) values at the center of
the strongest clockwise rotating vortex (i.e., at the location of ψmin) and also at the center of
the strongest counterclockwise rotating vortex (i.e., at the location of ψmax) together with
the x–y locations of these centers for the 1st solution in Table 5 and the same for the 2nd
solution in Table 6.

Table 5. Minimum and maximum streamfunction values in the 1st solution, corresponding vorticity
values and (x,y) locations for D = 0.26 aspect ratio.

Re ψ ω x y

ψmin

1000 −1.8995 × 10−2 −16.4531 0.1426 −0.0418
3000 −2.1097 × 10−2 −21.9350 0.3000 −0.0446
5000 −2.0552 × 10−2 −24.5914 0.3328 −0.0413
7000 −1.9230 × 10−2 −27.2741 0.3615 −0.0396
7412 −1.8899 × 10−2 −27.8864 0.3682 −0.0387
8000 −1.8453 × 10−2 −28.7201 0.3748 −0.0378

10,000 −1.7224 × 10−2 −31.1625 0.3920 −0.0351
13,000 −1.5950 × 10−2 −34.0247 0.4066 −0.0325
16,000 −1.5075 × 10−2 −36.2727 0.4161 −0.0307

ψmax

1000 - - - -
3000 4.6730 × 10−7 1.1377 0.1887 −0.1179
5000 6.4819 × 10−4 6.7002 0.2079 −0.0939
7000 1.1217 × 10−3 8.4353 0.2396 −0.0859
7412 1.1997 × 10−3 5.0308 0.0488 −0.0900
8000 1.4603 × 10−3 5.5705 0.0590 −0.0872

10,000 2.1025 × 10−3 5.9618 −0.0154 −0.0826
13,000 2.6358 × 10−3 5.8704 −0.1068 −0.0781
16,000 3.1678 × 10−3 6.9743 −0.2315 −0.0728

Then, we start examining solutions of the semi-elliptical cavity flow with aspect ratios
above D > 0.5. We first solve for D = 0.6, D = 0.7 and D = 0.8 aspect ratio semi-
elliptical cavity flows and we obtain the bifurcation Reynolds number for these flows as
5084, 5968 and 7182, respectively. However, for D = 0.9 aspect ratio, we did not observe
any bifurcation in the solution such that there was no multiplicity in the solution as the
Reynolds number increases. For this aspect ratio semi-ellipse, we obtain only one solution
for any considered Reynolds number. This fact shows that there is a maximum aspect ratio
for semi-elliptical cavity flow to have multiplicity in the solution as well. In order to find
this maximum aspect ratio such that the flow in a semi-elliptical cavity exhibits multiple
solutions, we use the following procedure. First, we choose a high Reynolds number which
is above an expected bifurcation Reynolds number, for example, Re = 12,000. We note
that for semi-elliptical cavity flow with D = 0.8 aspect ratio, the bifurcation Reynolds
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number is 7182; therefore, Re = 12,000 should be well beyond a possible bifurcation. At this
high Reynolds number (above bifurcation Reynolds number), i.e., Re = 12,000, when
the homogeneous initial guess is used for the iterations, the solution obtained is the 2nd
solution as stated by Erturk [10]. We also note that this is true if there is bifurcation in the
solution such that the flow has multiple solutions. Using this chosen Reynolds number,
we then solve the flow in a semi-elliptical cavity by changing the aspect ratio with 0.01
increments in order to see at which aspect ratio the flow starts to change behavior. Figure 12
shows the solutions we obtain when homogeneous initial guess is used for Re = 12,000
and for D = 0.79, 0.8, 0.81 and 0.82 aspect ratio semi-elliptical cavity flows. As seen in
Figure 12, above D = 0.8 when the aspect ratio is incremented by only 0.01, i.e., at D = 0.81,
the solution changes dramatically. We note that beyond this aspect ratio (D > 0.8) the
solution resembles the 1st solution. After several numerical experimentations, we did not
find any multiplicity in the solution for D = 0.81 aspect ratio ellipse and above. Thus we
find the maximum aspect ratio that the semi-elliptical cavity flow exhibits multiplicity in
the solutions as D = 0.8.

Table 6. Minimum and maximum streamfunction values in the 2nd solution, corresponding vorticity
values and (x,y) locations for D = 0.26 aspect ratio.

Re ψ ω x y

ψmin

7413 −1.9781 × 10−2 −26.6336 0.3546 −0.0406
8000 −1.9778 × 10−2 −26.7983 0.3563 −0.0403

10,000 −1.9138 × 10−2 −16.5330 0.1693 −0.0507
13,000 −1.9283 × 10−2 −16.9627 0.1977 −0.0518
16,000 −1.9141 × 10−2 −17.4731 0.2184 −0.0506
17,000 −1.9065 × 10−2 −17.6383 0.2252 −0.0502
19,000 −1.8895 × 10−2 −17.9560 0.2364 −0.0495
21,000 −1.8709 × 10−2 −18.2558 0.2453 −0.0489
23,000 −1.8517 × 10−2 −18.5377 0.2542 −0.0505

ψmax

7413 1.1484 × 10−3 9.4736 0.2331 −0.0890
8000 1.2202 × 10−3 9.8365 0.2376 −0.0885

10,000 1.4310 × 10−3 11.1247 0.2577 −0.0861
13,000 1.6593 × 10−3 11.9499 0.2857 −0.0823
16,000 1.8258 × 10−3 11.9386 0.3081 −0.0767
17,000 1.8698 × 10−3 12.1282 0.3141 −0.0758
19,000 2.0018 × 10−3 5.2195 −0.2900 −0.0666
21,000 2.1800 × 10−3 5.3900 −0.2979 −0.0635
23,000 2.3273 × 10−3 5.5082 −0.3060 −0.0625

(a) (b)

(c) (d)

Figure 12. The solution of semi-elliptical cavity flow at Re = 12,000 with various aspect ratios.
(a) D = 0.79. (b) D = 0.80. (c) D = 0.81. (d) D = 0.82.
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For this obtained maximum D = 0.8 aspect ratio semi-elliptical cavity flow, Figure 13
shows the solution for Re = 7181 and also for Re = 7182 when the homogeneous initial
guess is used for the iterations. As seen in Figure 13, for D = 0.8 aspect ratio semi-ellipse
when the Reynolds number is incremented just by 1 from Re = 7181 to 7182, the flow
topology changes dramatically. Thus, for D = 0.8 aspect ratio semi-ellipse, the bifurcation
Reynolds number is Re = 7182.

(a) (b)

Figure 13. Bifurcation of the solution in driven semi-elliptical cavity flow with D = 0.8 aspect ratio.
(a) Re = 7181 (1st solution). (b) Re = 7182 (2nd solution).

Figure 14 shows the evolution of the 1st solution at various Reynolds numbers which
are below the bifurcation Reynolds number (Re = 7182) for D = 0.8 aspect ratio.

(a) (b)

(c) (d)

Figure 14. The evolution of the 1st solution of driven semi-elliptical cavity flow until Re = 7000 for
D = 0.8 aspect ratio. (a) Re = 1000 (1st solution). (b) Re = 3000 (1st solution). (c) Re = 5000 (1st
solution). (d) Re = 7000 (1st solution).

For D = 0.8 aspect ratio semi-ellipse, we were able to obtain the 2nd solution until
Re = 19,000 at maximum, while on the other hand we obtained the 1st solution until
Re = 25,000 at maximum. In Figure 15, we give both the 1st and 2nd solutions at various
same Reynolds numbers until Re = 19,000. Moreover, Figure 16 shows the evolution of the
1st solution above Re = 19,000 until Re = 25,000.

Similarly, for future references, for the driven semi-elliptical cavity flow with D = 0.8
aspect ratio, we tabulate the streamfunction (ψ) and vorticity (ω) values at the center of the
strongest clockwise rotating vortex (i.e., at the location of ψmin) and also at the center of
the strongest counterclockwise rotating vortex (i.e., at the location of ψmax) together with
the x–y locations of these centers for the 1st solution in Table 7 and the same for the 2nd
solution in Table 8.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15. The 1st and 2nd solutions of driven semi-elliptical cavity flow with D = 0.8 aspect
ratio at various same Reynolds numbers. (a) Re = 8000 (1st solution). (b) Re = 8000 (2nd solu-
tion). (c) Re = 10,000 (1st solution). (d) Re = 10,000 (2nd solution). (e) Re = 15,000 (1st solution).
(f) Re = 15,000 (2nd solution). (g) Re = 19,000 (1st solution). (h) Re = 19,000 (2nd solution).

(a) (b)

Figure 16. The evolution of the 1st solution of driven semi-elliptical cavity flow above Re = 19,000
for D = 0.80 aspect ratio. (a) Re = 20,000 (1st solution). (b) Re = 25,000 (1st solution).
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Table 7. Minimum and maximum streamfunction values in the 1st solution, corresponding vorticity
values and (x,y) locations for D = 0.80.

Re ψ ω x y

ψmin

1000 −6.3196 × 10−2 −6.0769 0.1782 −0.1554
3000 −5.8326 × 10−2 −6.6326 0.2290 −0.1484
5000 −5.4667 × 10−2 −7.0924 0.2567 −0.1414
7000 −5.1839 × 10−2 −7.4698 0.2758 −0.1350
7181 −5.1608 × 10−2 −7.5018 0.2770 −0.1342
8000 −5.0580 × 10−2 −7.6477 0.2827 −0.1321

10,000 −4.7866 × 10−2 −8.0869 0.2994 −0.1251
15,000 −4.3157 × 10−2 −8.8858 0.3233 −0.1150
19,000 −4.0239 × 10−2 −9.4308 0.3391 −0.1082
20,000 −3.9585 × 10−2 −9.5596 0.3421 −0.1069
25,000 −3.6655 × 10−2 −10.1781 0.3544 −0.1000

ψmax

1000 1.2907 × 10−3 0.9273 −0.2234 −0.2495
3000 6.9582 × 10−3 1.6060 −0.2542 −0.1838
5000 9.4603 × 10−3 1.5121 −0.2134 −0.1879
7000 1.0839 × 10−2 1.4946 −0.1961 −0.1871
7181 1.0925 × 10−2 1.4941 −0.1961 −0.1871
8000 1.1218 × 10−2 1.4997 −0.1955 −0.1854

10,000 1.0803 × 10−2 1.6823 −0.2409 −0.1696
15,000 1.1411 × 10−2 1.8009 −0.2561 −0.1597
19,000 1.1737 × 10−2 1.8608 −0.2631 −0.1557
20,000 1.1780 × 10−2 1.8736 −0.2645 −0.1548
25,000 1.1784 × 10−2 1.9322 −0.2726 −0.1498

Table 8. Minimum and maximum streamfunction values in the 2nd solution, corresponding vorticity
values and (x,y) locations for D = 0.80.

Re ψ ω x y

ψmin

7182 −6.1157 × 10−2 −7.1299 0.2374 −0.1479
8000 −6.0634 × 10−2 −7.2256 0.2416 −0.1458

10,000 −5.9233 × 10−2 −7.4323 0.2506 −0.1430
15,000 −5.6153 × 10−2 −7.8163 0.2699 −0.1370
19,000 −5.4154 × 10−2 −8.0262 0.2803 −0.1338

ψmax

7182 8.8613 × 10−3 2.3385 −0.0964 −0.2630
8000 9.1995 × 10−3 2.4948 −0.0739 −0.2684

10,000 9.6247 × 10−3 2.7295 −0.0429 −0.2778
15,000 1.0014 × 10−2 3.1436 0.0109 −0.2857
19,000 1.0054 × 10−2 3.3786 0.0393 −0.2889

If we look at the solutions given above in Figures 4–16, we can notice that the 1st and
2nd solutions of the driven semi-elliptical cavity flow have different characteristics and
behavior with respect to the Reynolds number. One of the main differences between the
1st and 2nd solutions is that in the 2nd solution there are two strong local vortex centers
in the main clockwise vortex near the top lid; however, there is one in the 1st solution.
The schematic views of the vortices in the 1st and 2nd solutions are given in Figure 17.
In Figure 17, the center of the vortex close to the top moving lid is colored with blue for the
1st solution and the two local centers for the 2nd solution are colored with red and green.
In Figure 18, we plot the streamfunction values at the center of these vortex centers (blue,
red and green) and also the vorticity values at the same centers in Figure 19 with respect to
the Reynolds number.
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Figure 17. The schematic view of the vortices and local vortex centers with blue, red and green
color codes in the 1st and 2nd solutions for the considered aspect ratio semi-ellipses. (a) 1st solution,
D = 0.26. (b) 1st solution, D = 0.5. (c) 1st solution, D = 0.8. (d) 2nd solution, D = 0.26. (e) 2nd
solution, D = 0.5. (f) 2nd solution, D = 0.8.
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Figure 18. Variation of streamfunction values at the center of the local vortex centers in 1st and 2nd
solutions with respect to the Reynolds number with color codes blue, red and green. (a) Streamfunc-
tion (ψ) values, D = 0.26. (b) Streamfunction (ψ) values, D = 0.5. (c) Streamfunction (ψ) values,
D = 0.8.

In Figure 18, in the 1st solution (blue color) in D = 0.26 aspect ratio, the streamfunc-
tion value increases (in absolute value sense) as the Reynolds number increases at small
Reynolds numbers and then starts to decrease (in absolute value sense) afterwards. How-
ever in D = 0.5 and D = 0.8 aspect ratios, the streamfunction value decreases continuously
(in absolute value sense) as the Reynolds number increases in the 1st solution (blue color).

On the other hand, in Figure 18, in the 2nd solution (red and green colors), at small
Reynolds numbers the streamfunction value at the local center close to the top right corner
of the semi-elliptical cavity (green color) is greater than (in absolute value sense) that at
the local center close to the center top of the semi-elliptical cavity (red color) for D = 0.26
aspect ratio. However, as the Reynolds number increases while the streamfunction at the
green center decreases (in absolute value sense) that at the red center increases such that
red value becomes greater than the green value (in absolute value sense). The same is also
true for D = 0.50 aspect ratio. For D = 0.8 aspect ratio, even though the trend is the same,
the streamfunction at the green center stays greater than (in absolute value sense) that at
the red center at all Reynolds numbers.
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Figure 19. Variation of vorticity values at the center of the local vortex centers in 1st and 2nd solutions
with respect to the Reynolds number with color codes blue, red and green. (a) Vorticity (ω) values,
D = 0.26. (b) Vorticity (ω) values, D = 0.5. (c) Vorticity (ω) values, D = 0.8.

In Figure 19, in the 1st solution (blue color) the vorticity value at the vortex center
increases (in absolute value sense) as the Reynolds number increases for all the aspect
ratios considered. The same is also true for the 2nd solution at the green center. In the
2nd solution the vorticity value at the red center first decreases slightly (in absolute value
sense) then starts to increase as the Reynolds number increases for D = 0.26 aspect ratio.
In D = 0.50 aspect ratio, the vorticity value at the red center almost stays constant with
respect to the Reynolds number. However, in D = 0.8 aspect ratio, the vorticity value at
the red center continuously decreases (in absolute value sense) as the Reynolds number
increases.

As mentioned above, the bifurcation Reynolds number of the driven semi-elliptical
cavity flow at which the governing equations start to exhibit multiplicity of solutions
changes as the aspect ratio of the semi-ellipse changes. In Figure 20, we plot the variation of
the bifurcation Reynolds number for different aspect ratios. Figure 20 shows that starting
from the minimum aspect ratio (D = 0.26), as the aspect ratio increases the bifurcation
Reynolds number at first decreases and then starts to increase afterwards while having the
minimum bifurcation Reynolds number at D = 0.50.
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Figure 20. Bifurcation Reynolds numbers for different aspect ratio (D) semi-ellipses.

4. Conclusions

The semi-elliptical cavity flow is solved numerically for various Reynolds numbers
and also for various aspect ratios. The elliptic coordinate system which transforms the
geometry conformally and also provides a body fitted coordinate system is used in the
formulation. The steady governing flow equations are solved until very low residual levels
for numerical accuracy. For the considered driven semi-elliptical cavity flow, the following
is concluded:



Mathematics 2022, 10, 4242 19 of 20

• The solution of Navier–Stokes equations for incompressible 2D steady flow in a driven
semi-elliptical cavity bifurcates at a bifurcation Reynolds number and beyond this
bifurcation Reynolds number at least two different solutions exist for the governing
equations.

• The solution of Navier–Stokes equations for incompressible 2D steady flow in a driven
semi-elliptical cavity bifurcates only for semi ellipses with a vertical-to-horizontal
semi-axis ratio (aspect ratio) 0.26 ≤ D ≤ 0.8.

• We did not observe bifurcation for semi-ellipses with D < 0.26 and 0.8 > D aspect
ratios. For these aspect ratio (vertical-to-horizontal semi-axis ratio) semi-ellipses, we
find only a single solution for each Reynolds number.

• For semi-ellipses with aspect ratios 0.26 ≤ D ≤ 0.8, the bifurcation Reynolds number
at which the Navier–Stokes equations start to have multiple solutions at first starts to
decrease as D increases; then, after having a minimum around D = 0.5, the bifurcation
Reynolds number starts to increase as D increases further.

Although with the present study at least two different multiplicity solutions of the
driven semi-elliptical cavity flow are presented, whether or not the driven semi-elliptical
cavity flow has any more multiplicity solutions is an open question for further investiga-
tions. Finally detailed streamfunction and vorticity data from the driven semi-elliptical
cavity flow are tabulated for future reference.
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