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Abstract: This paper focuses on cooperative multi-task assignment and re-assignment problems
when multiple unmanned aerial vehicles (UAVs) attack multiple known targets. A unified multi-
objective optimization framework for UAV cooperative task assignment and re-assignment is studied
in this paper. In order to simultaneously optimize the losses and benefits of the UAVs, we establish
a multi-objective optimization model. The amount of tasks that each UAV can perform and the
number of attacks on each target are limited according to the ammunition capacity of each UAV
and the value of each target. To solve this multi-objective optimization problem, a multi-objective
genetic algorithm suitable for UAV cooperative task assignment is constructed based on the NSGA-II
algorithm. At the same time, a selection strategy is used to assist decision-makers in choosing one
or more solutions from the Pareto-optimal front. Moreover, to deal with emergencies such as UAV
damage and to detect of new targets, a task re-assignment algorithm based on the contract network
protocol (CNP) is developed. It can be implemented in real-time while only slightly sacrificing the
ability to seek the optimal solution. Simulation results demonstrate that the methods developed in
this paper are effective.

Keywords: unmanned aerial vehicle; cooperative task assignment; multi-objective optimization;
genetic algorithm; contract network protocol

MSC: 90C29

1. Introduction

Unmanned aerial vehicles (UAVs) refer to aircraft without pilots; such aircraft can
fly autonomously or can be remotely controlled by an operator [1]. They can completely
reduce casualties and costs when performing high-risk missions [2]. At present, UAVs
have become very popular in many fields, such as infrastructure inspection, coastal border
surveillance, military applications, and others fields [3–6]. In the increasingly complex
battlefield situation, a single UAV cannot quickly adapt to the changing battlefield envi-
ronment due to lack of information interaction. At the same time, the effectiveness of a
single UAV in perform tasks is not high due to the limited ammunition capacity of a single
UAV. However, when a team composed of multiple UAVs performs tasks cooperatively it
can overcome the shortcomings of a single UAV. The UAV team can share information and
fully allocate internal resources, allowing tasks to be completed efficiently [7,8].

In order to take the advantage of multiple UAVs when performing tasks realize im-
provements in efficiency, cooperative task assignment is important. In recent years, results
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have been achieved in research on task assignment in different fields [9,10]. According to
the different factors considered by researchers, the task assignment problem of multiple
UAVs can be categorized into different models, and many related algorithms have been
proposed as well. Swarm intelligence optimization algorithms are widely used in this field,
particularly genetic algorithms [11]. The UAV team can be composed of either homoge-
neous UAVs or heterogeneous UAVs. For cooperative task assignment of homogeneous
UAVs considering the limitations on the total flight distance of UAVs, Wang et al. [12] es-
tablished a combinatorial optimization problem with the total weighted cost of target value
and distance cost as the objective, and presented an improved genetic algorithm based
on the beetle antennae search algorithm. Venugopalan et al. [13] presented a team search-
based decentralized task assignment scheme for homogeneous UAVs. Velhal et al. [14]
formulated the restricted airspace protection problem as a multi-UAV spatio-temporal
multi-task allocation problem, and proposed a modified consensus-based bundled auction
method to solve it. For cooperative task assignment of heterogeneous UAVs, Fatemeh
Afghah et al. [15] proposed a coalition formation approach to solve the problem of adver-
sary target detection and subsequent task completion. Schwarzrock et al. [16] proposed a
method to increase the amount of tasks performed within the problem of task allocation
among agents representing UAVs. Taking the minimization of the task execution time of
UAVs as the objective, Ye et al. [17] established a task assignment model and proposed a
modified genetic algorithm with a multi-type-gene chromosome encoding method. Consid-
ering a coupled task allocation and path planning problem, Yan et al. [18] proposed a task
allocation algorithm and a cooperative particle swarm algorithm. Uncertain factors are
considered in the cooperative task assignment problem as well. Considering the parameter
and time-sensitive uncertainties in the task assignment problem, Chen et al. [19] proposed
an algorithm that combines the interior point method and the modified two-part wolf pack
search algorithm. Jia et al. [20] established a two-stage stochastic programming model of
the cooperative task assignment problem incorporating the stochastic velocities of UAVs,
and proposed a novel metaheuristic based on a modified genetic algorithm.

However, only a single goal is considered by the above task assignment problems. In
order to simultaneously optimize the losses and benefits of the UAV team, it is necessary to
study the multi-objective optimization problem for multi-UAV task assignment. NSGA-II
and its variants are widely used in the study of multi-objective optimization for UAV
mission assignment [21,22]. Cheng et al. [23] considered the multi-objective optimization of
task assignment, with minimization of cost and maximization of the value of destroyed tar-
gets regarded as the objectives. Taking into account the relationship between the UAVs and
the ground control stations, Cristian et al. [24] proposed a new multi-objective genetic algo-
rithm for solving complex mission planning problems be formulating mission planning as a
constraint satisfaction problem [25]. Chen et al. [26] studied the task assignment problem for
UAVs with different sensor capacities, and proposed a modified multi-objective symbiotic
organism search algorithm. Wang et al. [27] considered a high-dimensional multi-objective
optimization problem containing four objectives for task assignment, then used an im-
proved multi-objective quantum-behaved particle swarm optimization algorithm to solve
the problem. Pohl et al. [28] developed an innovative algorithm for multi-UAV mission
routing. Phiboon et al. [29] studied multi-fidelity multi-objective airfoil design optimization
for fixed-wing UAVs. However, the above studies have not explained how decision-makers
are to choose a solution from the Pareto-optimal front. At the same time, the above litera-
ture does not consider the emergencies that may occur on the battlefield. The complexity of
the battlefield environment inevitably causes emergencies; for example, damage to UAVs,
the appearance of new targets, etc. The problem of UAV task re-assignment needs to be
considered when such emergencies occur. Unlike the general task assignment problem,
task re-assignment in emergencies must be completed in a short time. Therefore, the task
re-assignment problem has higher requirements with respect to the calculation speed of the
algorithm. A contract network algorithm [30] based on the auction mechanism has been
applied to the real-time task assignment problem. Zhen et al. [31] proposed an improved
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contract network protocol-based cooperative target assignment scheme to deal with hetero-
geneous overloading and time sequence problems. Zhang et al. [32] established a model
of real-time assignment of tasking based on reconnaissance benefits and reconnaissance
costs, and proposed an improved contract network algorithm. Xiang et al. [33] studied
the cooperation target assignment of multiple agents, and proposed an improved contract
network protocol according to the characteristics and restrictions of target assignment.

The contributions of the present article are provided as follows:

(1) Based on the idea of the NSGA-II algorithm, an algorithm suitable for solving the
multi-objective optimization problem of multi-UAV task assignment is presented,
and the encoding format and genetic operators therein are specially designed.

(2) A method for aiding commanders in choosing an operation plan from among the
Pareto solution set is provided.

(3) A highly efficient CNP-based algorithm is developed for real-time task re-assignment
in emergencies.

The remainder of this paper is organized as follows. Section 2 presents a multi-
objective optimization model of cooperative task assignment. Section 3 provides the
multi-objective optimization strategy. Section 4 provides the method of selecting solutions
from the Pareto solution set. The problem of task re-assignment in emergencies is studied
in Section 5. Numerical examples are provided in Section 6. Finally, Section 7 concludes
the paper.

2. Multi-Objective Optimization Model of Cooperative Task Assignment

For convenience, let In := {1, 2, · · · , n}, Īn := {0} ∪ In, n ∈ N+. On the battlefield,
UAVs with attack capabilities are required to attack multiple known targets in coordination
to improve efficiency. Assume that NU (NU ∈ N+) UAVs coordinately attack NT (NT ∈ N+)
targets in the combat area. Let U := {U1, U2, · · · , UNU} be the set of UAVs, where Ui
(i ∈ INU ) represents the i-th UAV. The target set is recorded as T := {T1, T2, · · · , TNT},
where Tj (j ∈ INT ) represents the j-th target. When a UAV attacks a target, the UAV may be
destroyed, and different UAVs have different probabilities of being destroyed when they
attack different targets. Let Pij, Kij respectively denote the probability that Ui (i ∈ INU )
and Tj (j ∈ INT ) are destroyed when Ui attacks Tj. Let VTj (j ∈ INT ) and WUi (i ∈ INU )
represent the value of Tj and Ui, respectively.

Because the previous single-objective optimization cannot achieve simultaneous op-
timization of two conflicting objectives, i.e., simultaneous optimization of the costs and
benefits in terms of UAVs, it is necessary to establish a multi-objective optimization model
for the cooperative task assignment problem. Considering the respective probabilities of
UAVs and targets being destroyed, the following two objectives are used to maximize the
value of the destroyed targets while incurring the minimum cost in damaged UAVs.

(i) Maximizing the total value of the targets destroyed by UAVs:

max f1(x) =
NU

∑
i=1

NT

∑
j=1

KijVTj xij, (1)

(ii) Minimizing the total cost of the damaged UAVs:

min f2(x) =
NU

∑
i=1

NT

∑
j=1

PijWUi xij, (2)

where xij ∈ {0, 1}, i ∈ INU , and j ∈ INT . If xij = 1, this means that Ui attacks Tj,; otherwise,
Tj is not attacked by Ui.
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The UAVs have a limited amount of ammunition, which makes it impossible to allocate
more tasks to each UAV than its ammunition capacity. Targets have different values, and
are divided into high-value targets and low-value targets. In this paper, the values of
enemy targets are known in advance. Multiple attack missions are assigned to the same
high-value target in order to increase the probability of success. To decrease the time that
UAVs must stay within the enemy’s threat range, the following assumption is made.

Hypothesis 1 (H1). Different tasks for the same target are performed by different UAVs.

The implicit constraint in H1 is that the same UAV can only attack the same target
once. This constraint not being taken into account can cause the limited ammunition to be
distributed unevenly, which can affect efficiency. For this reason, the number of high-value
targets to be attacked needs to be limited. According to the above description, the task
assignment problem needs to satisfy the following constraints.

(i) The amount of tasks assigned to each UAV cannot exceed its own ammunition capacity:

NT

∑
j=1

xij ≤ ni, i ∈ INU , (3)

(ii) The number of tasks for each target is limited:

NU

∑
i=1

xij ≤ mj, j ∈ INT , (4)

(iii) The same UAV can only attack the same target once:

aij ≤ 1, i ∈ INU , j ∈ INT , (5)

where ni (i ∈ INU ) represents the ammunition capacity of Ui, mj (j ∈ INT ) represents the
maximum number of Tj being attacked, and aij (i ∈ INU , j ∈ INT ) represents the number of
tasks performed by Ui on Tj.

Let F(x) :=
(
− f1(x), f2(x)

)>. The multi-objective optimization problem of the
cooperative task assignment (CTAMOP) is expressed as follows.

(CTAMOP) min F(x)

s.t.
NT

∑
j=1

xij ≤ ni,

NU

∑
i=1

xij ≤ mj,

aij ≤ 1, i ∈ INU , j ∈ INT ,

xij ∈ {0, 1}, i ∈ INU , j ∈ INT .

(6)

3. Multi-Objective Optimization Strategy

In order to solve CTAMOP, an improved multi-objective genetic algorithm based on
the NSGA-II algorithm [34] is constructed in this section. Based on the characteristics of the
task assignment problem, the chromosome encoding method along with the crossover and
mutation operators are specially designed and constructed.

3.1. Chromosome Encoding

The task assignment problem has two characteristics. First, the problem is that multiple
UAVs may attack multiple targets; second, whether Ui (i ∈ INU ) attacks Tj (j ∈ INT ) is
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represented by 0 and 1. Considering the above factors, we use the binary matrix encoding
method to encode the chromosomes in order to accurately describe the situation of UAVs
performing tasks.

For the scenario of NU UAVs attacking NT targets, the generated chromosomes should
be NU × NT order matrices, which only contain 0 and 1 elements. Constraints (3)–(5) need
to be satisfied, i.e., the sum of the i-th row (i ∈ INU ) of each generated matrix is less than
or equal to ni, and the sum of the j-th (j ∈ INT ) column is less than or equal to mj. The i-th
row represents the situation of the targets attacked by Ui, and the j-th column represents
the situation of UAVs attacking Tj.

The chromosome encoding method is suitable for all combat situations, i.e., when am-
munition is sufficient and when ammunition is insufficient. In order to ensure randomness,
the chromosomes are generated in the following way. First, a UAV Ui (i ∈ INU ) and a
target Tj (j ∈ INT ) are randomly selected; then, it is determined whether constraints (3)–(5)
are satisfied. If both constraints are satisfied, a variable (0 or 1) is randomly assigned to
xij; otherwise, xij = 0. This process is executed repeatedly. When all UAVs do not satisfy
constraint (3) or all targets do not satisfy constraint (4) or (5), the process is terminated.
At the same time, all xij (i ∈ INU , j ∈ INT ) that have not been assigned a value receive a
value of 0.

Here, a specific example is provided to illustrate how chromosomes are encoded
considering the case of NU = 4 and NT = 10. The ammunition capacity of UAVs is
n1 = n2 = n3 = 3 and n4 = 2, and the maximum number of targets that can be attacked
is m1 = m2 = · · · = m10 = 2. For the scenario in Figure 1a, T4, T5, T9 are assigned to
U1, T1, T2, T7 are assigned to U2, T3, T9, T10 are assigned to U3, and T6, T8 are assigned
to U4. The values of the corresponding positions of the chromosome are set to 1, and the
remaining positions are set to 0, as shown in Figure 1b.

(a) Assignment of tasks (b) Chromosome form

Figure 1. Assignment of tasks and the chromosome encoding method.
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In the evolution process, the offspring are composed of the retained elite individuals
and the individuals obtained by crossover and mutation operations. The crossover and
mutation operators play key roles. Because the chromosomes are binary matrix, it is
necessary to design the crossover and mutation operators for algorithm.

3.2. The Crossover Operator

Two chromosomes F1 and F2 are selected from the parents, then a crossover operation
is performed on F1 and F2 with crossover probability Pc. The specific crossover steps are
as follows. First, the l1-th (l1 ∈ INU ) row and the l2-th (l2 ∈ INU ) row from F1 and F2,
respectively, are randomly selected. Then, the l1-th row of F1 and the l2-th row of F2 are
swapped to obtain two new chromosomes O1 and O2. If the task assignment of the obtained
chromosome satisfies constraints (3) and (4) and there is no idle UAV, then the obtained
chromosome is the crossover offspring. It is common that O1 and O2 do not satisfy the
constraints, and the following cases may exist as well.

• Task assignment satisfies constraint (4) while not satisfying constraint (3). If the l1-
th (l1 ∈ INU ) row of O1 does not satisfy constraint (3), that is, the number of tasks
assigned to Ul1 exceeds the ammunition capacity nl1 of Ul1 , we sort the tasks of
Ul1 according to the number of tasks attacked, then delete the corresponding tasks
from the task set of Ul1 according to their number, from high to low. When the l1-th
(l1 ∈ INU ) row satisfies constraint (3), then the operation is stopped.

• Task assignment satisfies constraint (3) while not satisfying constraint (4). If the j-th
(j ∈ INT ) column of O2 does not satisfy constraint (4), that is, the number of attacks on Tj
exceeds the upper limit mj, the attack task of Tj is randomly deleted from the rows that
have not been exchanged. If Tj satisfies the constraint (4), then the operation is stopped.

• Task assignment satisfies neither constraint (3) nor (4). In this case, the same method
as in case 1 is first used to change the chromosome and then to determine whether
constraint (4) is satisfied. If constraint (4) is not satisfied, then the method from case 2
is used to change the chromosome.

If both constraints (3) and (4) are satisfied and there is an idle UAV, then as many
tasks as possible are assigned to the idle UAV under the premise that constraints (3)–(4) are
satisfied; targets that have not yet been attacked are prioritized.

The example provided in Section 3.1 is used to illustrate the construction of the
crossover operator. The two selected parent chromosomes are shown in Figure 2. Let the
rows randomly selected from F1 and F2 be the second and fourth rows, respectively. It can
be seen from Figure 2 that T3 (i.e., the third column marked in yellow) in the offspring
chromosome obtained by F1 does not satisfy constraint (4). As this scenario belongs to the
first case, an attack task of T3 is randomly deleted from the first or fourth row. If the task of
U1 (i.e., the first row marked in yellow) is randomly deleted, U1 becomes an idle UAV. Thus,
as many tasks as possible are assigned to U1 under the premise that the constraints are
satisfied, and the crossover offspring C1 can be obtained. Here, T4 and U4 (i.e., the fourth
column and fourth row marked in yellow) in the offspring chromosome obtained by F2 fail
to satisfy constraints (4) and (3), respectively. This belongs to the third case. According to
the method used in the third case, the attack task of U4 is deleted. Then, as the chromosome
satisfies the constraints and there are no idle UAVs, we have the crossover offspring C2.
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Figure 2. Example of crossover operator.

3.3. The Mutation Operator

A mutation operation is performed on crossover offspring with a mutation probability
of Pm. There are three situations that may occur with respect to the crossover offspring,
and different mutation operations are used for different situations.

• If there are targets in the chromosome that have not been attacked and there are UAVs
with ammunition that can perform tasks, then the mutation operation seeks to assign
the targets to these UAVs under the premise that constraint (3) is satisfied.

• If there are targets in the chromosome that have not been attacked and the UAVs have
no remaining ammunition, then the mutation operation randomly selects the task sets
of two UAVs from the chromosome and exchanges them.

• If all targets are attacked, then the task sets of two UAVs from the chromosome are
randomly selected and exchanged.

3.4. The Improved Multi-Objective Genetic Algorithm

Based on the methods used to construct the chromosomes, crossover operators and
mutation operators, the following multi-objective optimization algorithm (i.e., Algorithm 1)
suitable for UAV cooperative task assignment is developed.
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Algorithm 1 Multi-objective optimization algorithm.

1: Initialize the values of the following parameters: the population size N, crossover
probability Pc, mutation probability Pm, and maximum number of evolutions G;

2: g⇐ 0;
3: Randomly generate an initial population Pg of size N. The chromosome encoding

method and chromosome generation method are based on the methods described in
Section 3.1;

4: while g < G do
5: Calculate the objective function values of each chromosome in population Pg using

(1) and (2);
6: Sort population Pg using the fast non-dominated sorting approach, then determine

the front of each chromosome;
7: Perform crossover operations on the selected parents according to the crossover

probability Pc, then mutate the obtained crossover offspring with probability Pm. Pro-
ceed to the next step when a progeny population Sg with N chromosomes is obtained;

8: Combine the parent population Pg with the offspring population Sg to obtain a new
population Qg; then, the size of population Qg is 2N;

9: Perform the process in lines 5–6 on population Qg to obtain the front of each
chromosome in Qg;

10: Select chromosomes from the front;
11: while the number of chromosomes selected is less than N do
12: First, the chromosome is selected from the first front, then, the chromosome is

selected from the second front, and so on;
13: if the number of chromosomes required is less than the number of chromosomes

in the l-th front then
14: Calculate the crowded distances;
15: Select the chromosomes based on the crowding distance from large to small;
16: end if
17: end while
18: g⇐ g + 1 and q⇐ g
19: if g = G then
20: Sort Pg using the fast non-dominated sorting approach, then output the chromo-

somes in the first front;
21: end if
22: end while

4. Selection Strategy

Because the decision-maker needs to select one or more solutions from the Pareto
solution set in order to perform specific operations, it is necessary to have a strategy for
selecting non-dominated solutions from the Pareto-optimal front. Let f j denote the j-th
objective function, n denote the number of objective functions, and m denote the number of
non-dominated solution on the Pareto-optimal front. The specific selection steps are shown
in Algorithm 2.

The specific value of αj (j ∈ In) depends on the degree of preference of the decision-
maker for the objective function f j. Let C = {c1, c2, · · · , cn}, where cj (j ∈ In) represents
the degree of preference of the decision-maker for f j. The rules for setting the value of αj
(j ∈ In) are as follows:

• If cj1 > cj2 > · · · > cjn, then αj1 > αj2 > · · · > αjn, and
jn
∑

l=j1
αl = 1, ji ∈ In, i ∈ In.

• If cj1 = cj2 , then αj1 = αj2 , ∀ j1, j2 ∈ In. In particular, if cj1 = cj2 = · · · = cjn, then
αj1 = αj2 = · · · = αjn = 1

n .

Finally, the flowchart diagram of the improved genetic algorithm together with the
selection strategy is shown in Figure 3.
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Algorithm 2 The strategy for selecting solutions.

1: Convert all objective functions f j (j ∈ In) into a form that minimizes or maximizes the
function Fj (j ∈ In).

2: Solve the problem using the improved NSGA-II algorithm to obtain the Pareto-optimal
front.

3: If the dimensions of any two objective functions are different or the orders of magnitude
of the values of any two objective functions are different, then normalize the objective
function values; otherwise, the objective function values are not normalized. The j-th
objective function of the i-th non-dominated solution on the Pareto-optimal front is
denoted as F̄i

j (j ∈ In, i ∈ Im).
4: Weight and sum each group of objective function values obtained in step 3 to obtain

the following set:

S =
{

Si|Si =
n

∑
j=1

αj F̄i
j ,

n

∑
j=1

αj = 1, i ∈ Im

}
.

5: In step 1, if the objective functions are transformed into the form of seeking the mini-
mum value, then the solution corresponding to the minimum value in set S obtained in
step 4 is selected; otherwise, the solution corresponding to the maximum value in set S
is selected.

Figure 3. The flowchart of task assignment.
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5. Task Re-Assignment For Emergencies

The task assignment process is carried out on the enemy targets found on the battle-
field. However, there are many uncertain factors due to the complexity of the battlefield
environment. For example, after assigning the discovered targets, new enemy targets may
be found on the battlefield again, or certain UAVs in the task assignment may suddenly
malfunction and be unable to continue performing combat tasks. Both new targets and
targets in the task sets of damaged UAVs need to be re-assigned. There are two methods
of assigning tasks. The first method is to assign all tasks according to the current health
status of the UAVs, and the second is to assign tasks that need to be assigned based on
the obtained task assignment plan. In combat, efficiency issues are more important when
solving unexpected situations. Compared with the first method, the second method takes
less time and has a higher task assignment efficiency.

In this paper, the re-assignment strategy for new tasks is constructed based on the idea
of the contract network protocol and the characteristics of the task assignment problem.
Smith first proposed the idea of a contract network protocol [30]. The principle idea of a
contract network protocol is to assign tasks through a process of tendering and bidding
between agents. There are three types of agents in a contract network protocol: the tender
agent, bidding agent, and winning agent. In the problem of UAV task re-assignment,
the tender agent is the reconnaissance UAV that discovers a new task or the UAVs that
becomes damaged, the bidding agents are UAVs with the ability to perform the newly
available tasks, and the winning agent is the UAV corresponding to the bid with the best
function value.

5.1. Task Re-Assignment Model

Based on the above description, there are two trigger conditions for task reassignment:
(1) new enemy targets are discovered and (2) one or more UAVs are damaged. Suppose
that the number of new targets found on the battlefield is s1, and the number of destroyed
UAVs is s2. Let T̄ denote the set of targets that need to be assigned,

T̄ := {TNT+1, TNT+2, · · · , TNT+s1},

where TNT+i (i ∈ Is1) represents the i-th task that needs to be assigned. Let Ū denote the
set of UAVs that can perform tasks,

Ū := {Ul1 , Ul2 , UlNU−s2
} = U − {Ul̄1 , Ul̄2 , · · · , Ul̄s2

},

where Ul̄j
(j ∈ Is2) represents the l̄j-th damaged UAV. Based on (1) and (2), an objective

function is constructed with the following form:

max f̄ = α1

lNU−s2
∑

i=l1
Ki(NT+j)VTNT+j xi(NT+j)

+α2

lNU−s2
∑

i=l1

(
1− Pi(NT+j)

)
WUi xi(NT+j) − α1

lNU−s2
∑

i=l1
Kijr VTjr

xijr

−α2

lNU−s2
∑

i=l1

(
1− Pijr

)
WUi xijr ,

(7)

where j ∈ Is1 and Tjr (jr ∈ INT+j−1) represents the target replaced by TNT+j; Tjr is only
considered in an interchange contract, which is described along with sales contracts in the
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next section. The values of α1 and α2 are the same as the values of α1 and α2 in Algorithm 2
in Section 4. Thus, the model of task re-assignment (TRAM) is as follows:

(TRAM) max f̄

s.t.
NT+j

∑̃
j=1

xi j̃ ≤ ni,

lNU−s2

∑
i=l1

xi(NT+j) ≤ mj,

ai(NT+j) ≤ 1, i ∈ {l1, l2, · · · , lNU−s2},
xi(NT+j) ∈ {0, 1}, i ∈ {l1, l2, · · · , lNU−s2},

(8)

where j ∈ Is1 .

5.2. Task Re-Assignment Algorithm

In the CNP-based algorithm, sales contracts and interchange contracts are considered.
The idea of a sales contract is that a new task is added to the task set of the bidding agent.
The specific form of a sales contract of a UAV Ui for a target TNT+j is represented as follows:

< Ui, TNT+j, 0, f̄ >, (9)

where, i ∈ {l1, l2, · · · , lNU−s2}, j ∈ Is1 . The sales contract (9) indicates that the revenue
obtained by adding target TNT+j to the task set of Ui is f̄ . An interchange contract, on the
other hand, replaces a target in the UAV task set with a target that needs to be assigned.
The specific form of an interchange contract of a UAV Ui for a target TNT+j is represented
as follows:

< Ui, TNT+j, Tjr , f̄ >, (10)

where i ∈ {l1, l2, · · · , lNU−s2}, j ∈ Is1 , and jr ∈ INT+j−1. The interchange contract (10)
indicates that the revenue obtained by replacing Tjr in the task set of Ui with TNT+j is f̄ . If
UAV Ui (i ∈ {l1, l2, · · · , lNU−s2}) has ammunition remaining, then Ui can execute both the
sales contract and the interchange contract; otherwise, Ui can only execute the interchange
contract. The steps for assigning target TNT+j (j ∈ Is1) are provided in Algorithm 3.

Algorithm 3 Task re-assignment algorithm TNT+j (j ∈ Is1).

1: Initialize the information of UAV Ui, the values of parameters Ki(NT+j), Pi(NT+j), VTNT+j

(i ∈ {l1, l2, · · · , lNU−s2}, j ∈ Is1), and the number of iterations of interchange contract
Gic.

2: Calculate the remaining ammunition Rm
i (i ∈ {l1, l2, · · · , lNU−s2}) of Ui.

3: If Rm
i 6= 0, then Ui executes the interchange contract and sales contract for TNT+j;

otherwise, Ui only executes the interchange contract for TNT+j. Then, bidding agent Ui
chooses the contract with the largest value of f̄ .

4: The bidding agent evaluates the received contracts and selects the contract with the
largest value of f̄ as the winning contract, then broadcasts the information of winning
agent.

The flowchart diagram of the CNP-based algorithm is shown in Figure 4.
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Figure 4. The flowchart of task re-assignment

6. Numerical Experiments

In order to verify the effectiveness of Algorithms 1–3, simulation examples of various
battle situations are analyzed in this section. Examples of the improved multi-objective ge-
netic algorithm and selection strategy are provided in Section 6.1. In Sections 6.1.1 and 6.1.2,
examples where the total amount of ammunition is less than or equal to the total number
of tasks are considered, and the effectiveness of Algorithm 1 is verified. In Section 6.1.3,
a large-scale example where the total amount of ammunition is greater than the total
number of tasks is provided. Examples of task re-assignment in emergencies are laid out
in Section 6.2. In Section 6.2.1, an example is used to illustrate the process of Algorithm 3.
A large-scale example considering emergencies is provided in Section 6.2.2 to verify the
effectiveness and advantages of Algorithm 3. In Section 6.2.3, we analyze why the CNP-
based method is not directly used to solve the task assignment problem. All numerical
experiments were implemented using Python 3.8 on a computer with an Intel Core i5-
10210U CPU @ 1.60GHz, 2.11 GHz, and 4.00 GB RAM. The code for the algorithms can
be found at the URL (accessed on 6 November 2022) https://github.com/gaoxh-github/
multi-objetive-task-assignment-source-code. For the different examples provided in this
paper, the reader only needs to change the corresponding parameters in the code.

6.1. Test of the Improved Multi-Objective Genetic Algorithm
6.1.1. Case 1: Total Amount of Ammunition = Total Number of Tasks

First, we consider a case in which NU = 4 and NT = 8. The ammunition capacity of
each UAV is ni = 2 (i ∈ I4), and the upper limit of each target being attacked is mj = 1
(j ∈ I8). When Ui (i ∈ I4) attacks Tj (j ∈ I8), the probability Pij of Ui being destroyed
and the probability Kij of Tj being destroyed are shown in Table 1. The values of Ui
and Tj are shown in Table 2. To verify the effectiveness of Algorithm 1, we compare it

https://github.com/gaoxh-github/multi-objetive-task-assignment-source-code
https://github.com/gaoxh-github/multi-objetive-task-assignment-source-code
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with the Multiple Objective Particle Swarm Optimization (MOPSO) algorithm using the
example in this section. In Algorithm 1, the crossover probability is Pc = 0.8 and the
mutation probability is Pm = 0.2. In MOPSO, the values of the parameters are ω = 0.7298,
c1 = 1.49618 and c2 = 1.49618. The population size and maximum number of iterations of
the two algorithms are N = 100 and G = 200, respectively.

The comparison results of the obtained Pareto-optimal fronts and CPU runtime are
shown in Figure 5. According to the definition of the Pareto solution [34], it can be seen
from Figure 5a that all the non-dominated solutions obtained by Algorithm 1 dominate
the non-dominated solution obtained by MOPSO. As can be seen from Figure 5b, the CPU
runtime of GA-CTAP is significantly shorter than that of MOPSO. The convergence curves
of the objective functions are shown in Figure 6. Clearly, thte GA-CTAP algorithm achieves
better convergence performance compared to MOPSO. For convenient description, the task
assignment corresponding to the non-dominated solutions A, B, and C are provided in
Table 3.

Table 1. Probabilities of UAVs and targets being destroyed.

T1 T2 T3 T4 T5 T6 T7 T8

U1
P1j 0.16 0.65 0.14 0.16 0.44 0.14 0.35 0.25

K1j 0.5 0.8 0.3 0.4 0.5 0.6 0.6 0.7

U2
P2j 0.14 0.16 0.44 0.14 0.65 0.16 0.45 0.35

K2j 0.8 0.4 0.4 0.8 0.7 0.6 0.8 0.6

U3
P3j 0.44 0.14 0.16 0.16 0.14 0.65 0.35 0.18

K3j 0.6 0.5 0.8 0.3 0.8 0.3 0.7 0.7

U4
P4j 0.65 0.14 0.16 0.44 0.08 0.16 0.55 0.48

K4j 0.6 0.4 0.2 0.3 0.3 0.6 0.5 0.6

Table 2. Values of UAVs and targets.

Target T1 T2 T3 T4 T5 T6 T7 T8

Value 0.62 0.65 0.68 0.7 0.73 0.78 0.81 0.85

UAV U1 U2 U3 U4

Value 0.8 1.1 0.9 1.3

(a) Pareto-optimal front of case 1 (b) CPU runtime

Figure 5. Comparison of results.
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Figure 6. Convergence curves of objective functions for case 1.

Table 3. Specific task assignment of non-dominated solutions A, B, C.

A B C

x

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

Case 1 considers a situation in which the total amount of ammunition is equal to the
number of tasks. However, in actual combat it is possible that the number of tasks is more
or less than the amount of ammunition.

6.1.2. Case 2: Total Amount of Ammunition < Total Number of Tasks

In this section, we analyze a case in which four UAVs attack twenty targets. For
convenience of calculation, it is assumed that each UAV has the same amount of ammuni-
tion ni = 4 (i ∈ I4). At the same time, in order to simplify the description, the parameter
information of multiple UAVs carrying out attacking tasks on the first eight targets takes the
values in Tables 1 and 2. When Ui (i ∈ I4) attacks Tj (j ∈ {9, 10, · · · , 20}), the probability
Pij of Ui being destroyed, the probability Kij of Tj being destroyed, and the value of Tj
(j ∈ {9, 10, · · · , 20}) are provided in Table 4.

Table 4. Probabilities of UAVs and targets being destroyed and target values.

T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

U1
P1j 0.21 0.15 0.32 0.18 0.46 0.23 0.55 0.14 0.35 0.16 0.26 0.25
K1j 0.7 0.6 0.5 0.6 0.4 0.6 0.4 0.3 0.3 0.8 0.3 0.7

U2
P2j 0.30 0.24 0.51 0.44 0.44 0.30 0.42 0.15 0.16 0.18 0.08 0.48
K2j 0.6 0.7 0.7 0.3 0.3 0.5 0.3 0.5 0.3 0.7 0.3 0.6

U3
P3j 0.53 0.16 0.44 0.68 0.14 0.25 0.50 0.48 0.14 0.09 0.13 0.60
K3j 0.7 0.4 0.6 0.5 0.3 0.5 0.4 0.6 0.3 0.8 0.4 0.8

U4
P4j 0.65 0.30 0.42 0.08 0.50 0.18 0.48 0.15 0.16 0.20 0.15 0.60
K4j 0.7 0.6 0.6 0.7 0.4 0.7 0.6 0.5 0.4 0.8 0.4 0.8

Target value 0.72 0.78 0.62 0.65 0.76 0.88 0.63 0.7 0.68 0.82 0.75 0.81

The obtained Pareto-optimal front is shown in Figure 7. It can be seen that the non-
dominated solutions are evenly distributed and the population diversity is good. Figure 8
shows the changes of the maximum value of f2 and the minimum value of f1 in each
iteration over the course of the entire iteration when ni = 4 (i ∈ I4). It can be seen that as
the evolutionary algebra increases, the values of the two functions converge.
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Figure 7. Pareto-optimal front of case 2.

Figure 8. Convergence curves of objective functions for case 2.

The process of selecting solutions from the Pareto solution set using the selection
strategy is as follows. Let S := {S0, S1, · · · , S44} represent the result obtained in Step 4 of
Algorithm 2, where Si = α1Fi

1 + α2Fi
2, Fi

1 = − f i
1, Fi

2 = f i
2 (i ∈ Ī44), α1, and α2 represent the

weights and (Fi
1, Fi

2) represents the i-th non-dominated solution in the Pareto-optimal front.
Based on this example and the description of weights in Section 4, the rules for setting the
values of αi (i ∈ I2) are as follows:

• If c1 > c2, then α1 ∈ (0.5, 1].
• If c1 = c2, then α1 = α2 = 0.5.
• If c1 < c2, then α1 ∈ [0, 0.5).

For the Pareto-optimal front shown in Figure 7, the solutions from the upper left corner
to the lower right corner are the 0th to the 44th non-dominated solutions. In this example,
the objective function values are not normalized because the dimensions of f1 and f2 are the
same, and the order of magnitude of the values of f1 and f2 is the same at 2.62 ≤ f1 ≤ 7.71
and 0.78 ≤ f2 ≤ 3.81, respectively. Assuming the weights α1 = 0.5, α2 = 0.5, the results
obtained by selection strategy are shown in Table 5.

As can be seen from Table 5, the sixth and seventh non-dominated solutions on the
Pareto-optimal front are the best choices, while the 44th non-dominated solution is the
worst choice. For the sake of simplifying the description, only the non-dominated solution
information and the specific task assignment corresponding to the first five choices are
shown. The positions of the five solutions are shown in Figure 7, and the corresponding
specific task assignments are shown in Table 6.
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The above description represents the process of selecting solutions of the multi-
objective task assignment problem containing two objective functions. For general multi-
objective optimization problems, the process of selecting solutions from the Pareto-optimal
front is similar to the above process, and the values of weights are set according to the rules
in Section 4.

Table 5. The order of selection of non-dominated solutions.

Si −2.185 −2.185 −2.135 −2.11 −2.105 −2.105 −2.1 −2.1 −2.065 −2.055 −2.05 −2.05

i 6 7 9 10 3 8 2 5 11 13 4 12

Si −2.01 −1.99 −1.99 −1.98 −1.975 −1.97 −1.95 −1.94 −1.925 −1.915 −1.9 −1.86

i 1 15 16 14 17 18 0 19 20 21 22 23

Si −1.85 −1.765 −1.755 −1.715 −1.7 −1.675 −1.655 −1.565 −1.545 −1.53 −1.465 −1.395

i 24 25 26 27 28 29 30 31 32 33 34 35

Si −1.37 −1.355 −1.355 −1.34 −1.105 −1.09 −1.08 −0.935 −0.92

i 36 37 38 39 40 41 42 43 44

Table 6. The information of the first five non-dominated solutions

(− f 1, f 2) x

6th (−6.84, 2.47)

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

7th (−6.68, 2.31)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

9th (−6.45, 2.18)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

10th (−6.33, 2.11)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

3th (−7.32, 3.11)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1

Let MUi (i ∈ INU ) denote the task set of UAV Ui. According to the meaning of
chromosomes, the task assignment information corresponding to the five non-dominated
solutions in Table 6 is provided in Table 7.
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Table 7. The task assignment schemes of the solutions in Table 6.

UAV Task Set UAV Task Set

6th

U1 MU1 = {T8, T9, T10, T11}

7th

U1 MU1 = {T7, T8, T9, T10}
U2 MU2 = {T1, T4, T6} U2 MU2 = {T1, T4, T6}
U3 MU3 = {T2, T3, T5, T7} U3 MU3 = {T2, T3, T5, T13}
U4 MU4 = {T12, T14, T16} U4 MU4 = {T12, T14, T16}

9th

U1 MU1 = {T7, T8, T9, T10}

10th

U1 MU1 = {T7, T8, T9, T10}
U2 MU2 = {T1, T4, T6} U2 MU2 = {T1, T4, T6}
U3 MU3 = {T2, T3, T5} U3 MU3 = {T2, T3, T5, T13}
U4 MU4 = {T12, T14, T16} U4 MU4 = {T12, T14}

3th

U1 MU1 = {T7, T8, T9, T10}
U2 MU2 = {T1, T4, T6}
U3 MU3 = {T2, T3, T5, T13}
U4 MU4 = {T12, T18, T19, T20}

6.1.3. Case 3: Total Amount of Ammunition > Total Number of Tasks

In this section, a large-scale task assignment example of 15 UAVs attacking 100 targets
is considered. The ammunition capacity of each UAV is ni = 7 (i ∈ I15), and the upper
limit of each target being attacked is mj = 1 (j ∈ I100). Considering the length of the paper,
the values of parameters VTj , WUi , Pij, and Kij (i ∈ I15, j ∈ I100) are not provided. The values
of these parameters can be downloaded from the website (accessed on 6 November 2022)
https://github.com/gaoxh-github/Values-of-parameters. In Algorithm 1, the values of
the parameters are as follows: N = 100, G = 200, Pc = 0.8, Pm = 0.2. The obtained Pareto-
optimal front is shown in Figure 9. The average time for this scale of experiment is about
60 min.

Figure 9. Pareto-optimal front of case 3.

Algorithm 2 is used to select the solution from the Pareto solution set in Figure 9.
In Algorithm 2, the values of weights α1 and α2 are α1 = α2 = 0.5. The obtained results are
shown in Table 8. It can be seen from Table 8 that the 53rd non-dominated solution should
be selected. The information of the 53rd non-dominated solution is shown in Figure 9
and the task assignment scheme of the 53rd non-dominated solution is shown in Table 9.

To further verify the effectiveness of the proposed task assignment algorithm combined
with the solution selection strategy, in this section we compare the algorithms developed in
this paper with the well-developed Gurobi optimization solver. There are three methods
for solving multi-objective optimization problems in the Gurobi solver, namely, Blend,
Hierarchical, and a combination of these two methods. In this paper, after obtaining
the Pareto front of the task assignment problem using Algorithm 1, the decision-maker
can be assisted in selecting a solution from the set of non-dominated solutions based on

https://github.com/gaoxh-github/Values-of-parameters
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Algorithm 2, which is constructed based on the weights. Considering the idea behind the
construction of Algorithm 2, we compared Algorithm 1 and Algorithm 2 with the Blend
method in Gurobi in order to better reflect the comparison results. The comparison process
is as follows. First, given nine different sets of weights, the solution of the example provided
in this section is solved for each set of weights using Blend in Gurobi. Second, the Pareto
front of the example is solved using Algorithm 1, then the solution is selected from the
Pareto front under each set of weights using Algorithm 2. Finally, the solutions obtained by
the two methods are compared for each case of weights. Table 10 shows the results of the
comparison between Gurobi and the algorithms in this paper under nine sets of weights.
As can be seen in Table 10, for each set of weights, the solutions developed this paper and
those obtained by Gurobi are not dominated by each other, i.e., both are non-dominated
solutions of the problem. Although it cannot be proven that the algorithms in this paper are
better than the Gurobi solver, it can be seen that the proposed algorithms are not inferior to
Gurobi in terms of solution quality.

Table 8. The order of selecting non-dominated solutions.

Si −8.75 −8.56 −8.555 −8.55 −8.54 −8.525 −8.515 −8.51 −8.46 −8.44 −8.375 −8.355

i 53 64 54 58 55 57 62 56 59 61 60 51

Si −8.355 −8.35 −8.275 −8.165 −8.14 −8.12 −8.095 −8.03 −7.995 −7.935 −7.92 −7.91

i 65 49 63 48 66 52 68 50 67 46 73 70

Si −7.88 −7.87 −7.865 −7.83 −7.78 −7.745 −7.745 −7.715 −7.715 −7.665 −7.655 −7.62

i 43 69 72 71 47 74 75 44 45 76 42 38

Si −7.61 −7.55 −7.485 −7.46 −7.405 −7.375 −7.325 −7.315 −7.155 −7.13 −7.13 −7.12

i 39 37 40 77 41 80 78 79 30 26 35 33

Si −7.045 −7.04 −7.025 −6.995 −6.975 −6.95 −6.915 −6.81 −6.805 −6.775 −6.605 −6.56

i 31 81 32 36 29 27 34 83 82 28 84 85

Si −6.525 −6.51 −6.42 −6.34 −6.335 −6.28 −6.19 −6.19 −6.165 −6.125 −6.085 −5.995

i 25 86 87 24 20 23 22 88 89 21 19 91

Si −5.965 −5.85 −5.815 −5.675 −5.605 −5.58 −5.57 −5.53 −5.52 −5.48 −5.06 −5.02

i 90 18 92 15 14 17 16 93 94 13 10 11

Si −4.965 −4.92 −4.825 −4.49 −4.4 −4.285 −4.2 −3.935 −3.915 −3.57 −3.465

i 12 9 8 7 6 4 3 2 5 1 0

Table 9. Task assignment of the 53rd non-dominated solution in Figure 9.

UAV Task Set UAV Task Set

U1 MU1 = {T8, T27, T29, T41, T48, T96, T98} U2 MU2 = {T19, T44, T64, T65, T79, T86}
U3 MU3 = {T22, T24, T62, T80, T89, T91} U4 MU4 = {T16, T33, T43, T71}
U5 MU5 = {T34} U6 MU6 = {T3, T68}
U7 MU7 = {T10, T23, T78, T83, T85} U8 MU8 = {T21, T45}
U9 MU9 = {T5, T11, T32, T36, T54, T57, T75} U10 MU10 = {T7, T66}
U11 MU11 = {T73} U12 MU12 = {T13, T38, T74, T76, T77, T93}
U13 MU13 = {T6, T9} U14 MU14 = {T99}
U15 MU15 = {T28, T52, T55, T84, T88}
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Table 10. Comparison results of the proposed algorithms and the multi-objective method in Gurobi.

Weight (α1, α2) (0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5)

Gurobi
(− f1, f2)

(−8.61, 0.02) (−8.61, 0.05) (−19.26, 3.22) (−19.26, 3.22) (−19.26, 3.22)
Algorithm 1 and 2 (−15.01, 3.38) (−15.01, 3.38) (−20.27, 5.52) (−25.97, 8.85) (−30.06, 12.56)

Weight (α1, α2) (0.6, 0.4) (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)

Gurobi
(− f1, f2)

(−19.26, 3.22) (−19.31, 3.32) (−19.38, 3.5) (−19.41, 3.68)
Algorithm 1 and 2 (−40.73, 26.47) (−50.94, 44.01) (−50.94, 44.01) (−50.94, 44.01)

6.2. Test of the CNP-Based Task Re-Assignment Algorithm
6.2.1. Case 1: A Small-Scale Scenario Involving the Task Re-Assignment Problem

In order to introduce the specific steps of Algorithm 3 in detail, the process of task re-
assignment is explained based on the sixth non-dominated solution selected in Section 6.1.2.
Suppose that four new targets Ti (i ∈ {21, 22, 23, 24}) are found on the battlefield. The prob-
ability of UAVs successfully attacking these targets, the probability of UAVs being de-
stroyed, and the values of these new targets are shown in Table 11. In Algorithm 3,
the value of the parameter Gic is 10 and α1 = α2 = 0.5.

Table 11. Probabilities of UAVs and new targets being destroyed and the value of new targets.

T21 T22 T23 T24 T21 T22 T23 T24

U1
P1j 0.3 0.22 0.44 0.17 U2

P1j 0.21 0.29 0.41 0.15
K1j 0.58 0.86 0.45 0.82 K1j 0.51 0.95 0.55 0.92

U3
P1j 0.34 0.2 0.21 0.32 U4

P1j 0.41 0.33 0.46 0.23
K1j 0.69 0.86 0.54 0.82 K1j 0.64 0.94 0.62 0.95

Target value 0.8 0.6 0.75 0.65

Targets Ti (i ∈ {21, 22, 23, 24}) are assigned using Algorithm 3; the bidding process
is shown in Table 12. The results of task re-assignment are shown in Figure 10, where
Figure 10a shows the results for the initial assignment and Figure 10b the results for task re-
assignment in emergencies. From Figure 10 and Table 12, the following can be determined.
The winning agents of T21 and T22 are U4 and U2, respectively, and the contracts of U4 and
U2 are all sales contracts. The winning agents of T23 and T24 are U3 and U2, respectively,
and the contracts of U3 and U2 are all interchange contracts. In the contract of U3 and U2,
the replaced targets are T2 and T22, respectively, while in the bidding processes of T2 and
T22, no UAV bids for T2 or T22.

Table 12. The bidding process and results.

T21 T22 Winning contract

U1 - - -
U2 < 2, 21, 0, 0.6385 > < 2, 22, 0, 0.6755 > < 2, 22, 0, 0.6755 >
U3 < 3, 21, 2, 0.0235 > < 3, 22, 2, 0.0685 > -
U4 < 4, 21, 0, 0.6395 > - < 4, 21, 0, 0.6395 >

T23 T24 Winning contract

T2 T22

U1 - - < 1, 24, 11, 0.001 > - -
U2 - - < 2, 24, 22, 0.0455 > - < 2, 24, 22, 0.0455 >
U3 < 3, 23, 2, 0.0085 > - - - < 3, 23, 2, 0.0085 >
U4 - - - -
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(a) The result of initial task assignment (b) The result of task re-assignment

Figure 10. Results of initial task assignment and task re-assignment in emergencies.

6.2.2. Case 2: A Large-Scale Scenario involving the Task Re-Assignment Problem

The primary advantage of the CNP-based method is that it can shorten the time
requried for task assignment. The effectiveness of this method can be fully reflected in
large-scale calculation examples. In a large-scale problem, to assign all the current tasks
again takes a lot of time. However, if only new tasks are assigned using the CNP-based
method, a large amount of time can be saved. In this section, the large-scale calculation
example in Section 6.1.3 is used to discuss the effectiveness of the task re-assignment
method in emergencies.

Suppose that ten new targets are found. The values of the parameters VTj , Pij, Kij

(i ∈ I15, j ∈ {101, 102, · · · , 110}) of the new targets can be downloaded from the website
(accessed on 6 November 2022) https://github.com/gaoxh-github/Values-of-parameters.
In Algorithm 3, the value of the parameter Gic is 50. The results of the assignment of ten
new targets based on the original assignment results are shown in Table 13. It can be seen
from Table 13 that the task sets of UAVs U4, U6, U11, and U14 have changed. The task
assignment results obtained using Algorithms 1 and 2 to assign all 110 targets are shown
in Table 14. Through calculation, the values of S1 corresponding to the task assignment
schemes in Tables 13 and 14 are −8.91 and −9.42, respectively. The performance of the
assignment scheme obtained using Algorithms 1 and 2 to assign all tasks is better than the
performance of the assignment scheme obtained using Algorithm 3 to assign new tasks.
However, the calculation time of Algorithm 3 is lower than that of Algorithm 1 combined
with Algorithm 2. Figure 11 shows the time of ten task re-assignment experiments under
these two assignment methods. It can be seen from Figure 11 that Algorithm 3 requires less
time to solve the problem of task re-assignment in emergencies than Algorithm 1 combined
with Algorithm 2. Therefore, in emergency situations, Algorithm 3 can perform real-time
task re-assignment by slightly sacrificing the ability to seek global optimization.

Table 13. Results of task re-assignment using Algorithm 3.

UAV Task Set UAV Task Set

U1 MU1 = {T8, T27, T29, T41, T48, T96, T98} U2 MU2 = {T19, T44, T64, T65, T79, T86}
U3 MU3 = {T22, T24, T62, T80, T89, T91} U4 MU4 = {T16, T33, T43, T71, T103, T105, T106}
U5 MU5 = {T34} U6 MU6 = {T3, T68, T110}
U7 MU7 = {T10, T23, T78, T83, T85} U8 MU8 = {T21, T45}
U9 MU9 = {T5, T11, T32, T36, T54, T57, T75} U10 MU10 = {T7, T66}
U11 MU11 = {T73, T107, T109} U12 MU12 = {T13, T38, T74, T76, T77, T93}
U13 MU13 = {T6, T9} U14 MU14 = {T99, T101, T102, T104, T108}
U15 MU15 = {T28, T52, T55, T84, T88}

 https://github.com/gaoxh-github/Values-of-parameters
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Table 14. Results of task re-assignment using Algorithm 1 and Algorithm 2.

UAV Task Set UAV Task Set

U1 MU1 = {T3, T27, T106} U2 MU2 = {T108}
U3 MU3 = {T14, T38, T39, T79, T80, T94} U4 MU4 = {T44, T57, T77, T84}
U5 MU5 = {T8} U6 MU6 = {T22}
U7 MU7 = {T5, T9, T17, T34, T68, T74, T75} U8 MU8 = {T86}
U9 MU9 = {T11, T48, T65, T73, T98} U10 MU10 = {T40, T52, T69}
U11 MU11 = {T55, T66, T87} U12 MU12 = {T6, T21, T32, T76, T100, T101, T103}
U13 MU13 = {T24, T89} U14 MU14 = {T83}
U15 MU15 = {T1, T10, T33, T45, T78, T93, T99}

Figure 11. CPU runtime required for the task re-assignment process. (a) Algorithm 1 combined with
Algorithm 2. (b) Algorithm 3.

6.2.3. Case 3: Attempting to Solve the Task Assignment Problem Directly Using the
CNP-Based Method

Considering that Algorithm 3 can quickly solve the task re-assignment problem, it
may be possible to use this algorithm directly to solve the task assignment problem. An
analysis of this problem is provided in this section. In the task assignment problem before
the battle, the main goal of assignment is to find an assignment plan that achieves better
performance. Taking the 15 UAVs attacking 100 targets in Section 6.1.3 as an example. Let
α1 = α2 = 0.5, the calculation time of Algorithm 3 is about 1 second. The task assignment
plan obtained using the CNP-based algorithm is shown in Table 15. The values of S1
corresponding to the task assignment schemes in Tables 9 and 15 are −8.75 and −5.189,
respectively. Obviously, the calculation result of the improved multi-objective genetic
algorithm combined with selection strategy is much better than the calculation result of
the CNP-based method. For the task assignment problem, the CNP-based method is much
faster than the improved multi-objective genetic algorithm combined with selection strategy.
However, the result obtained by the improved multi-objective genetic algorithm combined
with selection strategy is much better than the result obtained by the CNP-based algorithm.
Therefore, according to the above analysis, Algorithms 1 and 2 should be used in the task
assignment phase with high requirements for the performance of the task assignment
scheme, and Algorithm 3 should be used in the task re-assignment phase in emergencies
with high requirements related to assignment time.
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Table 15. The result of Case 3 in Section 6.1.3 based on the CNP-based method.

UAV Task Set UAV Task Set

U1 MU1 = {T33, T40, T48, T52, T55, T64, T65} U2 MU2 = {T72, T73, T75, T76, T77, T78, T79}
U3 MU3 = {T99, T100} U4 MU4 = {T5, T9, T10, T14, T16, T21, T22}
U5 MU5 = {T36, T44, T46, T53, T54, T60, T61} U6 MU6 = {T1, T6, T18, T24, T26, T29, T31}
U7 MU7 = {T74, T80, T82, T84, T85, T88, T96} U8 MU8 = {T2, T42, T49, T50, T58, T59, T69}
U9 MU9 = {T43, T51, T57, T62, T66, T68, T70} U10 MU10 = {T15, T17, T19, T20, T25, T30, T32}
U11 MU11 = {T23, T27, T28, T34, T35, T38, T39} U12 MU12 = {T81, T86, T87, T90, T91, T97, T98}
U13 MU13 = {T37, T41, T45, T47, T56, T63, T67} U14 MU14 = {T3, T4, T7, T8, T11, T12, T13}
U15 MU15 = {T71, T83, T89, T92, T93, T94, T95}

7. Conclusions

In this paper, we have provided a unified multi-objective optimization framework for
the cooperative task assignment and re-assignment of multiple UAVs. First, we propose
a multi-objective optimization problem in which the minimization of the cost and the
maximization of the benefits are regarded as the objectives. To solve the problem, a multi-
objective genetic algorithm suitable for UAV cooperative task assignment is proposed
and the encoding format and genetic operators in the proposed algorithm are specially
designed. Then, we provide a selection strategy to facilitate the choice of an operation
plan from the Pareto solution set by the decision-maker. Finally, taking into account the
possible emergencies in the complex combat environment, the task re-assignment problem
in emergencies before the battle is studied and a task re-assignment algorithm based on
a contract network protocol is proposed. Simulation examples are used to verify the
effectiveness of the proposed algorithms.

When the battlefield environment is more complex, a single target may contain multi-
ple different tasks. For multiple types of tasks, heterogeneous UAVs have higher efficiency
in performing their tasks compared to homogeneous UAVs. At the same time, there may be
multiple obstacles in the environment that affect UAV flight. In addition, it is important to
study the performance of the algorithm. Therefore, in our next work we intend to focus on
the performance of the algorithm and task assignment of heterogeneous UAVs in complex
environments containing obstacles.

Author Contributions: Data curation, Y.D.; Funding acquisition, L.W. and X.W.; Investigation, X.S.
and Y.D.; Methodology, X.G., L.W., C.W. and X.W.; Project administration, L.W. and X.W.; Resources,
C.L., C.W. and X.W.; Supervision, C.L., Y.D., C.W. and H.P.; Validation, X.S.; Writing—original draft,
X.G.; Writing—review and editing, X.G. and X.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key Research and Development Plan (2021YFB3302501);
the National Natural Science Foundation of China (12102077); and the Fundamental Research Funds
for the Central Universities (DUT22LAB305, DUT22RC(3)010).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Contact the first/corresponding author please.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Newcome, L.R. Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles; Library of Flight Series, AIAA: Reston, VA,

USA, 2004. [CrossRef]
2. Sarris, Z. Survey of UAV applications in civil markets (June 2001). In Proceedings of the IEEE Mediterranean Conference on

Control and Automation, Dubrovnik, Croatia, June 2001. Available online: https://www.researchgate.net/publication/22909153
6_Survey_of_UAV_applications_in_civil_markets_June_2001 (accessed on 6 November 2022).

http://doi.org/10.2514/4.868894
https://www.researchgate.net/publication/229091536_Survey_of_UAV_applications_in_civil_markets_June_2001
https://www.researchgate.net/publication/229091536_Survey_of_UAV_applications_in_civil_markets_June_2001


Mathematics 2022, 10, 4241 23 of 24

3. Nonami, K.; Kendoul, F.; Suzuki, S.; Wang, W, Nakazawa, D. Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro
Aerial Vehicles; Springer: Tokyo, Japan, 2010. Available online: https://dl.acm.org/doi/abs/10.5555/1941802 (accessed on
6 November 2022).

4. Qu, X.B.; Zhang, W.G.; Wang, X.G. Research of UAVs’ attack strategy under uncertain condition. Flight Dyn. 2015, 33, 381–384.
Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-FHLX201504021.htm (accessed on 6 November 2022).
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