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Abstract: The SPEEDY block cipher family announced at the CHES 2021 shows excellent performance
on hardware architectures. Due to the nature of the hardware-friendly design of SPEEDY, the
algorithm has low performance for software implementations. In particular, 6-bit S-box and bit
permutation operations of SPEEDY are inefficient in software implementations, where it performs
word-wise computations. We implemented the SPEEDY block cipher on a 32-bit microcontroller
for the first time by applying the bit-slicing techniques. The optimized encryption performance
results on ARM Cortex-M3 for SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-192 are 65.7, 75.25,
and 85.16 clock cycles per byte (i.e., cpb), respectively. It showed better performance than AES-128
constant-time implementation and GIFT constant-time implementation in the same platform. In
RISC-V, the performance showed 81.9, 95.5, and 109.2 clock cycles per byte, which outperformed the
previous works. Finally, we conclude that SPEEDY can show efficient software implementation on
low-end embedded environments.

Keywords: SPEEDY block cipher; software implementation; ARM Cortex-M3; RISC-V

MSC: 94A60

1. Introduction

SPEEDY [1] is a very low-latency block cipher designed with high performance as the
highest priority for high-end CPU security. It shows higher performance than competing
block ciphers [2–5]. The software implementation of SPEEDY, designed to be hardware-
friendly, is relatively inefficient. In general, ciphers designed with hardware performance in
mind are relatively inefficient for implementation in software. Some researchers applied the
bit-slicing technique and implemented it efficiently in the software environment. Bao [6]
improved software performance by using bit-slicing technology instead of LUT for PRINCE
and LED in 8-bit microcontroller. Papagiannopoulos et al. [7] presented a high-throughput
assembly implementation of the PRESENT, PRINCE and KATAN64 ciphers for the AT-
tiny family of AVR microcontrollers. A method of applying ‘bit-slicing’ technology to
a lightweight encryption implementation is provided. Reis et al. [8] showed that a bit-
slicing implementation of PRESENT can be efficiently implemented on 32-bit ARM. Using
bit-slicing on the Cortex-M3, we improved the speed by 8× compared to our previous
work. Adomnicai et al. [9] demonstrated a highly efficient software implementation of
GIFT with a new technique called fix-slicing. The Cortex-M3 microcontroller performed
faster than the then-best AES [10] constant-time implementation microcontrollers. Based
on these studies, we explored bit-slicing implementation with the goal of efficient im-
plementation on SPEEDY’s software. A cipher with high performance in both hardware
and software is considered competitive over other ciphers. SPEEDY’s high-performance
software implementation will increase SPEEDY’s competitiveness.
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Ref. [1] provided two software-implemented reference implementations and a 6 × 32-bit
implementation. From this, we could observe the parts that caused performance degrada-
tion in the SPEEDY software implementation. In the case of the reference implementation,
the state of the 192 bits of SPEEDY is expressed by 248 bits. That expression causes an
additional operation. In the reference implementation, SubBox uses a method of retrieving
the value of the 6-bit S-box from the dictionary table. For this, the state represented by
248 bits is decomposed into 6 bits before input to the S-box. The output 6-bit result is then
recombined to convert it back to a representation of an 8-bit 24 array. This process is also
included in the ShiftColumns MixColumns step. The conversion process is inefficient, as
it consumes additional time and memory. The 6 × 32-bit implementation stores 6 bits in
8-bit storage to solve this problem. The conversion process can be eliminated, but it is
wasted by using 256 bits of storage space. A bit-slicing implementation can overcome these
shortcomings. The conversion process is unnecessary by using 832-bit storage spaces. It
also eliminates wasted space in a 6 × 32-bit implementation. As shown in Table 1, the
bit-slicing implementation is faster than previous software results. These results motivated
the implementation of SPEEDY in an embedded environment that requires fewer resources.
We implemented optimally in Cortex-m3 and Risc-V environments to analyze whether
SPEEDY’s bit-slicing implementation works efficiently in an embedded environment.

Table 1. Comparison of reference and bit-slicing C implementation results. Performance is evaluated
in cpb (clock cycles per byte).

Intel 8th Core i7-8850H Speed (cpb)

SPEEDY-7-192 encryption reference [9] 2983

6 × 32 reference [9] 1278

bitslice(our) 852

1.1. Extended Version of ICISC’21

The previous work in ICISC’21 is extended in this paper [11]. In [11], efficient
software implementations of SPEEDY on low-end ARM Cortex-M4 microcontrollers were
investigated. This work presents optimized implementations of SPEEDY on modern 32-bit
RISC-V microcontrollers as well. We fully utilized features (i.e., registers and instructions)
of RISC-V to improve the performance, significantly.

1.2. Contributions

We achieved higher speed performance than the prior software implementation of
SPEEDY. SPEEDY is designed to be hardware-friendly and shows relatively low perfor-
mance in the software reference implementation of [1]. We observed that SPEEDY’s 6-bit
S-box, ShiftColumns, and MixColumns are naturally optimized in the bit-slicing imple-
mentation. In addition, the implementation of bit-slicing naturally achieves a constant
time implementation, preventing timing attacks [12–14]. We also show an implementation
that effectively turns SPEEDY’s 192-bit blocks into representations of bit slicing. It was
first implemented on 32-bit ARM processors and RISC-V [15] processors to achieve out-
standing performance. Especially when implemented in Cortex-M3, higher performance
can be achieved using the barrel shifter module. On ARM Cortex-M3, SPEEDY-5-192,
SPEEDY-6-192 and SPEEDY-7-192 achieved 65.7, 75.25 and 85.16 clock cycles per byte,
respectively, faster than previous constant-time implementations of GIFT-128 and AES-128.
In RISC-V (i.e., RV32I), SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-192 achieved 81.9,
95.5, and 109.2 clock cycles per byte, respectively. The implementation results of this
paper will be available in https://github.com/amdjd0704/speedy_bitslice (accessed on
10 November 2022).

https://github.com/amdjd0704/speedy_bitslice
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2. SPEEDY Algorithm

SPEEDY is a high-speed, high-security priority block cipher with very low latency,
designed for hardware security solutions built into high-end CPUs that require high perfor-
mance in terms of latency and throughput. The block length and key length use 192 bits,
which is the least common multiple of 6 and 64 considering a 64-bit CPU, and use a 6-bit
S-box. The 192 bits can be expressed in 32 rows of 6 bits each. The SPEEDY family is divided
into SPEEDY-5-192, SPEEDY-6-192, SPEEDY-7-192 according to the number of rounds. As
for the security level provided by each algorithm, SPEEDY-6-192 provides a security level
of 128 bits, and SPEEDY-7-192 provides a security level of 192 bits. SPEEDY-5-192 provides
a sufficient level of security for use in real applications. The block length of SPEEDY-r-6` is
6×`) and the number of rounds is r. The 6×` can be seen as a rectangular array.

2.1. The Round Function of SPEEDY

The 6-bit S-box used by SPEEDY is based on the NAND gate. It is designed to run
fast on CMOS hardware while providing excellent cryptographic properties. Our imple-
mentation follows the disjunctive normal form (DNF) operation, and S-box is implemented
with the AND operation and OR operation. The S-box is applied to each status row, and
the DNF of the S-box is as follows:

y0 = (x3 ∧ ¬x5) ∨ (x3 ∧ x4 ∧ x2) ∨ (¬x3 ∧ x1 ∧ x0) ∨ (x5 ∧ x4 ∧ x1)

y1 = (x5 ∧ x3 ∧ ¬x2) ∨ (¬x5 ∧ x3 ∧ ¬x4) ∨ (x5 ∧ x2 ∧ x0) ∨ (¬x3 ∧ ¬x0 ∧ x1)

y2 = (¬x3 ∧ x0 ∧ x4) ∨ (x3 ∧ x0 ∧ x1) ∨ (¬x3 ∧ ¬x4 ∧ x2) ∨ (¬x0 ∧ ¬x2 ∧ ¬x5)

y3 = (¬x0 ∧ x2 ∧ ¬x3) ∨ (x0 ∧ x2 ∧ x4) ∨ (x0 ∧ ¬x2 ∧ x5) ∨ (¬x0 ∧ x3 ∧ x1)

y4 = (x0 ∧ ¬x3) ∨ (x0 ∧ ¬x4 ∧ ¬x2) ∨ (¬x0 ∧ x4 ∧ x5) ∨ (¬x4 ∧ ¬x2 ∧ x1)

y5 = (x2 ∧ x5) ∨ (¬x2 ∧ ¬x1 ∧ x4) ∨ (x2 ∧ x1 ∧ x0) ∨ (¬x1 ∧ x0 ∧ x3)

2.1.1. ShiftColumns

In ShiftColumns, the j-th column of the state is rotated in reverse by j bits. When
implementing hardware, it can be implemented for free with simple wiring. However,
software implementation requires additional work.

y[i,j] = x[i+j,j]

2.1.2. Mixcolumns

Mixcolumns allows for a simple implementation using only XOR gates in hardware
implementations. However, additional calculations are required when implementing the
software. In Mixcolumns, a cyclic binary matrix is multiplied by each column of states. The
implementation is as follows, where n = (n1, ..., n6) is the version-specific parameter value.

y[i,j] = xi,j ⊕ x[i+n1,j] ⊕ x[i+n2,j] ⊕ x[i+n3,j] ⊕ x[i+n4,j] ⊕ x[i+n5,j] ⊕ x[i+n6,j]

2.1.3. AddRoundKey

Addroundkey performs an XOR operation on the state value and the 6`-bit round key
RKr:

y[i,j] = x[i,j] ⊕ RKr[i,j]

2.1.4. AddRoundConstant

AddRoundConstant performs an XOR operation of the state value and the round
constant value 6`-bit cr.

The 6`-bit constant cr is XORed to the whole of the state. Round constants cr is chosen
as the binary digits of the number π − 3 = 0.141....:

y[i,j] = x[i,j] ⊕ cr[i,j]
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One round of encryption works in the following order: AddRoundkey→ SubBytes→
ShiftColumns→ SubBytes→ ShiftColumns→MixColumns→ AddRoundConstant. Last
round of encryption works in the following order: AddRoundkey→ SubBytes→ Shift-
Columns→ SubBytes→ AddRoundkey. In decryption, inversed SubBytes, ShiftColumns
and MixColumns work in reverse.

3. Proposed Technique

We aimed for an efficient implementation of SPEEDY on a 32-bit microcontroller. In
SPEEDY, the 192-bit state is expressed in 32 lines of 6 bits each. However, 6-bit does not
fit into the 8-bit, 32-bit, and 64-bit used in typical processor architectures. This results
in wasted space and additional computations in SPEEDY’s software implementation. In
particular, ShiftColumns require bit exchange between blocks, which is difficult in software
operation. In a bit-slicing implementation, these characteristics are reversed. In the bit-
slicing representation, the 192-bit state is expressed in 6 rows of 32 bits each. Therefore, in
software implementation, the state can be stored without waste with 6 storage spaces of
32 bits. We observed that SPEEDY’s round function in the bit-slicing representation is very
suitable for software implementations. Six blocks can be processed in parallel with 32-bit
logic operation in the S-box layer. ShiftColumns are easily handled as exchanges between
registers. MixColumns can be processed with several rotations and XOR operations. First,
we implemented SPEEDY in C language by applying bit-slicing. Table 1 is a comparison to
the previous reference implementation. The clock cycles per byte of the encryption process
including the key schedule were measured on a commercial computer. The bit-slicing
implementation shows a 250% 50% speedup over the respective reference implementations.
You can see that SPEEDY’s implementation of bit-slicing is more efficient in software. Based
on this, we show the application of bit-slicing to a resource-limited 32-bit microcontroller.

3.1. SPEEDY on ARM Cortex–M3

The Cortex-M3 is ARM’s family of 32-bit processors. It is designed to be inexpensive
and energy efficient for use in embedded microcontrollers, making it very effective for
IoT services. It features a barrel shifter support. A barrel shifter is a hardware device
that can shift or rotate multiple bits within a data word in one operation. In arithmetic or
logical operations, rotation or translation can be performed simultaneously with a single
instruction. This microprocessor has 16 32-bit registers. Of these, 14 registers are available
for the developer (e.g., R0 ∼ R12, R14). Arithmetic and logical operations use only one clock
cycle, but branches, loads, and stores can take many more. Therefore, minimizing access to
memory and using registers can improve computational performance. For the SPEEDY
implementation on our Cortex-M3, all 14 registers are used for efficient operation. It uses 6
fixed registers to store the intermediate value of the operation. Then, the address value of
the round key used periodically is stored in one register and called during the operation of
the AddRoundKey function. In order to improve computational performance, functions
except for AddRoundKey function are implemented not to access memory. For this, the
SubBox function requires 7 temporary storage, and ShiftColumns and MixColumns each
requires 6 temporary storage. Since all registers are used during the operation, the value
containing the ciphertext address is stored on the stack at the start of the operation and
loaded last.

3.2. SPEEDY on RISC-V(RV32I)

RISC-V is a computer CPU architecture that has been under development at UC
Berkeley since 2010. The main feature of the RISC-V processor is that RISC-V ISA is
provided under an open-source license. In this paper, the 32-bit RV32I basic instruction set
is used to support small microcontrollers [16]. The RV32I contains 47 unique instructions
and has 32 general purpose registers (i.e., x0 ∼ x31). Registers are used similarly for the
Cortex-M3 processor. The address value of the round key that is used periodically is stored
in one register and used repeatedly, and the intermediate value of the operation is stored
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by fixing 6 registers. The SubBox function requires 7 temporary storage spaces, and the
ShiftColumns and MixColumns functions each requires 6 temporary storage spaces. Since
more registers than Cortex-M3 can be used, the value including the ciphertext address is
stored in the register and used.

3.3. Bit-Slicing SPEEDY

Bit-slicing was first used instead of lookup tables by Biham [17] to speed up the soft-
ware implementation of DES. Bit-slicing represents the data of the n bit block as 1 bit and
stores it in the n register. This representation allows multiple blocks to be processed in paral-
lel using bitwise operation instructions. The bit-slicing technique, which computes multiple
instances in parallel, is widely used because it can save a lot of computation with high
parallelism. However, in the case of a microcontroller, it is difficult to apply because it does
not provide enough registers. Additionally, it can be used only when parallel operation is
possible, such as in CTR mode. Bit-slicing for a single block can be used regardless of the
implementation mode. Since our target is a 32-bit microcontroller, bit-slicing is performed
for a single block. For bit-slicing, a function must be expressed as a logical operation.
Packing to change the block to the bit-slicing representation and the unpacking process
to return to the original representation are required. For a bit-slicing implementation,
SPEEDY’s 192-bit plaintext is represented by six 32-bit registers. Table 2 is a bit-slicing rep-
resentation used for implementation. Using this representation, blocks of SPEEDY operate
in parallel across all functions and can be efficiently implemented with fewer instructions.
The SWAPMOVE technique [18] is a common technique used to efficiently change the
bit-slicing representation. It is simply changed with a few SWAPMOVE operations.

SWAPMOVE(A, B, M, n) : T = (B⊕ (A� n)) ∧MB = B⊕ TA = A⊕ (T � n) (1)

On a 32-bit processor, 192 bits of plain text are stored in six segments without waste.
At this time, 6-bit blocks are stored in different spaces. Due to truncated blocks, SPEEDY
cannot create a bit-slicing representation using only SWAPMOVE. Taking this into account,
we implemented a three-step process with the goal of using fewer instructions. One 32-bit
register can completely store five 6-bit blocks. SWAPMOVE technology is applied to blocks
of index 0 to 29, and the rest are implemented by moving 1 bit at a time. This method can be
effectively implemented by maximizing the known SWAPMOVE technology. Step 1 places
five 6-bit blocks in a 32-bit register. Step 2 rearranges indices 30 and 31 into bit-slicing
representations. It is shifted one bit at a time. Finally, in step 3, the block is rearranged from
the 0th to the 29th index by the SWAPMOVE operation.

Table 2. Bit-slicing representation from using 6 32-bit registers R0, ..., R5 to process 8 blocks b0, ..., b7

in parallel where bi
j refers to the j-th bit of the i-th block.

Block0 Block1 Block2 Block3 · · · · · · Block28 Block29 Block30 Block31
R0 b0

0 b1
0 b2

0 b3
0 · · · · · · b28

0 b29
0 b30

0 b31
0

R1 b0
1 b1

1 b2
1 b3

1 · · · · · · b28
1 b29

1 b30
1 b31

1
R2 b0

2 b1
2 b2

2 b3
2 · · · · · · b28

2 b29
2 b30

2 b31
2

R3 b0
3 b1

3 b2
3 b3

3 · · · · · · b28
3 b29

3 b30
3 b31

3
R4 b0

4 b1
4 b2

4 b3
4 · · · · · · b28

4 b29
4 b30

4 b31
4

R5 b0
5 b1

5 b2
5 b3

5 · · · · · · b28
5 b29

5 b30
5 b31

5

Step 0 of the Figure 1 is the initial state in which input 192 bits are stored in 6 registers.
SPEEDY is divided into 32 6-bit blocks and operated. Since it does not match the register
size, it can be seen that some blocks are divided and stored. In step 1, the block is sorted
using only 30 bits of the register, excluding 2 bits from 32 bits. A total of 180 bits of input
are stored in the registers, leaving 12 bits. The remaining 12 bits correspond to the last
two blocks of 32 blocks. We implemented it efficiently by using UBFX, BFI, LSL, and LSR
instructions in Cortex-M3 processor and SRLI, SLLI, and AND instructions in RV32I. In
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Step 2, the remaining 12 bits are filled in the 2 unfilled bits. The last block, the 32-nd block,
is stored in the least significant bit of each register, and the 31-st block is stored in the
second least significant bit. These values do not change until the last step.

Finally, in Step 3, we use SWAPMOVE to sort by bit-slicing representation as shown
in Figure 2. Initially, 15 bit exchanges are made at (R0, R1), (R2, R3), and (R4, R5). Next,
10 bit exchanges are made in the following order: (R0, R4), (R1, R5), (R2, R4), and (R3, R5).
The last 10 bit exchange is done at (R0, R2) and (R1, R3).

Figure 1. Plain text consisting of 32 blocks of 6 bits in 6 32-bit registers is reordered into a bit-slicing
representation. A block of 6 bits is expressed as bi

j, where i is the index of the block, and j is the
position of the bit.

3.4. SubBox

To implement bit-slicing, SubBox layer operations are performed by combining logical
operators rather than lookup table methods. By combining logical operators, 32 blocks
of 6 bits can be operated in parallel. The logical operator provided in [1] was used. We
reduce the number of logical operations by using the rules of logical operators as shown
in the following formula for efficient implementation. This saves 8 instructions in the
SubBox layer.

y0 = (x3 ∧ (¬x5 ∨ (x4 ∧ x2)) ∨ (x1 ∧ ((¬x3 ∧ x0) ∨ (x5 ∧ x4))

y1 = (x5 ∧ ((x3 ∧ ¬x2) ∨ (x2 ∧ x0))) ∨ (¬x5 ∧ x3 ∨ ¬x4) ∨ (¬x3 ∧ ¬x0 ∧ x1)

y2 = (x0 ∧ ((¬x3 ∧ x4) ∨ (x3 ∧ x1))) ∨ (¬x3 ∧ ¬x4 ∧ x2) ∨ (¬x0 ∧ ¬x2 ∧ x5)

y3 = (x2 ∧ ((¬x0 ∧ ¬x3) ∨ (x0 ∧ x4))) ∨ (x0 ∧ ¬x2 ∧ x5) ∨ (¬x0 ∧ x3 ∧ x1)

y4 = (x0 ∧ ¬x3) ∨ (¬x0 ∧ x4 ∧ x5) ∨ ((¬x4 ∧ ¬x2) ∧ (x0 ∨ x1))

y5 = (x2 ∧ (x5 ∨ (x1 ∧ x0))) ∨ (¬x1 ∧ ((¬x2 ∧ x4) ∨ (x0 ∧ x3)))

For an efficient implementation, as in Algorithm 1, the ¬ operation and the a ∧ ¬b
operation are performed using the ORN instruction. For example, for (x3 ∧ x4 ∧ x2)∨
(¬x3 ∧ x1 ∧ x0), we use the logical operator convention to use (x3 ∧ x4 ∧ x2)∨ ¬((x3∨
¬x1)∨ ¬x0)
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Figure 2. SWAPMOVE is used as the last step in the proposed technique to represent SPEEDY in
a bit-slicing format. Bits in the colored part of the two registers are swapped. A block of 6 bits is
expressed as bi

j, where i is the index of the block, and j is the position of the bit.

3.5. ShiftColumns

In ShiftColumns, the bits in the block are shifted columnwise. A large-scale exchange
of bits is performed between blocks. Since the software implementation is word-wise,
it is expensive to handle the bit exchange in the classic representation. In the bit-slicing
representation, the bits are converted into row-wise transposes because rows and columns
are switched. This means that ShiftColumns can be changed from bit swapping to word
rotation operations. So it can be implemented with a few rotation instructions. It can
be implemented as Algorithm 2. Cortex-M3 can further optimize the operation. Using
the Barrel Shifter of Cortex-M3, it can be implemented with 6 MOV instructions, like the
assembly code of Algorithm 3. The value shifted after rotation to combine with the MC
operation is stored in another register. Values stored in existing registers are reused in MC
operations. The RV32I does not support barrel shifters, so a combination of SRLI, SLLI, and
XOR instructions implements a rotation operation. Therefore, in RV32I, it is implemented
using 6 rotation operations after one MOV instruction. Therefore, 19 commands are used.

3.6. MixColumns

In a bit-slicing implementation, MixColumns swaps rows and columns, so we rotate
each row by alpha(1, 5, 9, 15, 21, 26) and do an XOR as shown below.

y[i] = x[i]⊕ (x[i] <<< a0)⊕ (x[i] <<< a1)⊕ (x[i] <<< a2)

⊕ (x[i] <<< a3)⊕ (x[i] <<< a4)⊕ (x[i] <<< a5)
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Algorithm 1 Bit-slicing implementations of S-box in ARMv6 assembly.

Input: X0-X5 (r4-r9),
temporal register T (r14)

Output: Y0-Y5 (r1-r3, r10-r12)

1: AND Y3, X2, X4
2: ORN Y3, Y3, X5
3: AND Y3, Y3, X3
4: AND Y4, X5, X4
5: ORN Y5, X3, X0
6: ORN Y4, Y4, Y5
7: AND Y4, X1, Y4
8: ORR Y0, Y4, Y3

9: AND Y3, X0, X2
10: ORN Y4, X2, X3
11: ORN Y3, Y3, Y4
12: AND Y3, Y3, X5
13: ORR Y4, X5, X4
14: ORN Y4, Y4, X3
15: ORN Y3, Y3, Y4
16: ORR Y4, X0, X3
17: ORN Y4, Y4, X1
18: ORN Y1, Y3, Y4

19: AND Y3, X1, X3
20: ORN Y4, X3, X4
21: ORN Y3, Y3, Y4
22: AND Y3, X0, Y3
23: ORR Y4, X3, X4
24: ORN Y4, Y4, X2
25: ORN Y3, Y3, Y4
26: ORR Y4, X0, X2
27: ORR Y4, Y4, X5

28: ORN Y2, Y3, Y4

29: AND Y3, X0, X4
30: ORR Y4, X0, X3
31: ORN Y3, Y3, Y4
32: AND Y3, Y3, X2
33: AND Y4, X0, X5
34: ORN Y4, X2, Y4
35: ORN Y3, Y3, Y4
36: AND Y4, X1, X3
37: ORN Y4, X0, Y4
38: ORN Y3, Y3, Y4

39: MOV T, #s0
40: ORR Y4, X4, X2
41: ORR Y5, X0, X1
42: ORN Y4, Y4, Y5
43: ORN Y4, T, Y4
44: ORN Y5, X3, X0
45: ORN Y4, Y4, Y5
46: AND Y5, X4, X5
47: ORN Y5, X0, Y5
48: ORN Y4, Y4, Y5

49: AND T, X0, X3
50: ORN Y5, X2, X4
51: ORN T, T, Y5
52: ORN T, X1, T
53: AND Y5, X1, X0
54: ORR Y5, Y5, X5
55: AND Y5, Y5, X2
56: ORN Y5, Y5, T

Algorithm 2 Bit-slicing implementations of ShiftColumns.

Input: state[0-5]
Output: state[0-5]

1: state[1] = (state[1] « 1) | (state[1] » 31)
2: state[2] = (state[2] « 2) | (state[2] » 30)
3: state[3] = (state[3] « 3) | (state[3] » 29)
4: state[4] = (state[4] « 4) | (state[4] » 28)
5: state[5] = (state[5] « 5) | (state[5] » 27)

Algorithm 3 Bit-slicing implementations of ShiftColumns in ARMv6 assembly.

Input: X0-X5 (r1-r3, r10-r12)
Output: Y0-Y5 (r4-r9)

1: MOV Y0, X0
2: MOV Y1, X1, ROR #31

3: MOV Y2, X2, ROR #30
4: MOV Y3, X3, ROR #29
5: MOV Y4, X4, ROR #28
6: MOV Y5, X5, ROR #27
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The classic implementation is more efficient because it requires 6× 32 XOR operations,
while the bit-slicing implementation requires 6 × 6 XOR operations. In particular, Cortex-
M3 can process rotation and XOR operations together like Algorithm 4 if a barrel-shifter is
used. Each row rotates by alpha(1, 5, 9, 15, 21, 26) and XORs the result of the previous SC
process with the stored register. The operation of MixColumns can be processed with 36
XOR instructions. Since RV32I does not support barrel shift, a total of 144 instructions are
used, a rotation operation that combines SRLI, SLLI operation, and XOR operation.

Algorithm 4 Bit-slicing implementations MixColumns in ARMv6 assembly.

Input: X0-X5 (r1-r3, r10-r12),
Y0-Y5 (r4-r9)

Output: Y0-Y5 (r4-r9)

1: EOR Y0, Y0, X0, ROR #31
2: EOR Y0, Y0, X0, ROR #27
3: EOR Y0, Y0, X0, ROR #23
4: EOR Y0, Y0, X0, ROR #17
5: EOR Y0, Y0, X0, ROR #11
6: EOR Y0, Y0, X0, ROR #6

7: EOR Y1, Y1, X1, ROR #30
8: EOR Y1, Y1, X1, ROR #26
9: EOR Y1, Y1, X1, ROR #22

10: EOR Y1, Y1, X1, ROR #16
11: EOR Y1, Y1, X1, ROR #10
12: EOR Y1, Y1, X1, ROR #5

13: EOR Y2, Y2, X2, ROR #29
14: EOR Y2, Y2, X2, ROR #25
15: EOR Y2, Y2, X2, ROR #21
16: EOR Y2, Y2, X2, ROR #15
17: EOR Y2, Y2, X2, ROR #9

18: EOR Y2, Y2, X2, ROR #4

19: EOR Y3, Y3, X3, ROR #28
20: EOR Y3, Y3, X3, ROR #24
21: EOR Y3, Y3, X3, ROR #20
22: EOR Y3, Y3, X3, ROR #14
23: EOR Y3, Y3, X3, ROR #8
24: EOR Y3, Y3, X3, ROR #3

25: EOR Y4, Y4, X4, ROR #27
26: EOR Y4, Y4, X4, ROR #23
27: EOR Y4, Y4, X4, ROR #19
28: EOR Y4, Y4, X4, ROR #13
29: EOR Y4, Y4, X4, ROR #7
30: EOR Y4, Y4, X4, ROR #2

31: EOR Y5, Y5, X5, ROR #26
32: EOR Y5, Y5, X5, ROR #22
33: EOR Y5, Y5, X5, ROR #18
34: EOR Y5, Y5, X5, ROR #12
35: EOR Y5, Y5, X5, ROR #6
36: EOR Y5, Y5, X5, ROR #1

3.7. AddRoundKey and AddRoundConstant

AddRoundConstant can be preprocessed by XORing AddRoundKey and key schedule.
AddRoundKey and AddRoundConstant are XORed, packed into a bit-slicing representa-
tion, and XORed in the AR layer. Both Cortex-m3 and RV31I are implemented using load
and XOR 6, respectively.

4. Evaluation

In this section, we compare the results for our implementation. Implementation on
ARM Cortex-M3 processor is developed with Arduino IDE on ArduinoDUE (AT91SAM3X8E)
development board. The operating clock is 84 MHz, and it has 512 KB of flash memory and
96 KB of RAM. Performance comparisons are measured through average cycles in encryption
in ECB mode. Key scheduling is not taken into account, as round keys are assumed to be
precomputed and stored in RAM. To confirm that our bit-slicing implementation has higher
performance in the 32-bit embedded environment, we compare it with the reference code
of the previous implementation [1]. In addition, the bit-slicing implementation of SPEEDY
is compared with other constant-time implementation ciphers to check its competitiveness
compared to other ciphers.

Comparison with GIFT, which achieved high performance on 32-bit ARM with the
fastest constant implementation of the most popular block cipher AES and Fixslicing
technique. Both ciphers could be compared in the same environment because the source
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code of the fastest implementation was released. Since SPEEDY encrypts 192-bit blocks, the
performance difference was compared based on cycle per byte (cpb) for fair comparison. We
implemented SPEEDY-5-192, SPEEDY-6-192 and SPEEDY-7-192. Reference implementation
and AES-128 and GIFT-128 were compared in the same environment. The result is shown
in Table 3. Comparing the SPEEDY-7-192 with our implementation and the reference C
implementation, there was a huge speed difference of about 180×. In addition, when
comparing our implemented SPEEDY-6-192 with the same security level AES-128 and
GIFT-128, the result of 75.2 cpb was 1.6× faster than 120.4 cpb of AES-128 and 1.3× faster
than 104.1 cpb of GIFT-128. Considering that SPEEDY is designed to be hardware-friendly,
this is a remarkable result.

Implementation on RV32I RISC-V processor was developed with SiFive Freedom
Studio RISC-V IDE on HiFive1 Rev B (FE310-G002) development board. The operating
clock is 320 MHz, and it has 16 MB of flash memory and 16 KB of RAM. Performance
comparison measured the average cycle when encrypting. Key scheduling is not taken
into account, as it is assumed that round keys are pre-computed and stored in RAM. We
implemented SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-192. AES-128 implemented in
constant time in the same environment were compared. Similar to the ARM Cortex-M3,
it showed a noticeable performance improvement. As shown in Table 3, compared to the
reference C implementation of SPEEDY-7-192, the speed difference was about 165×. Similar
to the ARM Cortex-M3, it showed a noticeable performance improvement. However, when
comparing the implemented SPEEDY-6-192 with the same security level AES-128, it is 1.2×
slower than the result of 78.9 cpb for AES-128. It can be seen that our SPEEDY bit-slicing
implementation is very efficient on a 32-bit microcontroller.

Table 3. Comparison of SPEEDY implementation results and various constant-time implementation
results on ARM Cortex-M3 and RISC-V. The performance is evaluated in clock cycles per byte (cpb).

ARM Cortex-M3 Speed (cpb) Block Size Parallel Blocks

GIFT-128 encryption [9] 104.1 128 1

AES-128 encryption [19] 120.4 128 2

SPEEDY-7-192 encryption (reference) 15,407 192 1

SPEEDY-5-192 encryption (ours) 65.7 192 1

SPEEDY-6-192 encryption (ours) 75.2 192 1

SPEEDY-7-192 encryption (ours) 85.1 192 1

RISC-V Speed (cpb) Block Size Parallel Blocks

AES-128 encryption [19] 78.9 128 8

SPEEDY-7-192 encryption (reference) 18,096 192 1

SPEEDY-5-192 encryption (ours) 81.9 192 1

SPEEDY-6-192 encryption (ours) 95.5 192 1

SPEEDY-7-192 encryption (ours) 109.2 192 1

5. Conclusions

By applying bit-slicing implementation technology, we implemented SPEEDY on a
low-cost microcontroller. For performance comparison, we measure the speed of encryption
on ARM Cortex-M3 and RISC-V (RV32I). On ARM Cortex-M3, SPEEDY-5-192, SPEEDY-6-
192 and SPEEDY-7-192 achieved 65.7 cpb, 75.25 cpb and 85.16 cpb, respectively. In the same
environment, it showed better performance with 120.4 cpb for GIFT-128 and 104.1 cpb for
AES-128 in on-time implementation. In RISC-V (RV32I), SPEEDY-5-192, SPEEDY-6-192,
and SPEEDY-7-192 achieved 81.9 cpb, 95.5 cpb, and 109.2 cpb, respectively. This showed
that SPEEDY can be run very efficiently in software and can be applied specifically to
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microcontrollers. The proposed implementation works with constant timing, which is
advantageous for timing attacks. Our first proposed implementation of bit-slicing SPEEDY
can be used as a reference for other processor implementations. In future research, we plan
to apply an efficient masking technique for additional side-channel security.
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