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Abstract: In this article, a scalar nonlinear integro-differential equation of second order and a non-
linear system of integro-differential equations with infinite delays are considered. Qualitative proper-
ties of solutions called the global asymptotic stability, integrability and boundedness of solutions of
the second-order scalar nonlinear integro-differential equation and the nonlinear system of nonlinear
integro-differential equations with infinite delays are discussed. In the article, new explicit qualitative
conditions are presented for solutions of both the second-order scalar nonlinear integro-differential
equations with infinite delay and the nonlinear system of integro-differential equations with infinite
delay. The proofs of the main results of the article are based on two new Lyapunov–Krasovskiı̌
functionals. In particular cases, the results of the article are illustrated with three numerical examples,
and connections to known tests are discussed. The main novelty and originality of this article are that
the considered integro-differential equation and system of integro-differential equations with infinite
delays are new mathematical models, the main six qualitative results given are also new.

Keywords: integro-differential equation; integro-differential system; first order; second order; infinite
delay; global asymptotic stability; boundedness; integrability; LKF
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1. Introduction

In the relevant literature, the global asymptotic stability, boundedness, integrability, etc.,
of linear and nonlinear integro-differential equations (IDEs) of the first order without delay,
scalar nonlinear delay integro-differential equations (DIDEs), nonlinear delay systems of IDEs
of the first order, functional differential equations (FDEs), etc., have attracted a lot of attention
from researchers. For a comprehensive treatment of the subject on the stability, boundedness,
integrability, etc., of solutions of first-order IDEs without delay, see, Alahmadi et al. [1],
Burton [2], Furumochi and Matsuoka [3], Grimmer and Seifert [4], Jordan [5], Lakshmikantham
and Rama Mohana Rao [6], Mohana Rao and Srinivas [7], Murakami [8], Rama Mohana Rao
and Raghavendra [9], Sedova [10], and the bibliographies therein.

We would now like to outline some qualitative results on IDEs without delay.
In the book of Burton [2], which can be considered as a reference book of integral

equations and IDEs, using the second Lyapunov method and the Lyapunov–Krasovskiı̆
functional (LKF) approach, various kind of stabilities of zero solutions, integrabilities of
solutions, as well as boundedness of solutions when F(t) 6= 0 are discussed for the systems
of IDEs given by:

x′ = A(t)x +

t∫
0

C(t, s)x(s)ds,
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x′ = Ax +

t∫
0

C(t, s)x(s)ds + F(t),

x′ = Ax +

t∫
0

B(t− s)x(s)ds,

x′ = Ax +

t∫
0

D(t− s)x(s)ds + F(t),

x′ = A(t)x +

t∫
0

C1(t, s)x(s)ds +
t∫

0

C2(t, s)x(s)ds,

x′ = Ax + f (t, x) +
t∫

0

C(t, s)x(s)ds.

Next, the book of Lakshmikantham and Rama Mohana Rao [6] is also considered as
a reference book of the qualitative theory of IDEs. In the book of Lakshmikantham and
Rama Mohana Rao [6], using the second Lyapunov method, various qualitative behaviors
of solutions such as stability, uniform stability, asymptotic stability, uniform asymptotic
stability of zero solutions, as well as the integrability and boundedness of nonzero solutions
when f (t, x) 6= 0 and g(t, y) 6= 0, are discussed, and some interesting results are obtained
for the scalar or systems of IDEs given by:

u′ = αu +

t∫
0

a(t− s)u(s)ds,

u′ = α(t)u +

t∫
0

a(t, s)u(s)ds,

x′ = A(t)x +

t∫
0

K(t, s)x(s)ds,

x′ = Ax +

t∫
0

K(t, s)x(s)ds,

x′ = A(t)x +

t∫
−∞

K(t, s)x(s)ds + f (t, x),

x′ = Ax +

t∫
0

C(t− s)x(s)ds,

y′ = A(t)y +

t∫
0

C(t− s)y(s)ds + g(t, y).

Sedova [10] considered the nonlinear system of IDEs

x′ = G(t, x) +
t∫

0

H(t, s, x(s))ds.
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In [10], sufficient conditions for uniform asymptotic stability of the zero solution of
this system are obtained using the Razumikhin method. Similar qualitative results can be
found in the other sources mentioned above.

Next, for numerous results in relation to the stability, boundedness, integrability, etc.,
of solutions of scalar and vector DIDEs of the first order and DIDEs of fractional order,
see Berezansky and Braverman [11], Berezansky et al. [12], Du [13], Tunç and Tunç [14],
Funakubo et al. [15], Tunç and Tunç [16–18], Tunç [19], Tunç et al. [20], Xu [21], Wang [22],
Wang [23], Wang et al. [24], and the bibliographies therein.

We would now like to outline some of these qualitative results in relation to delay
integro-differential equations.

In Berezansky and Braverman [11], new explicit exponential stability conditions are
obtained for the non-autonomous scalar linear DIDE:

x′(t) =
m

∑
k=1

ak(t)x(hk(t)) +
t∫

g(t)

K(t, s)x(s)ds,

t ∈ [0, ∞), x ∈ R.

The proofs in the article of Berezansky and Braverman [11] are based on establishing
the boundedness of solutions and exponential dichotomy.

Next, in Berezansky et al. [12], uniform exponential stability of the linear delayed
integro-differential vector equation

x′(t) =
m

∑
k=1

Ak(t)x(hk(t)) +
l

∑
k=1

t∫
gk(t)

Pk(t, s)x(s)ds, t ∈ [0, ∞), x ∈ Rn,

is studied. In [12], the main technique of the proofs is splitting the linear expressions
in the equation (both with points and with distributed delays) into a “dominant” and a
“remainder” part, which can be achieved in a number of different ways, thus providing
a number of different criteria. The next important ingredient is the use of a Bohl–Perron-
type result stating that a linear equation is exponentially stable if the solutions of the
inhomogeneous counterpart of that equation are bounded.

In 1995, Du [13] considered the following system of linear DIDEs:

dx
dt

= Ax + Bx(t− τ(t)) +
t∫

t−τ(t)

Ω(t, s)x(s)ds,

where x ∈ Rn, t ∈ [0, ∞), τ is a non-negative and differentiable variable delay, A ∈ Rn×n,
B ∈ Rn×n and Ω(t, s) ∈ C(Rn×n,Rn×n). Du [13] is interested in constructing an LFK for this
system of DIDEs, which yields uniform asymptotic stability of zero solutions of this system.

Tunç and Tunç [14] considered the nonlinear system of IDDEs with the constant
time delay:

ẋ(t) = −A(t)x(t)− AdG(x(t− h)) + C
t∫

t−h

F(x(s))ds + Q(t, x(t), x(t− h)),

where x ∈ Rn is the sate vector, t ∈ [0, ∞), and h is a positive constant, that is, the constant
time delay. The authors [14] investigated the uniform asymptotic stability and integrability
of solutions when Q = 0 and boundedness of solutions when Q 6= 0, based on the LKF
approach. Similar qualitative results for the IDDEs of integer and fractional order have
been obtained in [15–24].
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We now outline some papers in relation to the results of this article. Additionally, for
several classes of nonlinear scalar DIDEs of second order, linear and nonlinear two-dimensional
systems and nonlinear n-dimensional systems, numerous qualitative results can be seen in
the literature, see, e.g., Becker and Burton [25], Dishen [26], Hale and Kato [27], Berezansky
and Domoshnitsky [28], Crisci et al. [29], Gözen and Tunç [30], Graef and Tunç [31], and the
references of these sources. In particular, there is a scarcity of qualitative results for both scalar
DIDEs of second order and system of DIDEs of first order with infinite delays, which are
considered in this article.

In [25], Becker and Burton obtained a number of results on uniform stability and
equi-asymptotic stability of the zero solution of the FDE:

x′(t) = f (t, xt), (t ≥ 0),

where f : R× C → Rn, R = (−∞, ∞) is a continuous mapping with f (t, 0) = 0, and
f takes bounded sets into bounded sets. For some h > 0, C = C([−h, 0], Rn) denotes
the space of continuous functions φ : [−h, 0] → Rn. For any a ≥ 0, some t0 ≥ 0, and
x ∈ C([t0 − h, t0 + a], Rn), it is assumed that xt = x(t + s) for s ∈ [−h, 0] and t ≥ t0. They
also found results on the uniform stability of the Volterra functional equation:

x′(t) = F(t, x(s); α ≤ s ≤ t), (t ≥ t∗),

where, for −∞ ≤ α ≤ t∗, the right-hand side of this equation is a Volterra functional whose
value in Rn is determined by t ≥ t∗ and the values of x(s) for α ≤ s ≤ t. It is assumed that
F is continuous in t and x for t ≥ t∗ whenever x ∈ C([α, ∞),Rn) is bounded (see [25]).

In Becker and Burton [25], the investigations are based on the Lyapunov’s direct
method and Jensen’s inequality. Some results of Becker and Burton [25] are well illustrated
by examples, including the DIDEs of second order with infinite delay. In [25], as the first
application, the following DIDEs of second order with infinite delay is considered:

x′′ + tx′ +
t∫

−∞

a exp(− (t− s))x(s)ds = 0, a > 1. (1)

Next, in Becker and Burton [25], depending upon suitable Lyapunov–Krasovskiı̌
functionals (LKFs),

V(t) = V(t, x(.), y(.)) = y2 + ax2 +

t∫
−∞

a exp(−(t− s))y2(s)ds, (2)

the authors proved that the zero solution of DIDE (1) is uniformly stable for t ≥ t∗.
In addition, in the same paper of Becker and Burton [25], as the second application,

the authors considered the following non-linear DIDE of second order with infinite delay:

x′′ + t f (x)x′ +
t∫

−∞

γ(t− s)g(x(s))ds = 0. (3)

Becker and Burton [25], using the following two multi-functional approaches of
the LKFs:

U(t) =U(t, x(.), z(.)) =

z−
t∫

−∞

T(t− s)g(x(s))ds

2

− 2
x∫

0

g̃(s)ds

+ K
t∫

−∞

∞∫
t−s

|T(u)|du g2(x(s))ds, (4)



Mathematics 2022, 10, 4235 5 of 18

and

V(t) = V(t, x(.), z(.)) =y2 + 2T(0)g(x)− 2
x∫

0

g̃(s)ds

+ D
t∫

−∞

∞∫
t−s

|T(u)|du y2(s)ds, (5)

where T(t) =
∞∫
t

γ(u)du, F(x) =
x∫

0
f (u)du, g̃(x) = T(0)g(x)− F(x), K and D are positive

constants such that |g′(x)| ≤ D for |x| < δ, δ > 0, δ ∈ R, obtained sufficient conditions for
both the uniform and equi-asymptotic stability of zero solution of DIDE (3).

We should note that the first reference paper for this research is the paper of Becker
and Burton [25]. Motivated by Becker and Burton [25], in this article, first, we are concerned
with the nonlinear DIDE of second order with infinite delay:

x′′ + a(t)F(t, x, x′) + b(t)G(x, x′) + c(t)H(x′) + d(t)Q(x)

+

t∫
−∞

exp(− (t− s))U
(
s, x′(s)

)
ds = E(t, x, x′), (6)

where x ∈ R, R = (−∞, ∞), x(t) = φ(t) on (−∞, 0], s, t ∈ R, t ≥ s. We suppose that
F, E ∈ C(R+ ×R2,R),R+ = [0, ∞), G, U ∈ C(R×R,R),H, Q ∈ C(R,R), F(t, x, 0) = 0,
G(x, 0) = 0, H(0) = 0, Q(0) = 0, U(s, 0) = 0, a, b, c ∈ C(R+, (0, ∞)) and d ∈ C1(R+,R+),
where C(R+, (0, ∞)) is the space of functions defined and continuous on R+, taking values
in (0, ∞), and C1(R+,R+) is the space of functions defined and continuously differentiable
on R+, taking values in R+.

We convert DIDE (6) to the following system:

x′ =y,

y′ =− a(t)F(t, x, y)− b(t)G(x, y)− c(t)H(y)− d(t)Q(x)

−
t∫

−∞

exp(−(t− s))U(s, y(s))ds + E(t, x, y). (7)

As for our next reference paper, Dishen [26] deals with the following linear system of
DIDEs with infinite delay:{

x′ = A(t)x +
∫ t
−∞ C(t, s)ds + f (t),

y′ = A(t)y +
∫ t
−∞ C(t, s)ds + f (t),

(8)

and the author investigates the properties of this system such as the boundedness of
solutions as well as the h-stability of this system. These properties of solutions are studied
by using a phase space and the space Ch (which is somewhat different from the traditional
phase space for infinite delay, in the sense of Hale and Kato [27]). In [26], the LKF

V(t, xt, yt) = |x(t)− y(t)|+
t∫

−∞

∞∫
t

h(s− u)|x(s)− y(s)|duds. (9)
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In this article, secondly, motivated from the results of Dishen [26], instead of the
linear system of DIDEs (8), we investigate the following non-linear system of DIDEs with
infinite delay: 

x′ = −A1(t) f1(x) +
t∫
−∞

C1(t, s)g1(x(s))ds + `1(t, x),

y′ = A2(t) f2(y) +
t∫
−∞

C2(t, s)g2(y(s))ds + `2(t, y),
(10)

where x, y, s, t ∈ R, x(t) = φ(t) on (−∞, 0], s, t ∈ R, t ≥ s. We suppose that A1, A2 ∈
C(R, (0, ∞)), C1, C2 ∈ C(R×R, R), f1, f2, g1, g2 ∈ C(R,R), f1(0) = 0, f2(0) = 0, g1(0) =
0, g2(0) = 0, `1, `2 ∈ C(R×R, R), `1(t, 0) = 0 and `2(t, 0) = 0.

In this article, we construct new sufficient qualitative conditions on the global asymp-
totic stability, boundedness, and integrability of solutions for both the scalar nonlinear
DIDE (6) of second order and the non-linear system of DIDEs (10) with infinite delays.
Defining and then using these two new LKFs, the main results of this article are proved. In
special cases of (6) and (10), three examples are given as numerical applications to illustrate
and verify our results. We aim to provide some new contributions to qualitative theory of
FDEs and some known results in the relevant literature.

Scientific interest in both of these kinds of FDEs with infinite delays is not purely
theoretical. Indeed, there are numerous and very interesting real-world applications for
these kinds of FDEs with infinite delays. For example, for various real-world applications
of such scalar FDEs of second order and two-dimensional systems of FDEs with infinite
delays, we refer the readers to look at the books of Fridman [32], Gopalsamy [33], Hale
and Verduyn Lunel [34], Hsu [35], Kolmanovskii and Myshkis [36], Rihan [37], Smith [38],
Yoshizawa [39], and the bibliographies therein.

The paper is organized as follows. Section 2 contains four new qualitative results on
the global asymptotic stability, the integrability of solutions of (6) and (10), and a numerical
application for the particular case of (6). In Section 3, we obtain two new theorems on the
bounded solutions of (6) and (10), and in particular cases for (6) and (10), two examples
are given as numerical applications of these results. In Section 4, we compare qualitative
results of the present paper with known ones, as well as discuss some open problems for
future research.

2. Stability and Integrability

As we know from the relevant literature according to the LKF approach, to investigate
the qualitative behaviors of solutions of FDEs, it is needed to construct suitable LKFs for the
problems under study. The construction of LKFs for linear and nonlinear FDE still remains
as an open problem in literature by this time. There is no general method to construct LKFs.
When an LKF is defined or constructed, the essential question is whether the LKF has to be
positive definite and its time derivative along solutions of the considered FDE has to be
negative semidefinite or negative definite such that the stability or asymptotic stability of
the solutions can be guaranteed, respectively. In this section, we take into consideration
these facts and define two new LKFs to achieve the aim of this paper.

We define two new LKFs, L = L(t, xt, yt) and W = W(t, xt, yt), which are given by:

L(t, xt, yt) = d(t)
x∫

0

Q(ξ)dξ +
1
2

y2 + γ

t∫
−∞

exp(−(t− s))U2(s, y(s))ds, (11)



Mathematics 2022, 10, 4235 7 of 18

and

W(t, xt, yt) =|x(t)|+ |y(t)|+ ρ1

t∫
−∞

∞∫
t

|C(u, s)| |g1(x(s))|duds

+ ρ2

t∫
−∞

∞∫
t

|C(u, s)| |g2(x(s))|duds, (12)

where γ , ρ1 and ρ2 are positive constants, and they will be chosen in the coming proofs.
LKF (11) and LKF (12) are our basic tools in the proofs of the new results: Theorems 1, 3, 5
and Theorems 2, 4, 6, of this paper, respectively.

We now give the stability, integrability, and boundedness results of solutions of
DIDE (6) and prove them using the LKF approach. At the first, we present the fundamental
assumptions, called (A1)–(A4), of the main results of Theorems 1, 3, and 5 for DIDE (6):

(A1) There are positive constants F0, G0, H0 and Q0 such that:

a(t) ≥ 1, b(t) ≥ 1, c(t) ≥ 1, d(t) ≥ 1, d′(t) ≥ 0, ∀t ∈ R+,

F(t, x, 0) = 0, yF(t, x, y) ≥ F0y2, ∀t ∈ R+, ∀y 6= 0 as x, y ∈ R,

G(x, 0) = 0, yG(x, y) ≥ G0y2, ∀y 6= 0 as x, y ∈ R,

H(0) = 0, yH(y ≥ H0y2, ∀y 6= 0 as y ∈ R,

Q(0) = 0, xQ(x) ≥ Q0x2, ∀x 6= 0 as x ∈ R.

(A2) There is a positive constant U0 such that:

U(t, 0) = 0, U2(t, y) ≤ U2
0 y2, ∀t, y ∈ R.

(A3) There are positive constants F0, G0, H0 from (A1) and U0 from (A2) and `0 such that:

F0a(t) + G0b(t) + H0c(t)− 2−1U2
0 − 2−1 ≥ `0, ∀t ∈ R+.

(A4) Let λ be a continuous function such that:

|E(t, x, y)| ≤ |λ(t)| |y|, ∀t ∈ R+, ∀x, y ∈ R,

and there are positive constants F0, G0, H0 from (A1) and U0 from (A2) and h̄0 such
that:

F0a(t) + G0b(t) + H0c(t)− |λ(t)| − 2−1U2
0 − 2−1 ≥ h̄0, ∀t ∈ R+.

As for the next step, we introduce the basic assumptions, called (C1)–(C3) of the main
results, Theorems 2, 4, and 6 for the system of DIDEs (10) with infinite delay:

(C1) There are positive constants f10, g10, f20, g20 and functions α0, β0 ∈ C(R+, (0, ∞))
such that

f1(0) = 0, x f1(x) ≥ f10x2, g1(0) = 0, |g1(x)| ≤ g10|x|, ∀x 6= 0 as x ∈ R,

f2(0) = 0, y f2(y) ≥ f20y2, g2(0) = 0, |g2(y)| ≤ g20|y|, ∀y 6= 0 as y ∈ R,

`1(t, 0) = 0, |`1(t, x)| ≤ α0(t)|x|, `2(t, 0) = 0, |`2(t, y)| ≤ β0(t)|y|,
∀t ∈ R+, ∀x, y 6= 0 as x, y ∈ R.
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(C2)
∞∫

t

|C1(u, t)|du < ∞,
∞∫

t

|C2(u, t)|du < ∞.

(C3) There are positive constants f10, g10, f20, and g20 from (C1) and h0, h1 such that:

f10 A1(t)− α0(t)− g10

∞∫
t

|C1(u, t)|du ≥ h0

and

f20 A2(t)− β0(t)− g20

∞∫
t

|C2(u, t)|du ≥ h1, ∀t ∈ R+,R+ = [0, ∞).

First, we give the following new global asymptotic stability theorem of (6), which is
equivalent to system (7).

Theorem 1. If (A1)–(A3) hold and E(t, x, y) ≡ 0, then the trivial solution of (7) is global asymp-
totic stable.

Proof. We consider the LKF L(t, xt, yt) of (11). Hence, it is obvious that

L(t, xt, yt) = 0 iff x = y = 0.

By virtue of (A1), we obtain:

L(t, xt, yt) = d(t)
x∫

0

Q(ξ)

ξ
ξdξ +

1
2

y2 + γ

t∫
−∞

exp(−(t− s))U2(s, y(s))ds

≥ d(t)
x∫

0

Q(ξ)

ξ
ξdξ +

1
2

y2

≥ 1
2

Q0x2 +
1
2

y2,

i.e., we obtain:

L(t, xt, yt) ≥
1
2

Q0x2 +
1
2

y2. (13)

By the time derivative of the LKF (11) along solutions of system (7), we obtain:

d
dt

L(t, xt, yt) =− a(t)yF(t, x, y)− b(t)yG(x, y)− c(t)yH(y)

− d′(t)
x∫

0

H(ξ)dξ − y
t∫

−∞

exp(−(t− s))U(s, y(s))ds

+ γU2(t, y)− γ

t∫
−∞

exp(−(t− s))U2(s, y(s))ds.

Hence, according to (A1) and (A2), we have:

d
dt

L(t, xt, yt) ≤− F0a(t)y2 − G0b(t)y2 − H0c(t)y2 − d′(t)
x∫

0

H(ξ)dξ
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+
1
2

t∫
−∞

exp(−(t− s))
[
y2(t) + U2(s, y(s))

]
ds

+ γU2(t, y)− γ

t∫
−∞

exp(−(t− s))U2(s, y(s))ds

≤−
[

F0a(t) + G0b(t) + H0c(t)− 2−1
]
y2

+
1
2

t∫
−∞

exp(−(t− s))U2(s, y(s))ds

+ γU2(t, y)− γ

t∫
−∞

exp(−(t− s))U2(s, y(s))ds

≤−
[

F0a(t) + G0b(t) + H0c(t)− 2−1
]
y2

+
1
2

t∫
−∞

exp(−(t− s))U2(s, y(s))ds

+
(

γU2
0

)
y2 − γ

t∫
−∞

exp(−(t− s))U2(s, y(s))ds. (14)

Let γ = 1
2 . Then, according to (A3), we obtain from (14) that:

d
dt

L(t, xt, yt) ≤−
[

F0a(t) + G0b(t) + H0c(t)− 2−1U2
0 − 2−1

]
y2

≤− (`0)y2 ≤ 0. (15)

The inequalities (13) and (15) together imply that the trivial solution of system (7) is
stable, when E(t, x, y) ≡ 0. Next, d

dt L(t, xt, yt) = 0 if y = 0. Since y = dx
dt , then dx

dt = 0.
Hence, integrating this term, we have x(t) = ξ, ξ ∈ R, say ξ 6= 0. When we take x(t) = ξ
and y(t) = 0 into system (7), we derive that Q(ξ) = 0. It is obvious that Q(ξ) = 0 if ξ = 0.
Consequently, the largest invariant set is {(0, 0)}. Thus, the trivial solution of system (7) is
global asymptotic stable. This is the end of proof.

Second, we present the following new global asymptotic stable theorem of (10).

Theorem 2. If (C1)–(C3) hold, then the trivial solution of (10) is global asymptotic stable.

Proof. According to the LKF of (12), we derive that:

W(t, 0, 0) = 0 and W(t, xt, yt) ≥ |x(t)|+ |y(t)|.

From the LKF (12) and system (10), by the virtue of (C1)–(C3), we obtain:

d
dt

W(t, xt, yt) ≤− A1(t)| f1(x)|+
t∫

−∞

|C1(t, s)| |g1(x(s))|ds + |`1(t, x)|

− A2(t)| f2(y)|+
t∫

−∞

|C2(t, s)| |g2(y(s))|ds + |`2(t, y)|
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+ ρ1

∞∫
t

|C1(u, t)| |g1(x(t))|du− ρ1

t∫
−∞

|C1(t, s)||g1(x(s))|ds

+ ρ2

∞∫
t

|C2(u, t)| |g2(y(t))|du− ρ2

t∫
−∞

|C2(t, s)| |g2(y(s))|ds. (16)

Let ρ1 = ρ2 = 1. Then, (16) implies that:

d
dt

W(t, xt, yt) ≤− A1(t)| f1(x)|+ |`1(t, x)| − A2(t)| f2(y)|+ |`2(t, y)|

+

∞∫
t

|C1(u, t)| |g1(x(t))|du +

∞∫
t

|C2(u, t)| |g2(y(t))|du. (17)

According to (C1)–(C3), from (17), we obtain:

d
dt

W(t, xt, yt) ≤− f10 A1(t)|x|+ α0(t)|x| − f20 A2(t)|y|+ β0(t)|y|

+ g10|x|
∞∫

t

|C1(u, t)|du + g20|y|
∞∫

t

|C2(u, t)|du

=−

 f10 A1(t)− α0(t)− g10

∞∫
t

|C1(u, t)|du

|x|
−

 f20 A2(t)− β0(t)− g20

∞∫
t

|C2(u, t)|du

 |y|
≤ − h0|x| − h1|y| < 0, (x 6= 0, y 6= 0).

Hence, we arrive at the end of the proof of Theorem 2.

We now present the following new integrability theorem of (6), which is equivalent to
system (7).

Theorem 3. If (A1)–(A3) hold and E(t, x, y) ≡ 0, then the square derivatives of solutions of (7)
are integrable.

Proof. According to (A1)–(A3) and E(t, x, y) ≡ 0, we obtain:

d
dt

L(t, xt, yt) ≤ − (`0)y2 ≤ 0.

Taking into account that the LKF L(t, xt, yt) is decreasing and then integrating the
inequality above, we obtain:

∞∫
0

y2(η)dη < +∞.

Thus, this result verifies the idea of Theorem 3. Here, the integrability concept is in
the sense of Lebesgue.

We now introduce the following new integrability result of (10).

Theorem 4. If (C1)–(C3) hold, then the solutions of (10) are integrable.
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Proof. By virtue of (C1)–(C3), we have:

d
dt

W(t, xt, yt) ≤ − h0|x| − h1|y| ≤ 0.

This relation shows that the LKF W(t, xt, yt) is decreasing. According to this informa-
tion, it follows that W(t, xt, yt) ≤W(0, x0, y0) = W0, W0 > 0, W0 ∈ R. Integrating,

h0

t∫
0

|x(s)|ds + h1

t∫
0

|y(s)|ds ≤W(0, x0, y0)−W(t, xt, yt) ≤W(0, x0, y0) = W0.

Consequently, we obtain:

∞∫
0

|x(s)|ds ≤ h−1
0 W0 < ∞ and

∞∫
0

|y(s)|ds ≤ h−1
1 W0 < ∞,

where the integrability concept is in the sense of Lebesgue. This is the end of the proof.

We now give an example as numerical applications of the global asymptotic stability
and integrability theorems, Theorems 1 and 3.

Example 1. For the case E(t, x, y) ≡ 0 of (7), we take into consideration the following nonlinear
DIDE of second order with infinite delay:

x′′ + (2− exp(−t))
(

25 + exp(−t2 − x2 − (x′)2
)
)

x′ +
(

1 +
1

1 + t6

)(
16 + x4 + (x′)2

)
x′

+ (1 + exp(−t))
(

4 + (x′)4
)

x′ +
(

4− 3
1 + 2 exp(t)

)
x

+

t∫
−∞

exp(−(t− s))
2x′(s)√

1 + s2 + (x′(s))2
ds = 0. (18)

Then, the DIDE (18) is converted to the following system:

x′ =y,

y′ =− (2− exp(−t))
(

25 + exp(−t2 − x2 − y2)
)

y−
(

1 +
1

1 + t6

)(
16 + x4 + y2

)
y

− (1 + exp(−t))
(

4 + y4
)

y−
(

4− 3
1 + 2 exp(t)

)
x

−
t∫

−∞

exp(−(t− s))
2y(s)√

1 + s2 + y2(s)
ds. (19)

From the comparison of (19) and (7) and some elementary calculations, we have the following data:

a(t) = 2− exp(−t) ≥ 1, t ≥ 0,

b(t) = 1 +
1

1 + t6 ≥ 1,

c(t) = 1 + exp(−t) ≥ 1, t ≥ 0,

d(t) = 4− 3
1 + 2 exp (t)

≥ 1,
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d′(t) =
6 exp(t)

(1 + 2 exp(t))2 ≥ 0;

F(t, x, y) =
(

25 + exp(−t2 − x2 − y2)
)

y,

F(t, x, 0) = 0,

yF(t, x, y) = y2
(

25 + exp(−t2 − x2 − y2)
)
≥ 25y2, F0 = 25;

G(x, y) =
(

16 + x4 + y2
)

y, G(x, 0) = 0,

yG(x, y) = y2
(

16 + x4 + y2
)
≥ 16y2, G0 = 16;

H(y) =
(

4 + y4)
)

y, H(0) = 0,

yH(y) = y2
(

4 + y4)
)
≥ 4y2, H0 = 4;

Q(x) = x, Q(0) = 0,

xQ(x) = x2, Q0 = 1;

U(t, y) =
2y√

1 + t2 + y2
,

U(t, 0) = 0, U2(t, y) =
4y2

1 + t2 + y2 ≤ 4y2, U2
0 = 4;

F0a(t) + G0b(t) + H0c(t)− 2−1U2
0 − 2−1

= 25× (2− exp(−t)) + 16×
(

1 +
1

1 + t6

)
+4× (1 + exp(−t))− 5

2
≥ 85

2
= `0 > 0.

According to the data above, (A1)–(A3) of Theorems 1 and 3 hold. Thus, the trivial solution of
DIDE (18) is globally asymptotically stable and the square of the derivatives of its solutions are integrable.

The next section studies the boundedness of solutions of (6) and (10).

3. Boundedness

In this section, we prove two new theorems, Theorems 5 and 6, on the bounded
solutions of DIDE (6), which is equivalent to system (7), and system of DIDEs (10). In
particular cases of (6) and (10), two examples are given as numerical applications of
Theorems 5 and 6, respectively.

The following Theorem 5 investigates the boundedness of solutions of system (7).

Theorem 5. If (A1), (A2), and (A4) hold, then the solutions of system (7) and their derivatives
are bounded.

Proof. Clearly, by virtue of (A1), (A2), and (A4), we obtain the inequality of (13) and the
following result:
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d
dt

L(t, xt, yt) ≤−
[

F0a(t) + G0b(t) + H0c(t)− 2−1U2
0 − 2−1

]
y2 + yE(t, x, y)

≤−
[

F0a(t) + G0b(t) + H0c(t)− 2−1U2
0 − 2−1

]
y2 + |y| |E(t, x, y)|

≤ −
[

F0a(t) + G0b(t) + H0c(t)− |λ(t)| − 2−1U2
0 − 2−1

]
y2

≤− (h̄0)y2 ≤ 0. (20)

According to (20), the LKF L(t, xt, yt) is decreasing, i.e.,

L(t, xt, yt) ≤ L(t0, xt0 , yt0), ∀t ≥ t0.

Hence, from (13) and (20), we obtain:

1
2

Q0x2 +
1
2

y2 ≤ L(t, xt, yt) ≤ L(t0, xt0 , yt0),

where L(t0, xt0 , yt0) is a positive constant. This inequality verifies that the solutions of
system (7) are bounded.

The following Theorem 6 investigates the boundedness of solutions of system (10).

Theorem 6. If (C1)–(C3) hold, then the solutions of system (10) are bounded.

Proof. It is noted from Theorem 2 that

|x(t)|+ |y(t)| ≤W(t, xt, yt).

Next, by (C1)–(C3) of Theorem 6, we obtain that:

d
dt

W(t, xt, yt) ≤ 0.

As a consequence of both of the results above, we can conclude that:

|x(t)|+ |y(t)| ≤W(t, xt, yt) ≤W(t0, xt0 , yt0) ≡W0 > 0, W0 ∈ R, t ≥ t0.

Consequently,
|x(t)| ≤W0 and |y(t)| ≤W0, ∀t ≥ t0.

Thus, clearly, the solutions of system (10) are bounded.

We now give two examples as numerical applications of Theorems 2 and 5 and Theo-
rems 4 and 6, respectively.

Example 2. For the case E(t, x, y) 6= 0, we take into consideration the following nonlinear DIDE
of second order with infinite delay:
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x′′ + (2− exp(−t))
(

25 + exp(−t2 − x2 − (x′)2
)
)

x′ +
(

1 +
1

1 + t6

)(
16 + x4 + (x′)2

)
x′

+ (1 + exp(−t))
(

4 + (x′)4
)

x′ +
(

4− 3
1 + 2 exp(t)

)
x

+

t∫
−∞

exp(−(t− s))
2x′(s)√

1 + s2 + (x′(s))2
ds.

=
2x′

1 + t2 + x2 + (x′)2 . (21)

Then, the DIDE (21) is converted to the following system:

x′ =y,

y′ =− (2− exp(−t))
(

25 + exp(−t2 − x2 − y2)
)

y−
(

1 +
1

1 + t6

)(
16 + x4 + y2

)
y

− (1 + exp(−t))
(

4 + y4
)

y−
(

4− 3
1 + 2 exp(t)

)
x

−
t∫

−∞

exp(−(t− s))
2y(s)√

1 + s2 + y2(s)
ds +

2y
1 + t2 + x2 + y2 . (22)

As for the next step, the discussions and the estimates relation to the functions a(t), b(t),
c(t), d(t), F, G, H, Q, and U of Example 1 hold for Example 2, too. Hence, the former previous

discussions will not be given here for these functions once again. As for the next step for the function
E of Example 2, it is given by:

E(t, x, y) =
2y

1 + t2 + x2 + y2 .

Hence, we derive:

|E(t, x, y)| = 2|y|
1 + t2 + x2 + y2 ≤

2|y|
1 + t2 = λ(t)|y|,

where

λ(t) =
2

1 + t2 , t ≥ 0.

F0a(t) + G0b(t) + H0c(t)− |λ(t)| − 2−1U2
0 − 2−1

=25× (2− exp(−t)) + 16×
(

1 +
1

1 + t6

)
+ 4× (1 + exp(−t))− 2

1 + t2 −
5
2
≥ 81

2
= h̄0 > 0.

Then, the conditions of Theorem 5 hold. Thus, the solutions of system (22) and their derivatives
are bounded.

Remark 1. It is seen from Theorems 1–3 that we do need the differentiability of the functions
a(t), F, b(t), G, c(t), H, Q, U, and E. This case is an advantage for the results of this paper,
Theorems 1–3, and leads to a weaker condition for these results.
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Example 3. We consider the following nonlinear system of DIDEs with infinite delay, which is
included by (10):

x′ = − (1 + exp(t2))
(

24πx + x
1+exp(x2)

)
+

t∫
−∞

1
1+t2+s2

x(s)
1+x4(s)ds

+ x
(1+t6)(1+exp(x2))

,

y′ = − (1 + exp(t4))
(

24πy + y
1+exp(y2)

)
+

t∫
−∞

1
1+4t2+4s2

3y(s)
1+y4(s)ds

+ y
(1+t6)(1+exp(y2))

.

(23)

From the comparison of systems (23) and (10) and some elementary calculations, we have the
following data:

A1(t) = 1 + exp(t2),

A2(t) = 1 + exp(t4),

f1(x) = 24πx +
x

1 + exp(x2)
,

f1(0) = 0, x f1(x) = 24πx2 +
x2

1 + exp(x2)
≥ 24πx2, f10 = 24π;

f2(y) = 24πy +
y

1 + exp(y2)
,

f2(0) = 0, y f2(y) = 24πy2 +
y2

1 + exp(y2)
≥ 24πy2, f20 = 24π;

C1(t, s) =
1

1 + t2 + s2 ,

∞∫
t

C1(u, t)du =

∞∫
t

1
1 + u2 + t2 du ≤

∞∫
t

1
1 + u2 du

≤
∞∫

0

1
1 + u2 du =

π

2
< ∞;

C2(t, s) =
1

1 + 4t2 + 4s2 ,

∞∫
t

C2(u, t)du =

∞∫
t

1
1 + 4u2 + 4t2 du ≤

∞∫
t

1
1 + 4u2 du

≤
∞∫

0

1
1 + 4u2 du =

π

4
< ∞;

g1(x) =
2x

1 + x4 , g1(0) = 0, |g1(x)| ≤ 2|x|, g10 = 2;

g2(y) =
3y

1 + y4 , g2(0) = 0, |g2(y)| ≤ 3|y|, g20 = 3;

`1(t, x) =
x

(1 + t6)(1 + exp(x2))
, `1(t, 0) = 0,

|`1(t, x)| ≤ |x|
1 + t6 , α0(t) =

1
1 + t6 ;



Mathematics 2022, 10, 4235 16 of 18

`2(t, y) =
y

(1 + t6)(1 + exp(y2))
, `2(t, 0) = 0,

|`2(t, y)| ≤ |y|
1 + t6 , β0(t) =

1
1 + t6 ;

f10 A1(t)− α0(t)− g10

∞∫
t

|C1(u, t)|du = 24π
(

1 + exp(t2)
)
− 1

1 + t6 − π

> 23π = h0;

f20 A2(t)− β0(t)− g20

∞∫
t

|C2(u, t)|du = 24π
(

1 + exp(t4)
)
− 1

1 + t6 −
3π

4

> 23π = h1.

According the data above, (C1)–(C3) of Theorems 2, 4, and 6 hold. Thus, the trivial solution of
the non-linear system of DIDEs (23) is globally asymptotically stable, and the solutions of (23) are
also integrable and bounded.

4. Conclusions and Discussion

In this part, we compare Theorems 1–6 of this paper with some articles in the references
of this paper.

(1) DIDEs (1) and (3) are particular cases of our DIDE (6). Next, our LKF (11) is different
from the LKFs (2), (4), and (5). This is our first contribution.

(2) The system of IDEs (8) with infinite delay is linear. Our system of IDEs (10) with
infinite delay is nonlinear. The system of IDEs (10) with infinite delay generalizes and
improves the linear system (8). Next, our LKF (12) is different from the LKF (9). This
is our second contribution.

(3) The uniform stability of solutions of DIDE (1) and the uniform and equi-asymptotic
stability of the zero solution of DIDE (3) are investigated using the LKF method. In our
paper, we investigate the global asymptotic stability, boundedness, and integrability of
solutions of DIDE (6) using the LKF method. As it is seen our results, we established the
different qualitative concepts of our solutions. Next, in the past literature, some stability
concepts are discussed. In our paper, in addition to the global asymptotic stability concept,
we also study boundedness and integrability of solutions, which are different from the
uniform and equi-asymptotic stability concepts. These are our third contributions.

(4) h-uniformly stability, h-uniformly asymptotically stability, and h-bounded solutions
of the system of IDEs (8) with infinite delay are discussed by using a phase space
and the LKF method. In this paper, the global asymptotic stability of zero solution,
boundedness, and integrability of solutions of (10) are discussed by the LKF method.
These qualitative concepts are a bit different from the h-uniformly stability, h-uniformly
asymptotically stability, and h-bounded solutions because of the defined norm. These
are our next contributions.

(5) As numerical applications of the results of this paper, we provide three examples, Exam-
ples 1–3, to illustrate the applications of Theorems 1–6 of this paper. Examples 1–3 are
also new contributions of this paper.

(6) To the best of our knowledge, the scalar nonlinear DIDE (6) of second order and the
non-linear system of IDEs (10) with infinite delays are new mathematical models.
Qualitative behaviors of solutions of these mathematical models have not been in-
vestigated in the relevant literature as of yete. Hence, the new results of this paper,
Theorems 1–6, and the illustrative Examples 1–3 are complementary outcomes of this
paper to the theory of FDEs.
As some open problems for future researches, we would like to suggest that qualitative
properties of fractional forms of the scalar nonlinear DIDE (6) of second order with
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infinite delay and the non-linear system of DIDEs (10) with infinite delay can be
investigated.

Author Contributions: Conceptualization, C.T. and O.T.; Data curation, O.T. and C.T.; Formal
analysis, C.T. and O.T.; Methodology, C.T. and O.T.; Project administration, C.T.; Validation, C.T.;
Visualization, C.T. and O.T.; Writing—original draft, O.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous referees and the handling Editor
for many useful comments and suggestions, leading to a substantial improvement in the presentation
of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alahmadi, F.; Raffoul, Y.N.; Alharbi, S. Boundedness and stability of solutions of nonlinear Volterra integro-differential equations.

Adv. Dyn. Syst. Appl. 2018, 13, 19–31.
2. Burton, T.A. Volterra Integral and Differential Equations, 2nd ed.; Mathematics in Science and Engineering, 202; Elsevier B.V.:

Amsterdam, The Netherlands, 2005.
3. Furumochi, T.; Matsuoka, S. Stability and boundedness in Volterra integro-differential equations. Mem. Fac. Sci. Eng. Shimane

Univ. Ser. B Math. Sci. 1999, 32, 25–40.
4. Grimmer, R.; Seifert, G. Stability properties of Volterra integro-differential equations. J. Differ. Equ. 1975, 19, 142–166.
5. Jordan, G.S. Asymptotic stability of a class of integro-differential systems. J. Differ. Equ. 1979, 31, 359–365.
6. Lakshmikantham, V.; Rao, M.R.M. Theory of Integro-Differential Equations. In Stability and Control: Theory, Methods and

Applications, 1; Gordon and Breach Science Publishers: Lausanne, Switzerland, 1995.
7. Rao, M.R.M.; Srinivas, P. Asymptotic behavior of solutions of Volterra integro-differential equations. Proc. Am. Math. Soc. 1985,

94, 55–60.
8. Murakami, S. Exponential asymptotic stability for scalar linear Volterra equations. Differ. Integral Equ. 1991, 4, 519–525.
9. Rao, M.R.M.; Raghavendra, V. Asymptotic stability properties of Volterra integro-differential equations. Nonlinear Anal. 1987, 11,

475–480.
10. Sedova, N. On uniform asymptotic stability for nonlinear integro-differential equations of Volterra type. Cybern. Phys. 2019, 8,

161–166.
11. Berezansky, L.; Braverman, E. On exponential stability of linear delay equations with oscillatory coefficients and kernels. Differ.

Integral Equ. 2022, 35, 559–580.
12. Berezansky, L.; Diblík, J.; Svoboda, Z.; Šmarda, Z. Uniform exponential stability of linear delayed integro-differential vector

equations. J. Differ. Equ. 2021, 270, 573–595.
13. Du, X.T. Some kinds of Liapunov functional in stability theory of RFDE. Acta Math. Appl. Sin. 1995, 11, 214–224.
14. Tunç, C.; Tunç, O. On the stability, integrability and boundedness analyses of systems of integro-differential equations with

time-delay retardation. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2021, 115, 115. [CrossRef]
15. Funakubo, M.; Hara, T.; Sakata, S. On the uniform asymptotic stability for a linear integro-differential equation of Volterra type. J.

Math. Anal. Appl. 2006, 324, 1036–1049. [CrossRef]
16. Tunç, C.; Tunç, O. New results on the stability, integrability and boundedness in Volterra integro-differential equations. Bull.

Comput. Appl. Math. 2018, 6, 41–58.
17. Tunç, C.; Tunç, O. New results on the qualitative analysis of integro-differential equations with constant time-delay. J. Nonlinear

Convex Anal. 2022, 23, 435–448.
18. Tunç, C.; Tunç, O. Solution estimates to Caputo proportional fractional derivative delay integro–differential equations. Rev. Real

Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2023, 117, 12. [CrossRef]
19. Tunç, O. Stability, instability, boundedness and integrability of solutions of a class of integro-delay differential equations. J.

Nonlinear Convex Anal. 2022, 23, 801–819.
20. Tunç, C.; Wang, Y.; Tunç, O.; Yao, J.-C. New and Improved Criteria on Fundamental Properties of Solutions of Integro-Delay

Differential Equations with Constant Delay. Mathematics 2021, 9, 3317. [CrossRef]
21. Xu, D. Asymptotic behavior of Volterra integro-differential equations. Acta Math. Appl. Sin. 1997, 13, 107–110.
22. Wang, Q.Y. Stability of a class of Volterra integrodifferential equations. J. Huaqiao Univ. Nat. Sci. Ed. 1998, 19, 1–5.
23. Wang, Q.Y. Asymptotic stability of functional-differential equations with infinite time-lag. J. Huaqiao Univ. Nat. Sci. Ed. 1998, 19,

329–333.
24. Wang, L.; Du, X.T. The stability and boundedness of solutions of Volterra integro-differential equations. Acta Math. Appl. Sin.

1992, 15, 260–268.

http://doi.org/10.1007/s13398-021-01058-8
http://dx.doi.org/10.1016/j.jmaa.2005.12.053
http://dx.doi.org/10.1007/s13398-022-01345-y
http://dx.doi.org/10.3390/math9243317


Mathematics 2022, 10, 4235 18 of 18

25. Becker, L.C.; Burton, T.A. Asymptotic stability criteria for delay-differential equations. Proc. R. Soc. Edinb. Sect. A 1988, 110, 31–44.
26. Dishen, J. Stability and boundedness of solutions of Volterra integral differential equations with infinite delay. Ann. Differ. Equ.

2006, 22, 256–260.
27. Hale, J.K.; Kato, J. Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 1978, 21, 11–41.
28. Berezansky, L.; Domoshnitsky, A. On stability of a second order integro-differential equation. Nonlinear Dyn. Syst. Theory 2019, 19,

117–123.
29. Crisci, M.R.; Kolmanovskii, V.B.; Russo, E.; Vecchio, A. Stability of continuous and discrete Volterra integro-differential equations

by Liapunov approach. J. Integral Equ. Appl. 1995, 7, 393–411.
30. Gözen, M.; Tunç, C. Stability in functional integro-differential equations of second order with variable delay. J. Math. Fundam. Sci.

2017, 49, 66–89.
31. Graef, J.R.; Tunç, C. Continuability and boundedness of multi-delay functional integro-differential equations of the second order.

Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2015, 109, 169–173. [CrossRef]
32. Fridman, E. Introduction to Time-Delay Systems Analysis and Control. In Systems & Control: Foundations & Applications;

Birkhäuser: Basel, Switzerland; Springer: Cham, Switzerland, 2014.
33. Gopalsamy, K. Stability and oscillations in delay differential equations of population dynamics. In Mathematics and Its Applications,

74; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1992.
34. Hale, J.K.; Verduyn Lunel, S.M. Introduction to functional-differential equations. In Applied Mathematical Sciences, 99; Springer:

New York, NY, USA, 1993.
35. Hsu, S.B. Ordinary Differential Equations with Applications, 2nd ed.; Series on Applied Mathematics, 21; World Scientific Publishing

Co. Pte. Ltd.: Hackensack, NJ, USA, 2013.
36. Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional-Differential Equations. In Mathematics

and Its Applications, 463; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999.
37. Rihan, F.A. Delay Differential Equations and Applications to Biology. Forum for Interdisciplinary Mathematics; Springer: Singapore, 2021.
38. Smith, H. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Texts in Applied Mathematics, 57;

Springer: New York, NY, USA, 2011.
39. Yoshizawa, T. Stability theory by Liapunov’s Second Method; The Mathematical Society of Japan: Tokyo, Japan, 1966.

http://dx.doi.org/10.1007/s13398-014-0175-5

	Introduction
	Stability and Integrability
	Boundedness
	Conclusions and Discussion
	References

