
Citation: Seck-Tuoh-Mora, J.C.;

Escamilla-Serna, N.J.; Montiel-

Arrieta, L.J.; Barragan-Vite, I.;

Medina-Marin, J. A Global

Neighborhood with Hill-Climbing

Algorithm for Fuzzy Flexible Job

Shop Scheduling Problem.

Mathematics 2022, 10, 4233. https://

doi.org/10.3390/math10224233

Academic Editors: Petr Stodola and

Ripon Kumar Chakrabortty

Received: 30 September 2022

Accepted: 8 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Global Neighborhood with Hill-Climbing Algorithm
for Fuzzy Flexible Job Shop Scheduling Problem
Juan Carlos Seck-Tuoh-Mora *,† , Nayeli Jazmín Escamilla-Serna † , Leonardo Javier Montiel-Arrieta ,
Irving Barragan-Vite and Joselito Medina-Marin

Área Académica de Ingeniería, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de
Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Pachuca 42184, Hidalgo, Mexico
* Correspondence: jseck@uaeh.edu.mx
† These authors contributed equally to this work.

Abstract: The Flexible Job Shop Scheduling Problem (FJSSP) continues to be studied extensively to
test new metaheuristics and because of its closeness to current production systems. A variant of
the FJSSP uses fuzzy processing times instead of fixed times. This paper proposes a new algorithm
for FJSSP with fuzzy processing times called the global neighborhood with hill-climbing algorithm
(GN-HC). This algorithm performs solution exploration using simple operators concurrently for
global search neighborhood handling. For local search, random restart hill-climbing is applied at
each solution to find the best machine for each operation. For the selection of operations in hill
climbing, a record of the operations defining the fuzzy makespan is employed to use them as a
critical path. Finally, an estimation of the crisp makespan with the longest processing times in hill
climbing is made to improve the speed of the GN-HC. The GN-HC is compared with other recently
proposed methods recognized for their excellent performance, using 6 FJSSP instances with fuzzy
times. The obtained results show satisfactory competitiveness for GN-HC compared to state-of-the-
art algorithms. The GN-HC implementation was performed in Matlab and can be found on GitHub
(check Data Availability Statement at the end of the paper).

Keywords: job shop scheduling; fuzzy processing times; global search; hill climbing; critical path

MSC: 68T20; 68W50; 90C59

1. Introduction

The Flexible Job Shop Scheduling Problem (FJSSP) is a problem that continues to be
widely studied to test new combinatorial metaheuristics because of its level of complexity
as well as its closeness to today’s production systems, where several machines can process
the same operations at different processing times [1]. A variant of the FJSSP is to use fuzzy
processing times instead of fixed times, which makes it closer to reality. This problem is
known as the Fuzzy Flexible Job Shop Scheduling Problem (FFJSSP) [2].

Currently, new algorithms for the FFJSSP continue to be proposed based on population
metaheuristics, where the interaction between the members of a population serves to
exchange information and refine solutions [3]. In most of these proposals, a local search
method is also used to improve these solutions, where the value to be minimized is the
makespan or fuzzy processing time in which all operations are completed [4].

This paper proposes a new method to solve the FFJSSP called the global neighborhood
with hill-climbing (GN-HC) algorithm. This algorithm performs solution exploration
using a global search neighborhood supported by insertion, exchange and path-relinking
operations applied concurrently. For local search, hill climbing with random restart is
applied on each solution where critical operations are first detected and one of them is
randomly chosen and switched to a different processing machine. The critical operations

Mathematics 2022, 10, 4233. https://doi.org/10.3390/math10224233 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10224233
https://doi.org/10.3390/math10224233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3678-1120
https://orcid.org/0000-0002-8231-8682
https://orcid.org/0000-0002-9259-535X
https://orcid.org/0000-0003-0937-8707
https://doi.org/10.3390/math10224233
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10224233?type=check_update&version=1

Mathematics 2022, 10, 4233 2 of 13

were selected backtracking from the last operation defining the makespan, going through
all preceding operations until the initial operation is reached. In order to speed up the
processing time of hill climbing, the new crisp makespan is estimated using the longest of
the fuzzy processing times to find the best machine for each operation.

The contribution of this work lies in defining an algorithm whose global search for
solution exploration is based on the concurrent application of elementary and well-known
operations. The exploitation by hill climbing also consists of simple operators that define a
robust and easy-to-implement method, improved by the selection of critical operations and
the estimation of makespan to speed up the computational execution.

The GN-HC shows competitive and satisfactory results compared with eight other
recently published methods taking the same benchmark set with six cases [5] increasing in
the number of operations and machines.

The paper is organized as follows. Section 2 presents a brief literature review of current
trends in the study of the FFJSSP. Section 3 formally defines the FFJSSP, the constraints used
in the model and how to compare fuzzy times for minimization actions. Section 4 describes
the different exploration and exploitation operations defining the GN-HC algorithm, as well
as their computational complexity. Section 5 explains how the GN-HC parameters were
tuned and the experiments performed on the five test problems to compare the proposed
algorithm against the other six methods. Finally, Section 6 gives the conclusions and
prospects for possible future work regarding this research.

2. Literature Review

The job shop scheduling problem (JSSP) is one of several types of [6] scheduling
problems. The flexible job shop scheduling problem (FJSSP) is a generalization of the JSSP
where each operation of each one of the jobs must be assigned to a machine from a set of
feasible machines and it is desired to obtain a satisfactory schedule where all the operations
of all the jobs are executed in the briefest possible time.

The FJSSP was first addressed in [7] under a two-job scheme and a polynomial algo-
rithm to solve it. The FJSSP has gained the attention of both researchers and industries
interested in solving this type of problem since it is ideal for real applications and the
amount of study directed at it has been increasing in the last decade [8]. However, due
to the difficulty of finding a solution satisfying all the conditions of the FJSSP, a wide
variety of methods have been proposed, among them evolutionary and swarm intelligence
algorithms [9].

One of the assumptions in the FJSSP is to consider the deterministic parameters.
Nevertheless, in reality, this does not happen due to different circumstances such as ma-
chine failures, power interruptions and varying delivery times, among others, creating
an environment of uncertainty and inaccuracy in the values of the parameters that are
not manageable by the proposed methods to solve the deterministic version of the FJSSP.
To deal with uncertain and imprecise processing times, fuzzy scheduling has been an
approach that has gained interest in estimating the completion time of jobs [10].

The fuzzy programming approach consists of considering the parameters of the
problem as fuzzy numbers [11]. In general, the processing times of the operations are the
parameter to be considered fuzzy functions in the FJSSP, giving rise to the fuzzy flexible job
shop scheduling problem (FFJSSP). Genetic algorithms are one of the classic metaheuristics
used to solve the FFJSSP.

In [12], a co-evolutionary genetic algorithm minimizes the fuzzy makespan by using a
new crossover operator and a modified tournament selection. At [13], the authors employed
a genetic algorithm-based approach, proposing a new chromosome structure to avoid losing
or destroying elite solutions along with the principles of immunity and entropy to maintain
the diversity of individuals and overcome premature convergence. The hybridization of a
genetic algorithm with tabu search and a heuristic seeding to minimize the fuzzy makespan
was used in [4]. In [14], an adaptive genetic algorithm is proposed using a cloud computing
method for crossover and mutation operators.

Mathematics 2022, 10, 4233 3 of 13

Another of the methods used repeatedly to address the FFJSSP is differential evolution,
as in [15], where they use a modified differential evolution algorithm to establish a schedule
that allows more work to be completed before the due date. In [16], a hyper-heuristic
algorithm is used in which a set of low-level heuristics is created and differential evolution
is used as a high-level strategy to handle these heuristics. In [17], a differential evolution
algorithm is proposed based on the determination of the parameters of the fuzzy member-
ship functions according to the calculation of the maximum satisfaction rate to measure the
effectiveness of the programming. In [18], the authors propose a new selection operator to
improve the classical differential evolution algorithm.

Swarm intelligence-based algorithms have also been widely used to solve the FFJSSP
as in [19–21], for instance, bee colony-based algorithms [22–24] and cooperative algo-
rithms, [12,25,26]. A set of five population-based metaheuristics are compared in [27],
where the PSO algorithm is suitable for solving both the FJSSP and the FFJSSP. Other pro-
posals include a distribution estimation algorithm [28] to model the probability distribution
of the solution space, biogeography-based hybrid optimization [29], hybrid multiverse
optimization [30], a discrete flower pollination algorithm [31] and a hyper-heuristic based
on backward search [32].

All the previous works show a strong tendency to propose hybrid algorithms com-
bining different methods for the actions of exploring the solution space and exploiting the
solutions reached to optimize FFJSSP instances. This trend is followed by the algorithm
proposed in this work, presenting a hybrid method that performs the exploration using
classical operators concurrently to generate a neighborhood that chooses the best neighbor
as the new solution and the exploitation with a random-restart hill-climbing using critical
operations and the estimation of the makespan to yield a fast exploitation of solutions.

3. Problem Formulation

The flexible job shop scheduling problem (FJSSP) consists of a set of n jobs J = J1, J2, . . . Jn
and a set of m machines M = M1, M2, . . . Mm. Each job Ji is composed of a sequence of
operations OJi = {Oi,1, Oi,2, . . . , Oi,ni} where ni is the number of operations of job Ji. Each
operation Oi,j can be processed by one machine from a set of feasible machines Mi,j ⊆ M,
for 1 ≤ i ≤ n and 1 ≤ j ≤ ni [32]. In the classical definition of the FJSSP, the processing time
of Oi,j on the Mk machine is a fixed value. However, this assumption may be insufficient
for many applications since there may be a different processing time for the same type of
product due to the nature of the process, the technology implemented, or the human factor.

To make the definition of the FJSSP more realistic for cases where a fixed processing
time cannot be assured, one option is to use a fuzzy processing time, where the processing
time has a minimum, most probable and maximum value. This variant will be defined as a
fuzzy FJSSP (FFJSSP). Thus, the processing times are handled using fuzzy values and fuzzy
operations [32].

The processing time of the Oi,j operation on the Mk machine is represented as a fuzzy
number TF = (t1

i,j,k, t2
i,j,k, t3

i,j,k). The fuzzy completion time of Oi,j is represented as a fuzzy

number Ci,j = (C1
i,j, C2

i,j, C3
i,j) with C1

i,j as the shortest possible completion time, C2
i,j is the

most probable completion time and C3
i,j is the longest possible completion time. For this

situation, a solution to an FFJSSP instance determines the assignment of machines to each
operation and defines the appropriate sequence of operations to complete all jobs that
minimize the maximum completeness time defined in Equation (1).

Cmax = max{Ci for 1 ≤ i ≤ n} (1)

where Ci is the fuzzy completeness time of the complete job Ji.
In order to correctly calculate the fuzzy times for the computation of completeness

times, one needs to define operations such as addition, ranking and a maximum of two
fuzzy numbers. Addition will calculate the completeness time of an operation, ranking will
compare two fuzzy numbers in order to select the starting time of an operation and order

Mathematics 2022, 10, 4233 4 of 13

fuzzy numbers for an elitist selection of solutions. For two fuzzy numbers X = (x1, x2, x3)
and Y = (y1, y2, y3), addition is defined as X + Y = (x1 + y1, x2 + y2; x3 + y3). For ranking
two fuzzy numbers, the following criteria are used [17].

Z1(X) = (x1 + 2x2 + x3)/4
Z2(X) = x2
Z3(X) = (x3 − x1)

(2)

The maximum between X, Y will be the one with the highest ranking, i.e., X > Y
implies that Z1(X) > Z1(Y), or if Z1(X) = Z1(Y) then Z2(X) > Z2(Y), or in the latter case
if Z2(X) = Z2(Y) then Z3(X) > Z3(Y) [22,27,28].

In this work, the objective function to minimize is the fuzzy makespan defined in
Equation (1). In the operation of an FFJSSP instance, the following conditions are considered:
(1) an operation cannot be interrupted while being processed by a machine; (2) a machine
can process at most one operation; (3) once the order of operations is determined, it
cannot be changed; (4) no decompositions in the machines are considered; (5) the jobs are
independent of each other; (6) the machines are independent of each other; (7) the time
used for machine setup and transfer of operations between machines is negligible.

4. Global Neighborhood with Hill-Climbing Algorithm

The global neighborhood with hill-climbing algorithm (GN-HC) is a population meta-
heuristic divided into two stages. The first one is to generate a global-search neighborhood
for each solution or smart cell in the population by exchanging information with other
smart cells to generate a set of new solutions; the best one will be chosen to update the
position of the original smart cell. The second stage consists of performing a local search
that takes only each smart cell’s information to improve its position. This local search is
based on applying random-restart hill-climbing.

4.1. Encoding and Decoding Smart Cells

A smart cell consists of two strings Os and Ms, where Os defines the order in which
the machines process operations. Os is represented as a permutation with repetitions of
the Jn jobs, where each job is repeated as many times as it has operations. Ms defines the
assignment of a machine for each operation in Os. The first n1 positions of Os specify the
machines of the operations for J1, the following n2 positions define the machines assigned
to the operations in J2 and so on. The goal of the problem is to find the best smart cell that
minimizes the fuzzy makespan Cmax.

Figure 1 shows an example of an FFJSSP with two jobs, two operations per job and
two machines. To decode the solution, the sequence Os indicates that operation 1 of job 2
is scheduled first, then operation 2 of job 2 and so forth. The sequence Ms indicates that
machine 1 is the one that processes operation 1 of job 1, then the same machine will process
operation 2 of job 1, etc.

<latexit sha1_base64="Ed20B2iviFp1sy/4Jp0e6wkKWeU=">AAACuXicbVHtbtMwFHUyYCN8lfGTH0S0RJ0UqjgrbRF/JhASQoINiW6TmqqyXbf1ZjuR7SBVJg/Go/AIvAVOWhBsu5Ltc885V9e+xgVn2iTJT8/fuXX7zu7e3eDe/QcPH7Ue75/qvFSEjknOc3WOkaacSTo2zHB6XiiKBOb0DF++q/Wzb1RplsuvZl3QqUBLyRaMIOOoWetHhumSSWsQLjlSlSXkOyFV8DHHUSZKbpjrUQppoZMqe1xUUefTDHbqPe2EWRZkpO5tD1/2qwBGMOoexv14cBB1U3cOD2oLjNKoO4xH8WtHD+JhDJOGT2v7K5ePHO+KnL6h0z9pbYdJDGEjZFTO/9501monvaSJ8DqAW9AG2ziZtX5l85yUgkpDONJ6ApPCTC1S7o2cVkFWalogcomWdOKgRILqqW1GXIUvHDMPF7lyS5qwYf+tsEhovRbYOQUyK31Vq8kbNSxuoielWYymlsmiNFSSTf9FyUOTh/U3hnOmKDF87QAiirknhGSFFCLGfXbgZgOvTuI6OE17cNDrf0nbR2+3U9oDT8Fz0AUQDMER+ABOwBgQ75n33vvsHftvfOSv/IuN1fe2NU/Af+Hr380txqk=</latexit>

Job Op M1 M2

1 1 (3,4,6) (2,4,7)
1 2 (7,8,9) (6,7,10)
2 1 (5,7,8) (4,6,9)
2 2 (4,6,9) (6,10,11)

Os:

Ms:

2 2 1 1

1 2 1 2

(8,11,14)(5,7,8)
(5,7,8)

(5,7,8)

(a) (b) (c)

(11,17,19)
(17,24,29)(11,17,19)

Figure 1. FFJSSP example. (a) Description of the problem and the fuzzy processing times. (b) Decod-
ing of the Os and Ms sequences. (c) Fuzzy Gantt chart corresponding to the solution specified by Os

and Ms.

The GN-HC starts by generating a random population S with Sn smart cells. Each
solution s ∈ S consists of two strings Os and Ms. From the beginning and at each iteration

Mathematics 2022, 10, 4233 5 of 13

of the algorithm, the best smart cells are selected using elitism and tournament. For elitism,
the best b smart cells from the current population are selected to be part of the population
in the next iteration. These b best solutions have the lowest fuzzy makespan following
the criteria of Equation (2). A tournament determines the remaining Sn − b solutions by
selecting Sn − b random pairs of smart cells in S and taking from each pair the one with the
lowest fuzzy makespan.

4.2. Global Neighborhood

The GN-HC first generates a global neighborhood for each smart cell, using insertion,
swapping and path-relinking operations on the sequence of operations Os. On the sequence
of assigned machines Ms, a mutation is performed selecting another viable machine.

The insertion consists of changing the position of an element of Os by moving the
operations between the original position and the new position of the selected operation.
Swapping consists of randomly selecting two elements of Os and exchanging their positions.

For path-relinking, two smart cells are selected and their operation strings Os1 and
Os2 are taken. Then, a sequence of strings leading from Os1 to Os2 is made by swapping
the elements of Os1 taken from right to left that have a different value in Os2 for the same
position. Each swapping defines a new string; thus, a sequence of strings from Os1 to Os2 is
constructed. One of these strings is randomly taken as the new sequence Os1 .

For machine assignment strings Ms, a random mutation is performed by choosing a
random position and changing the assigned machine to a feasible one. For the Os and Ms
sequences used in Figure 1, the actions of these operators are illustrated in Figure 2.

Os: 2 2 1 1

O’s: 2 1 1 2

(a)

Os: 2 2 1 1

O’s: 1 2 2 1

(b)

Os1: 2 2 1 1

O’s1: 2 1 2 1

Os2: 1 2 2 1

(c)

Ms: 1 1 1 2

M’s: 1 1 2 2

(d)

Figure 2. Operators used in the global neighborhood. (a) Insertion. (b) Swapping. (c) Path-relinking.
(d) Mutation of Ms.

For solution exploration, the GN-HC makes a neighborhood for each smart cell where
randomly l neighbors are generated, each one obtained by insertion with probability αI ,
by swapping with probability αS or by path-relinking with probability αP in order to obtain
a new sequence Os, such that αI + αS + αP = 1. For each new neighbor, a mutation is
applied on Ms with probability αM. From all these l neighbors, the one with the lowest fuzzy
makespan Cmax is chosen, which will update the original smart cell. The neighborhood
used for the global search is illustrated in Figure 3. Neighbors are generated by random
selection of insertion, swapping and path-relinking to modify Os and by mutation of the
Ms sequence. The best neighbor is selected as the new smart cell.

smart-cell

neighbor 1

neighbor 2

neighbor 3

neighbor l

.

.

.

neighbor 1

neighbor 3

new smart-cell

<latexit sha1_base64="XyJQrDWQ1KRZtnQz2n9tQrmWPso=">AAACBnicbZDNSgMxFIXv1L9a/6ou3QSL4KrMSNEuC250V8H+QDuUO2nahmYyQ5IRytC9a7f6DO7Era/hI/gWpu0stO2BwMc595LkBLHg2rjut5Pb2Nza3snvFvb2Dw6PiscnTR0lirIGjUSk2gFqJrhkDcONYO1YMQwDwVrB+HaWt56Y0jySj2YSMz/EoeQDTtFYq91FEY+wd98rltyyOxdZBS+DEmSq94o/3X5Ek5BJQwVq3fHc2PgpKsOpYNNCN9EsRjrGIetYlBgy7afz907JhXX6ZBApe6Qhc/fvRoqh1pMwsJMhmpFezmbm2iwI19mdxAyqfsplnBgm6eL+QSKIicisE9LnilEjJhaQKm6/QOgIFVJjmyvYbrzlJlaheVX2rsuVh0qpVs1aysMZnMMleHADNbiDOjSAgoAXeIU359l5dz6cz8Vozsl2TuGfnK9fC6qZBQ==</latexit>↵I

<latexit sha1_base64="zou3qMOu1plp3y5P8gvfp2sPt+o=">AAACBnicbZDNTgIxFIXv4B/iH+rSTSMxcUVmDFGWJG5cYpSfBCbkTinQ0OlM2o4JmbB37VafwZ1x62v4CL6FBWahwEmafDnn3rQ9QSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvp3lrSemNI/ko5nEzA9xKPmAUzTWandRxCPsPfSKJbfszkVWwcugBJnqveJPtx/RJGTSUIFadzw3Nn6KynAq2LTQTTSLkY5xyDoWJYZM++n8vVNyYZ0+GUTKHmnI3P27kWKo9SQM7GSIZqSXs5m5NgvCdXYnMYOqn3IZJ4ZJurh/kAhiIjLrhPS5YtSIiQWkitsvEDpChdTY5gq2G2+5iVVoXpW963LlvlKqVbOW8nAG53AJHtxADe6gDg2gIOAFXuHNeXbenQ/nczGac7KdU/gn5+sXG7iZDw==</latexit>↵S

<latexit sha1_base64="o5wzKUZrJz7UEECzfYGplvFVo48=">AAACBnicbVC7SgNBFL0bXzG+opY2i0GwCrsimjJgYxnBPCBZwt3JbDJkZnaZmRXCkt7aVr/BTmz9DT/Bv3CSbKFJDlw4nHMuM/eECWfaeN63U9jY3NreKe6W9vYPDo/KxyctHaeK0CaJeaw6IWrKmaRNwwynnURRFCGn7XB8N/PbT1RpFstHM0loIHAoWcQIGit1esiTEfYb/XLFq3pzuKvEz0kFctj8T28Qk1RQaQhHrbu+l5ggQ2UY4XRa6qWaJkjGOKRdSyUKqoNs/t+pe2GVgRvFyo407lz9u5Gh0HoiQpsUaEZ62ZuJa71QrJO7qYlqQcZkkhoqyeL9KOWuid1ZJ+6AKUoMn1iCRDF7gktGqJAY21zJduMvN7FKWldV/6Z6/XBdqdfylopwBudwCT7cQh3uoQFNIMDhBV7hzXl23p0P53MRLTj5zin8g/P1CxbnmQw=</latexit>↵P

<latexit sha1_base64="9ACZZDahOptRQw78ybw6Zuo8wVA=">AAACBnicbZDNSgMxFIXv1L9a/6ou3QSL4KrMSNEuC27cCBXsD7RDuZOmbWgmMyQZoQzdu3arz+BO3PoaPoJvYdrOQtseCHyccy9JThALro3rfju5jc2t7Z38bmFv/+DwqHh80tRRoihr0EhEqh2gZoJL1jDcCNaOFcMwEKwVjG9neeuJKc0j+WgmMfNDHEo+4BSNtdpdFPEIe/e9Ysktu3ORVfAyKEGmeq/40+1HNAmZNFSg1h3PjY2fojKcCjYtdBPNYqRjHLKORYkh0346f++UXFinTwaRskcaMnf/bqQYaj0JAzsZohnp5Wxmrs2CcJ3dScyg6qdcxolhki7uHySCmIjMOiF9rhg1YmIBqeL2C4SOUCE1trmC7cZbbmIVmldl77pceaiUatWspTycwTlcggc3UIM7qEMDKAh4gVd4c56dd+fD+VyM5pxs5xT+yfn6BRIWmQk=</latexit>↵M

<latexit sha1_base64="o5wzKUZrJz7UEECzfYGplvFVo48=">AAACBnicbVC7SgNBFL0bXzG+opY2i0GwCrsimjJgYxnBPCBZwt3JbDJkZnaZmRXCkt7aVr/BTmz9DT/Bv3CSbKFJDlw4nHMuM/eECWfaeN63U9jY3NreKe6W9vYPDo/KxyctHaeK0CaJeaw6IWrKmaRNwwynnURRFCGn7XB8N/PbT1RpFstHM0loIHAoWcQIGit1esiTEfYb/XLFq3pzuKvEz0kFctj8T28Qk1RQaQhHrbu+l5ggQ2UY4XRa6qWaJkjGOKRdSyUKqoNs/t+pe2GVgRvFyo407lz9u5Gh0HoiQpsUaEZ62ZuJa71QrJO7qYlqQcZkkhoqyeL9KOWuid1ZJ+6AKUoMn1iCRDF7gktGqJAY21zJduMvN7FKWldV/6Z6/XBdqdfylopwBudwCT7cQh3uoQFNIMDhBV7hzXl23p0P53MRLTj5zin8g/P1CxbnmQw=</latexit>↵P

<latexit sha1_base64="9ACZZDahOptRQw78ybw6Zuo8wVA=">AAACBnicbZDNSgMxFIXv1L9a/6ou3QSL4KrMSNEuC27cCBXsD7RDuZOmbWgmMyQZoQzdu3arz+BO3PoaPoJvYdrOQtseCHyccy9JThALro3rfju5jc2t7Z38bmFv/+DwqHh80tRRoihr0EhEqh2gZoJL1jDcCNaOFcMwEKwVjG9neeuJKc0j+WgmMfNDHEo+4BSNtdpdFPEIe/e9Ysktu3ORVfAyKEGmeq/40+1HNAmZNFSg1h3PjY2fojKcCjYtdBPNYqRjHLKORYkh0346f++UXFinTwaRskcaMnf/bqQYaj0JAzsZohnp5Wxmrs2CcJ3dScyg6qdcxolhki7uHySCmIjMOiF9rhg1YmIBqeL2C4SOUCE1trmC7cZbbmIVmldl77pceaiUatWspTycwTlcggc3UIM7qEMDKAh4gVd4c56dd+fD+VyM5pxs5xT+yfn6BRIWmQk=</latexit>↵M

best

Neighborhood Mutation

.

.

.

Figure 3. Global neighborhood for exploration of the search space.

Mathematics 2022, 10, 4233 6 of 13

4.3. Local Search

A local search based on hill climbing is performed to improve each smart cell. The
search consists of finding the critical path of each smart cell, choosing a critical operation
randomly and changing its machine at random.

The strategy to improve the local search performance involves applying hill climbing
for Hn iterations over a smart cell. If the smart cell has not improved after Rn < Hn
iterations, then one of the previous Rn solutions is randomly taken as the new restart
solution to continue the local search for the rest of the iterations. This strategy has been
successfully tested in other instances of the FJSSP [33], being effective and straightforward
to implement.

Since we are working with fuzzy times, it is impossible to talk about calculating
a critical path in the classical sense [4]. The approach taken in this work is to save the
antecedent operation selected to define the completion time of each operation. If an
operation has no antecedent one, that record is stored as 0. This record is made when the
fuzzy makespan is computed and does not require additional computational time. To find
the critical operations, only backward tracing is conducted by selecting the operation
that defines the fuzzy makespan and going back in the chain of previous operations until
reaching an operation without antecedent. These operations are the ones that will be
selected for hill climbing since if they do not move, the current makespan will not change.

Figure 4 shows the operations that define the fuzzy makespan for the example in
Figure 1 and how the makespan changes when a critical operation is assigned to another
feasible machine.

Os:

Ms:

2 2 1 1

1 2 1 2

(c)

(a)

(8,11,14)(5,7,8)
(5,7,8)

(5,7,8) (11,17,19)
(17,24,29)(11,17,19)

Ms: 1 1 1 2(15,19,23)

(11,17,19)

(8,11,14)
(8,11,14)(5,7,8)

(5,7,8)

(5,7,8)

(d)

(b)

Figure 4. Machine change in a critical operation during the hill climbing. (a) Backtracking of critical
operations. (b) Machines assigned to critical operations. (c) Machine change in a critical operation.
(d) New fuzzy makespan.

In order to speed up the hill-climbing process, makespan estimation is used as ex-
plained in [34] using the maximum values of the fuzzy processing times to obtain a crisp
estimate of each maximum makespan obtained when switching a machine of a critical
operation. For this case, the crisp makespan estimation depends on the record of the end
and tail times of each critical operation. This record is made on the maximum processing
times as the fuzzy makespan is calculated; therefore, it does not imply an increase in the
algorithm’s computational complexity.

If the estimated crisp makespan is greater than the maximum makespan of the smart
cell, the new solution is discarded. In this way, only the complete fuzzy makespan is
calculated for the new solutions whose estimated crisp makespan improves the smart cell’s
maximum makespan, reducing the local search’s execution time.

Mathematics 2022, 10, 4233 7 of 13

4.4. Complete GN-HC Algorithm

The complete GN-HC pseudocode is presented in Algorithm 1. The algorithm param-
eters are the number of smart cells Sn, the number of neighbors per smart cell l and the
number of iterations Gn. First, the random population of smart cells is generated, the fuzzy
makespan of each smart cell is calculated and the optimization loop starts. In the loop,
a population refined by elitism and tournament is chosen. For each smart cell in the new
population, a global neighborhood of new solutions is calculated by randomly selecting
l operations between insertion, swapping and path-relinking. The best solution with the
minimum makespan between the original smart cell and its neighborhood is selected as
the new smart cell.

Once the global search is finished, hill climbing is performed on the smart cell. The pro-
cess is terminated by fulfilling a number of total iterations or by a number of iterations
with no change in the best solution.

Algorithm 1: General description of the GN-HC
Result: Best smart cell
Establish the parameters of the GN-HC;
Initializing the population of smart cells with Sn randomly generated solutions;
Evaluate each smart cell to obtain its fuzzy makespan;
do

Generate a new population selecting the best smart cells by elitism and
tournament;

For each non-elitist smart cell, generate a neighborhood (using the insertion,
swap and path relinking operators) and take the best neighbor as the new
smart cell;

For each smart cell, a random restart hill-climbing is performed to improve its
fuzzy makespan;

while (Iterations less than Gn or stagnation iterations less than Sb.);
Return the smart cell with minimum fuzzy makespan;

4.5. Computational Complexity of the GN-HC

The execution time will not be taken to compare the computational complexity of the
GN-HC against other recent methods since it varies depending on the language, the com-
puter characteristics and the programming skills to implement each algorithm. In our case,
the computational complexity of the proposed algorithm will be analyzed.

The GN-HC is divided into two parts: the global search based on a neighborhood
generated by insertion, swapping and path-relinking; a machine mutation; and the local
search by a random restart hill climbing. These operations are executed at each iteration,
which first performs selection by elitism and tournament, which involves ordering the
population by its fuzzy makespan. This process has complexity O(Sn × log Sn).

Let o = ∑n
i=1 |OJi | be the number of total operations of an FFJSSP instance, then each

operation of the global search (insertion, swapping, path-relinking and machine mutation)
has complexity O(o). The global search is applied to each smart cell in order to form a
neighborhood of l new solutions. Thus, at each iteration of the GN-HC the complexity is
O(l × Sn × o).

For the local search, Hn iterations are performed by modifying the machines of the
critical operations of the smart cell. These critical operations are computed by backtracking
the record of the operations defining the fuzzy makespan. Consequently, forming the
critical path has complexity at most O(o). Hence, at each iteration of GN-HC, the local
search applies hill-climbing to each smart cell for Hn iterations, obtaining a total complexity
of O(Sn × Hn × o).

Thus, for each GN-HC iteration, the total complexity is given by O(Sn × log Sn) +
O(l × Sn × o) +O(Sn × Hn × o) equivalent to O(Sn(log Sn + ((l + Hn)× o))). This com-
plexity is similar to those exhibited by recent algorithms, e.g., the backtracking search-based

Mathematics 2022, 10, 4233 8 of 13

hyper-heuristic (BS-HH) [32] and the hybrid multi-verse optimization (HMVO) [30], which
shows that the proposed algorithm is competitive with recent methods in terms of compu-
tational complexity.

5. Experimental Results

In this experiment, six instances of the FFJSSP proposed in [5,19] are taken to test the
effectiveness of GN-HC. These instances have size ranging from 10 jobs, 10 machines and
40 operations to 15 jobs, 10 machines and 80 operations. For each instance, GN-HC was
run 30 times independently, using at most Gn = 500 optimization iterations, comparable to
experiments performed on the other algorithms.

GN-HC Parameters

A preliminary analysis was performed to define the GN-HC parameters using Case
1 of [5] to select the best values. The works presented in [32,35] were used to specify the
number of generations and the population size, because they are recent works that show
significant effectiveness in minimizing FFJSSP instances.

In [32], Gn and Sn are taken as 400 and 200, respectively; meanwhile, in [35], Gn goes
from 500 to 800 and Sn goes from 60 to 80. For the GN-HC parameters, intermediate values
with these works were tested to show that the proposed algorithm can obtain competitive
results with a simple implementation. Thus, 400 and 500 were tested for Gn and 80 and 100
for Sn.

The number of neighbors l for the global neighborhood was 3 and 5. To form the
neighborhood, probability combinations (αI , αS, αP) with (0.5, 0.25, 0.25), (0.25, 0.5, 0.25)
and (0.25, 0.25, 0.5) were tested. The mutation probability αM was tested with values 0.1
and 0.2. To control the stagnation parameter Sb, values 100 and 200 were sampled. For the
elitist proportion of solutions in the smart cell population, Ep values of 0.025 and 0.05 were
considered. For the random-restart hill climbing, values 100 and 150 for Hn and 10 and 15
for Hr were tested.

In total, there were 768 combinations of parameters. For each one, 10 independent runs
were performed and the combination with the best average results was selected. With this
experimentation, the parameters of the proposed algorithm are as follows:

• Number of optimization generations Gn = 500.
• Number of smart cells Sn = 80.
• Neighborhood size l = 5.
• Probabilities (αI = 0.5, αS = 0.25, αP = 0.25).
• Probability αM = 0.1.
• Number of stagnation generations Sb = 100.
• Proportion of elitist solutions Ep = 0.05.
• Hill-climbing iterations Hn = 150.
• Iterations to restart the hill climbing Hr = 15.

Comparative Results

The algorithm is compared with eight other algorithms recognized for their excellent
results for this type of problem. The algorithms used for the comparison of results are
the backtracking search-based hyper-heuristic (BS-HH) [32], the co-evolutionary genetic
algorithm (CGA) [12], the hybrid genetic tabu search (HGTS) [4], the hybrid multi-verse
optimization (HMVO) [30], the hybrid QPSO (HQPSO) [35], the improved artificial bee
colony algorithm (IABC) [23], swarm-based neighbourhood search algorithm (SNSA) [19]
and the effective teaching–learning-based optimization algorithm (TLBO) [36]. The results
are shown in Table 1 and the results for the other algorithms are taken directly from
the literature.

The GN-HC was programmed in Matlab R2015a(TM) using a 2.3 GHz Intel Xeon W
computer and 128 GB of RAM. Table 1 shows the best, worst and average fuzzy makespan
achieved by the GN-HC in 30 independent runs for each of the five cases. In each case,

Mathematics 2022, 10, 4233 9 of 13

the number of jobs and the number of machines (n×m) is specified. For each algorithm,
the ranking obtained compared to the other published results is shown. The algorithm
with the best average fuzzy makespan reported so far is shown in bold and the ranking
obtained by GN-HC in each case is shown in red. Some methods do not report results for
Case 6; in this event, the corresponding cell in Table 1 is left empty. The HGTS only reports
average fuzzy makespans; these values are used to rank HGST in the Average column.

Table 1. Experimental results of GN-HC and its comparison with various metaheuristics for Lei instances.

Problem Algorithm Average Rank Best Rank Worst Rank

Case 1 BS-HH (18.5,26.9,36.0) 1 (18,26,36) 1 (18,27,37) 1
(10× 10) CGA (23.1,33.1,43.4) 7 (21,29,41) 3 (25,37,47) 7

GN-HC (20.2,28.2,38.5) 3 (21,28,37) 2 (22,30,39) 3
HGTS (—–,28.5,—–) 5
HMVO (21.9,28.0,38.1) 4 (21,28,37) 2 (19,28,39) 2
HQPSO (21.0,28.0,37.0) 2 (21,28,37) 2 (21,28,37) 2
IABC (20.1,29.4,40.3) 6 (19,28,39) 2 (22,30,42) 4
SNSA (21.9,31.8,41.2) 8 (21,29,42) 4 (23,33,42) 6
TLBO (20.3,29.9,40.9) 7 (19,28,39) 2 (21,32,42) 5

Case 2 BS-HH (28.8,40.0,52.5) 1 (29,39,51) 1 (32,39,54) 1
(10× 10) CGA (35.0,47.1,60.6) 8 (32,47,57) 4 (38,49,64) 6

GN-HC (32.0,46.0,57.3) 4 (30,45,58) 2 (35,46,57) 3
HGTS (—-,45.2,—-) 3
HMVO (30.0,45.0,58.0) 2 (30,45,58) 2 (30,45,58) 2
HQPSO (30.0,45.0,58.0) 2 (30,45,58) 2 (30,45,58) 2
IABC (32.3,46.2,57.3) 5 (33,45,58) 5 (35,46,57) 3
SNSA (34.9,46.4,60.5) 7 (35,43,60) 3 (38,48,63) 5
TLBO (32.6,46.4,58.5) 6 (30,45,58) 2 (36,49,63) 4

Case 3 BS-HH (29.5,42.5,55.9) 1 (30,42,54) 1 (28,44,56) 1
(10× 10) CGA (36.4,50.8,66.0) 7 (34,47,63) 8 (38,53,71) 6

GN-HC (30.8,44.1,59.2) 4 (29,44,59) 4 (32,44,59) 3
HGTS (—-,43.5,—-) 2
HMVO (31.0,43.8,58) 3 (29,44,58) 3 (32,44,59) 3
HQPSO (29.2,43.5,58.2) 2 (28,43,59) 2 (29,44,58) 2
IABC (31.8,45.8,59.6) 5 (31,45,57) 5 (33,47,63) 4
SNSA (35.6,51.1,67.2) 8 (36,46,62) 7 (36,54,75) 7
TLBO (31.5,46.7,62.2) 6 (30,45,60) 6 (33,50,70) 5

Case 4 BS-HH (21.5,33.0,46.3) 1 (21,32,47) 1 (24,33,46) 1
(10× 10) CGA (27.4,40.4,55.0) 8 (26,37,51) 7 (29,42,59) 6

GN-HC (24.5,34.7,47.6) 5 (24,34,47) 4 (27,37,49) 3
HGTS (—-,34.2,—-) 4
HMVO (22.5,34.0,48.0) 3 (25,33,47) 3 (25,34,48) 2
HQPSO (22.6,33.6,47.5) 2 (23,33,47) 2 (23,34,48) 2
IABC (24.1,36.1,50.9) 6 (25,34,49) 5 (24,38,55) 4
SNSA (27.9,40.9,56.1) 9 (26,39,53) 8 (31,43,56) 7
TLBO (24.9,36.5,50.8) 7 (21,36,50) 6 (26,40,57) 5

Case 5 BS-HH (35.3,52.6,73.0) 3 (36,52,69) 2 (33,53,77) 1
(15× 10) CGA (47.0,65.4,86.0) 8 (42,62,82) 7 (49,70,91) 7

GN-HC (37.2,54.4,73.9) 4 (38,52,70) 3 (37,55,74) 3
HGTS (—-,51.0,—-) 1
HMVO (36.8,54.3,74.7) 5 (37,53,74) 4 (39,56,72) 4
HQPSO (34.4,52.3,72.2) 2 (34,51,72) 1 (35,54,73) 1
IABC (37.8,55.8,77.7) 6 (36,54,74) 5 (42,59,84) 6
SNSA (46.7,68.2,91.0) 9 (40,65,93) 8 (47,72,93) 8
TLBO (36.1,57.5,78.2) 7 (36,55,73) 6 (37,61,82) 5

Case 6 BS-HH
(15× 10) CGA

GN-HC (37.7,55.1,75.1) 2 (35,55,71) 1 (39,58,77) 1
HGTS (—-,50.2,—-) 1
HMVO
HQPSO
IABC
SNSA (44.8,65.0,87.8) 3 (46,63,83) 2 (48,68,89) 2
TLBO

Table 1 shows that GN-HC obtains a ranking varying from second to fifth place in
the best average fuzzy makespan among the nine algorithms employed for comparison.
GN-HC obtains fourth place overall, only surpassed by BS-HH, HQPSO and HGTS, with a

Mathematics 2022, 10, 4233 10 of 13

similar performance to HMVO. All of them are algorithms recognized for their excellent
performance. About the best and worst fuzzy makespan, GN-HC has a ranking from
second to fourth place in the first five cases and it overtakes the SNSA in the last case.
These results show the competitiveness of the GN-HC in solving FFJSSP instances. Figure 5
presents the best fuzzy makespan obtained for each case.

Case 1 (21, 28, 37) Case 2 (30, 45, 58)

Case 3 (29, 44, 59) Case 4 (24, 34, 47)

Case 5 (38, 52, 70) Case 6 (35, 55, 71)

Figure 5. The best solution of Cases 1–6 obtained by the GN-HC.

Mathematics 2022, 10, 4233 11 of 13

6. Conclusions and Further Work

This paper has presented a new algorithm called GN-HC for optimizing the FFJSSP.
This algorithm divides the problem into two stages. In the first one, a global neighborhood
to search the solution space is created mainly focused on finding the best possible order of
operations. In the local search, the machine allocation is tuned through a random-restart
hill-climbing to obtain a better smart cell.

The originality of the GN-HC lies in the fact that the global neighborhood has a straight-
forward implementation and is based on the concurrent application of easy-to-implement
operators. On the other hand, the local search is based on hill climbing, improving its
performance by focusing on the critical operations that define the fuzzy makespan and
using the maximum crisp makespan estimation to discard solutions in a shorter time.

These operations define a simple hybrid algorithm that obtains competitive results
compared to current methods recognized for their excellent performance on FFJSSP instances.

The GN-HC can be helpful in real-world applications where the processing time
cannot be obtained in advance since many situations may arise during the manufacturing
process, such as maintenance, breakdowns, or rush jobs. Future work would be to apply
the GN-HC in a real application.

The GN-HC is limited to solving instances of the FFJSSP under the assumption of
working in a single factory. It does not consider the case where each instance can be
processed in several factories with similar technologies, nor does it consider travel times or
inventory capacity, which can be addressed in a later study.

Another proposed study involves utilizing other operations to develop the global
search, such as genetic operators. Moreover, other local search strategies can be investigated,
such as different implementations of tabu search or simulated annealing. On the other
hand, the effectiveness of the proposed method for other types of JSSP variants caused
by different types of disturbances can be investigated, such as the arrival of new jobs,
revocation of jobs or random transfer times.

In the proposed theoretical research, other kinds of uncertainty criteria can be investi-
gated to select the maximum of two fuzzy values [37], like the one used in the HGTS [4],
taking into account the three components of a fuzzy number to select the maximum, in order
to manage uncertainty with better consistency.

Author Contributions: Conceptualization, N.J.E.-S. and J.C.S.-T.-M.; methodology, N.J.E.-S., J.C.S.-T.-M.
and L.J.M.-A.; software, N.J.E.-S. and J.C.S.-T.-M.; validation, L.J.M.-A., I.B.-V. and J.M.-M.; formal
analysis, N.J.E.-S., J.C.S.-T.-M. and J.M.-M.; investigation, N.J.E.-S., J.C.S.-T.-M., L.J.M.-A. and I.B.-V.;
resources, J.C.S.-T.-M.; data curation, J.C.S.-T.-M. and J.M.-M.; writing—original draft preparation,
J.C.S.-T.-M., L.J.M.-A. and I.B.-V.; writing—review and editing, J.C.S.-T.-M., L.J.M.-A. and I.B.-V.;
visualization, N.J.E.-S., J.C.S.-T.-M. and J.M.-M.; supervision, J.C.S.-T.-M., I.B.-V. and J.M.-M.; project
administration, J.C.S.-T.-M.; funding acquisition, J.C.S.-T.-M. and J.M.-M. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by the Autonomous University of Hidalgo (UAEH) and the
National Council for Science and Technology (CONACYT) with project numbers F003/320109 and CB-
2017-2018-A1-S-43008. Nayeli Jazmin Escamilla Serna was supported by CONACYT grant number
1013175. Leonardo Javier Montiel Arrieta was supported by CONACYT grant number 713103.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The GN-HC source code is available on Github https://github.com/
juanseck/GN-HC (accessed on 20 September 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://github.com/juanseck/GN-HC
https://github.com/juanseck/GN-HC

Mathematics 2022, 10, 4233 12 of 13

Abbreviations
The following abbreviations are used in this manuscript:

JSSP Job shop scheduling problem
FJSSP Flexible job shop scheduling problem
FFJSSP Fuzzy Flexible job shop scheduling problem
GN Global neighborhood
HC Hill-climbing
OS Operation sequence
MS Machine sequence

References
1. Wang, L.; Zhou, G.; Xu, Y.; Wang, S.; Liu, M. An effective artificial bee colony algorithm for the flexible job-shop scheduling

problem. Int. J. Adv. Manuf. Technol. 2012, 60, 303–315. [CrossRef]
2. Abdullah, S.; Abdolrazzagh-Nezhad, M. Fuzzy job-shop scheduling problems: A review. Inf. Sci. 2014, 278, 380–407. [CrossRef]
3. Li, X.; Gao, L. Effective Methods for Integrated Process Planning and Scheduling; Springer: Berlin, Germany, 2020; Volume 2,
4. Palacios, J.J.; Gonzalez A., M.; R. Vela, C.; Gonzalez-Rodriguez, I.; Puente, J. Genetic tabu search for the fuzzy flexible job shop

problem. Comput. Oper. Res. 2015, 54, 74–89. [CrossRef]
5. Lei, D. A genetic algorithm for flexible job shop scheduling with fuzzy processing time. Int. J. Prod. Res. 2010, 48, 2995–3013.

[CrossRef]
6. Pinedo, M.L. Planning and Scheduling in Manufacturing and Services; Springer: New York, NY, USA, 2009.
7. Brucker, P.; Schlie, R. Job-Shop Scheduling with Multi-Purpose Machines. Computing 1990, 45, 369–375. [CrossRef]
8. Coelho, P.; Pinto, A.; Moniza, S.; Silva, C. Thirty Years of Flexible Job-Shop Scheduling: A Bibliometric Study. Procedia Comput.

Sci. 2021, 180, 787–796. [CrossRef]
9. Gao, K.; Cao, Z.; Zhang, L.; Chen, Z.; Han, Y.; Pan, Q. A review on swarm intelligence and evolutionary algorithms for solving

flexible job shop scheduling problems. IEEE/CAA J. Autom. Sin. 2019, 6, 904–916. [CrossRef]
10. Behnamian, J. Survey on fuzzy shop scheduling. Fuzzy Optim Decis Mak. 2016, 15, 331–366. [CrossRef]
11. Gen, M.; Lin, L.; Ohwada, H. Advances in hybrid evolutionary algorithms for fuzzy flexible job-shop scheduling: State-of-the-art

survey. In Proceedings of the 13th International Conference on Agents and Artificial Intelligence, ICAART 2021, Virtual, 4–6
February 2021; pp. 562–573.

12. Lei, D. Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling. Appl. Soft Comput. 2012, 12, 2237–2245.
[CrossRef]

13. Wang, X.; Gao, L.; Zhang, C.; Li, X. A multi-objective genetic algorithm for fuzzy flexible job-shop scheduling problem. Comput.
Appl. Technol. 2012, 45, 115–125. [CrossRef]

14. Xuan, J.; Chengyang, L.; Jiang, X. Research on Multi-objective Fuzzy Flexible Job-Shop Scheduling Based on Cloud Computinger.
In Proceedings of the 2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT), Dalian,
China, 20–22 November 2020; pp. 7–10. [CrossRef]

15. Hu, Y.; Yin, M.; Li, X. A novel objective function for job-shop scheduling problem with fuzzy processing time and fuzzy due date
using differential evolution algorithm. Int. J. Adv. Manuf. Technol. 2011, 56, 1125. [CrossRef]

16. Lin, J.; Luo, D.; Li, X.; Gao, K.; Liu, Y. Differential Evolution Based Hyper-heuristic for the Flexible Job-Shop Scheduling Problem
with Fuzzy Processing Time. In Simulated Evolution and Learning; Shi, Y., Tan, K.C., Zhang, M., Tang, K., Li, X., Zhang, Q., Tan, Y.,
Middendorf, M., Jin, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 75–86.

17. Ma, D.Y.; He, C.H.; Wang, S.Q.; Han, X.M.; Shi, X.H. Solving fuzzy flexible job shop scheduling problem based on fuzzy
satisfaction rate and differential evolution. Adv. Prod. Eng. Manag. 2018, 13, 44–56. [CrossRef]

18. Gao, D.; Wang, G.G.; Pedrycz, W. Solving Fuzzy Job-Shop Scheduling Problem Using DE Algorithm Improved by a Selection
Mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [CrossRef]

19. Lei, D.; Guo, X. Swarm-based neighbourhood search algorithm for fuzzy flexible job shop scheduling. Int. J. Prod. Res. 2012,
50, 1639–1649. [CrossRef]

20. Zheng, Y.l.; Li.; Y.-X..; Lei, D.M. Multi-objective swarm-based neighborhood search for fuzzy flexible job shop scheduling. Int. J.
Adv. Manuf. Technol. 2012, 60, 1063–1069. [CrossRef]

21. Jamrus, T.; Chien, C.-F.; Gen, M.; Sethanan, K. Hybrid particle swarm optimization combined with genetic operators for flexible
job-shop scheduling under uncertain processing time for semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 2018,
31, 32–41. [CrossRef]

22. Wang, L.; Zhou, G., X.; Y..; Liu, M. A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem.
Int. J. Prod. Res. 2013, 51, 3593–3608. [CrossRef]

23. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Chong, C.S.; Cai, T.X. An improved artificial bee colony algorithm for flexible
job-shop scheduling problem with fuzzy processing time. Expert Syst. Appl. Int. J. 2016, 65, 52–67. [CrossRef]

24. Gao, K.Z.; Ponnuthurai, N.S.; Pan, Q.K.; Mehmet, F.T.; Ali, S. Artificial bee colony algorithm for scheduling and rescheduling
fuzzy flexible job shop problem with new job insertion. Knowl.-Based Syst. 2016, 109, 1–16. [CrossRef]

http://doi.org/10.1007/s00170-011-3610-1
http://dx.doi.org/10.1016/j.ins.2014.03.060
http://dx.doi.org/10.1016/j.cor.2014.08.023
http://dx.doi.org/10.1080/00207540902814348
http://dx.doi.org/10.1007/BF02238804
http://dx.doi.org/10.1016/j.procs.2021.01.329
http://dx.doi.org/10.1109/JAS.2019.1911540
http://dx.doi.org/10.1007/s10700-015-9225-5
http://dx.doi.org/10.1016/j.asoc.2012.03.025
http://dx.doi.org/10.1504/IJCAT.2012.050700
http://dx.doi.org/10.1109/ICCSNT50940.2020.9305019
http://dx.doi.org/10.1007/s00170-011-3244-3
http://dx.doi.org/10.14743/apem2018.1.272
http://dx.doi.org/10.1109/TFUZZ.2020.3003506
http://dx.doi.org/10.1080/00207543.2011.575412
http://dx.doi.org/10.1007/s00170-011-3646-2
http://dx.doi.org/10.1109/TSM.2017.2758380
http://dx.doi.org/10.1080/00207543.2012.754549
http://dx.doi.org/10.1016/j.eswa.2016.07.046
http://dx.doi.org/10.1016/j.knosys.2016.06.014

Mathematics 2022, 10, 4233 13 of 13

25. Palacios, J.J.; Gonzalez-Rodriguez, I.; Vela, C.R.; Puente, J. Coevolutionary makespan optimisation through different ranking
methods for the fuzzy flexible job shop. Fuzzy Sets Syst. 2015, 278, 81–97. [CrossRef]

26. Sun, L.; Lin, L.; Gen, M.; Li, H. A Hybrid Cooperative Coevolution Algorithm for Fuzzy Flexible Job Shop Scheduling Problem.
IEEE Trans. Fuzzy Syst. 2019, 27, 1008–1022. [CrossRef]

27. Rim, Z.; Imed, B.; Abderrazek, J. Simulation-Based Comparison of P-Metaheuristics for FJSP with and Without Fuzzy Processing
Time. In Recent Trends and Future Technology in Applied Intelligence; Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M., Eds.;
Springer International Publishing: Cham, Switzerland, 2018; pp. 408–413.

28. Wang, S.; Wang, L.; Xu, Y.; Liu, M. An effective estimation of distribution algorithm for the flexible job-shop scheduling problem
with fuzzy processing time. Int. J. Prod. Res. 2013, 51, 3778–3793. [CrossRef]

29. Lin, J. A hybrid biogeography-based optimization for the fuzzy flexible job shop scheduling problem. Knowl.-Based Syst. 2015,
78, 186–196. [CrossRef]

30. Lin, J.; Zhu, L.; Wang, Z.J. A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem. Comput. Ind.
Eng. 2019, 127, 1089–1100. [CrossRef]

31. Xu, W.; Ji, Z.; Wang, Y. A flower pollination algorithm for flexible job shop scheduling with fuzzy processing time. Mod. Phys.
Lett. 2018, 32, 1840113. [CrossRef]

32. Lin, J. Backtracking search based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time. Eng.
Appl. Artif. Intell. 2019, 77, 186–196. [CrossRef]

33. Escamilla-Serna, N.J.; Seck-Tuoh-Mora, J.C.; Medina-Marin, J.; Barragan-Vite, I.; Corona-Armenta, J.R. A Hybrid Search Using
Genetic Algorithms and Random-Restart Hill-Climbing for Flexible Job Shop Scheduling Instances with High Flexibility. Appl.
Sci. 2022, 12, 8050. [CrossRef]

34. Mastrolilli, M.; Gambardella, L.M. Effective neighbourhood functions for the flexible job shop problem. J. Sched. 2000, 3, 3–20.
[CrossRef]

35. Junxuan, L.; Yan, W.; Zhicheng, J. Research on Fuzzy Flexible Job Shop Scheduling Problem Based on Hybrid QPSO. J. Syst.
Simul. 2020, 32, 2010.

36. Xu, Y.; Wang, L.; Wang, S.y.; Liu, M. An effective teaching–learning-based optimization algorithm for the flexible job-shop
scheduling problem with fuzzy processing time. Neurocomputing 2015, 148, 260–268. [CrossRef]

37. Hanss, M. Applied Fuzzy Arithmetic; Springer: Berlin, Germany, 2005.

http://dx.doi.org/10.1016/j.fss.2014.12.003
http://dx.doi.org/10.1109/TFUZZ.2019.2895562
http://dx.doi.org/10.1080/00207543.2013.765077
http://dx.doi.org/10.1016/j.knosys.2015.01.017
http://dx.doi.org/10.1016/j.cie.2018.11.046
http://dx.doi.org/10.1142/S0217984918401139
http://dx.doi.org/10.1016/j.engappai.2018.10.008
http://dx.doi.org/10.3390/app12168050
http://dx.doi.org/10.1002/(SICI)1099-1425(200001/02)3:1<3::AID-JOS32>3.0.CO;2-Y
http://dx.doi.org/10.1016/j.neucom.2013.10.042

	Introduction
	Literature Review
	Problem Formulation
	Global Neighborhood with Hill-Climbing Algorithm
	Encoding and Decoding Smart Cells
	Global Neighborhood
	Local Search
	Complete GN-HC Algorithm
	Computational Complexity of the GN-HC

	Experimental Results
	Conclusions and Further Work
	References

