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Abstract: In computed tomography, state-of-the-art reconstruction is based on neural network (NN)
algorithms. However, NN reconstruction algorithms can be not robust to small noise-like perturba-
tions in the input signal. A not robust NN algorithm can produce inaccurate reconstruction with
plausible artifacts that cannot be detected. Hence, the robustness of NN algorithms should be investi-
gated and evaluated. There have been several attempts to construct the numerical metrics of the NN
reconstruction algorithms’ robustness. However, these metrics estimate only the probability of the
easily distinguishable artifacts occurring in the reconstruction. However, these methods measure
only the probability of appearance of easily distinguishable artifacts on the reconstruction, which
cannot lead to misdiagnosis in clinical applications. In this work, we propose a new method for
numerical estimation of the robustness of the NN reconstruction algorithms. This method is based on
the probability evaluation for NN to form such selected additional structures during reconstruction
which may lead to an incorrect diagnosis. The method outputs a numerical score value from 0
to 1 that can be used when benchmarking the robustness of different reconstruction algorithms.
We employed the proposed method to perform a comparative study of seven reconstruction algo-
rithms, including five NN-based and two classical. The ResUNet network had the best robustness
score (0.65) among the investigated NN algorithms, but its robustness score is still lower than that
of the classical algorithm SIRT (0.989). The investigated NN models demonstrated a wide range
of robustness scores (0.38–0.65). Thus, in this work, robustness of 7 reconstruction algorithms was
measured using the new proposed score and it was shown that some of the neural algorithms are
not robust.

Keywords: robustness; neural network; computed tomography

MSC: 68T07

1. Introduction

One of the most popular methods of non-invasive investigation of the object’s internal
structure is X-ray computed tomography (CT) [1]. CT is widely used for pathology detec-
tion and treatment control in medicine [2–6], for flaw detection and quality control [7,8],
or to solve different scientific problems, such as evaluation of the inner structure of pressur-
izers at nuclear power plants [9] or investigation of novel nanostructured materials [10].
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The internal structure of an object in CT is estimated from a set of measured projections,
i.e., one-dimensional arrays of detector cell values taken at different angles and containing
information about the absorption of X-rays passing through the object.

An important issue in medical CT is the reduction of radiation absorbed by a patient,
because an excessive dose of X-ray radiation may lead to significant health problems for
the patient. There are two general approaches to dose reduction: (1) reducing the exposure
time, which results in noise within projections, and (2) reducing the number of measured
projections. Currently, neural network (NN) algorithms demonstrate state-of-the-art re-
construction accuracy for low-angle and low-exposure tomography [11,12]. The applied
NN reconstruction algorithms can be divided into three classes according to the applica-
tion stage: preprocessing, postprocessing, and end-to-end algorithms. In preprocessing
algorithms, neural networks are applied only to projections, for example, UNet1D [13].
In post-processing algorithms, neural networks are applied to the result of reconstruction
obtained by analytical (Filtered Back Projection (FBP) [14]) or iterative algorithms (Simul-
taneous Iterative Reconstruction Technique (SIRT) [15]). FBPConvNet [16] and Residual
U-Net (ResUNet) [17] are examples of the post-processing algorithms. End-to-end algo-
rithms transform projections into a reconstruction by applying neural networks in both the
projection space and the reconstruction space. This class of algorithms includes learned
primal dual reconstruction (LPDR) [12] and TiraFL [18].

Inaccuracies or artifacts in reconstruction can lead to misdiagnosis. Classical algo-
rithms (FBP, SIRT) produce well-known reconstruction artifacts [19]. These artifacts include
metal-like [20], limited angle [21] artifacts, etc. Since the morphology of such artifacts is
well known, their detection by specialists is not a problem. Thus, such artifacts may require
only additional measurements in most cases. On the other hand, NN algorithms produce
reconstruction artifacts that can be indistinguishable when the results are compared to
the correct reconstructions [22]. The general scheme of difference between robust and
not robust algorithms is demonstrated in Figure 1. Therefore, such artifacts may not be
detected by a specialist. Thus, NN non-robustness can lead to misdiagnosis when using CT
reconstruction exclusively. Such artifacts were shown in [22], where the NN algorithm [16]
did not restore the reconstruction details characteristic of cancerous tumors by introducing
insignificant noise to projections.

Figure 1. Demonstration of the difference between robust and not robust reconstruction algorithms.

The problem of the NN algorithms’ robustness has been investigated previously.
In [23], the authors showed the non-robustness of an NN image classification algorithm
by introducing small perturbations into the input data. In [24], a similar non-robustness
of the NN-based segmentation algorithm was shown for high-resolution real-world im-
ages. In [25], the non-robustness of NN-based segmentation algorithms was shown for CT
reconstruction images. While there are many works on the robustness of reconstruction
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algorithms [18,26–28], the authors of these papers came to different conclusions. In [18,26],
it was stated that NN algorithms are as robust as analytical reconstruction algorithms.
In [27,28], it was stated that NN algorithms are not robust. Thus, the problem of the robust-
ness of reconstruction algorithms is not solved, and the question of robustness assessment
remains open. In [22], the authors showed only the fact that the NN reconstruction algo-
rithm for X-ray computed tomography is not robust to tiny noise. In [26], the robustness
of NN algorithms to dataset changes, resistance to small projection perturbations, and re-
sistance to preserving small image details were investigated. In [18,26,28], a metric for
assessing the robustness of magnetic resonance imaging (MRI) NN models to small projec-
tion perturbations was proposed: the maximum decrease in the reconstruction accuracy for
a fixed norm of the input data perturbations. However, such a metric does not directly as-
sess the possibility of misdiagnosis based on a set of reconstructions. In [18], reconstructions
were shown as metric calculation results. However, these reconstructions contained only
obvious reconstruction artifacts, which can lead only to re-measurement. Thus, the prob-
lem of numerical measure of the neural network CT reconstruction robustness in terms of
diagnosis remains unsolved.

In this paper, we propose a novel task-oriented score for measuring the robustness of
reconstruction algorithms. The method evaluates the possibility that in the reconstructed
image, the algorithm would generate structures that may lead to an error in the diag-
nosis. Such structures in the reconstructed image will be called “dangerous” structures.
Each dangerous structure is a reconstructed image to which a binary mask, or a so-called
reconstruction perturbation, is added. The classical and neural network reconstruction
algorithms were evaluated via the proposed method by averaging the resulting scores
for all reconstructions from the Low Dose CT Grand Challenge dataset and four recon-
struction perturbations. Four different reconstruction perturbations emulate real diseases.
These perturbations were simulated based on a medical atlas of lung diseases.

The rest of the paper is organized as follows. Section 2.1 describes the proposed
numerical measure of the NN models’ robustness. Section 2.2 describes the training and
test datasets for the NN reconstruction algorithms. Section 2.3 describes selected structures
for robustness assessment by the proposed method. Structures were selected based on the
medical atlas [29]. Section 2.4 shows the list of measured models. Section 3 describes and
discusses the results of NN and classical reconstruction algorithms’ robustness assessments.

2. Materials and Methods
2.1. Methodology for Investigating the Robustness of CT Reconstruction Neural Networks

In CT, the X-ray absorption by studied volume is measured with an X-ray detector.
The measured values are calculated as follows:

Ii = I(0)e−
∫ 1

0 R(~si+(~di−~si)t)‖~di−~si‖dt, (1)

where I(0) is the number of initial photons directed at the detector cell (I(0) is the same
for every cell), ~di is a detector position during the ith measurement, ~si is the X-ray source
position during the ith measurement, R(~r) is a linear attenuation coefficient distribution
within the volume under study, and Ii is the number of photons measured by the detector.
Thus, the integral of R(~r) along the ray from ~si to ~di can be calculated reducing to the linear
form the Equation (1)

pi = − ln
I′i

I(0)
=

∫ 1

0
R(~si + (~di −~si)t)‖~di −~si‖dt. (2)

The set of pi values obtained with the measurements Ii are called a “sinogram”. R(~r)
is a two-dimensional attenuation coefficient distribution. Let us approximate R(~r) as a two-
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dimensional image Rxy with X rows and Y columns. Index j = yX + x; this is responsible
for the image pixel position. Then values of pi can be calculated as follows:

pi = ∑
j=1

aijRj, (3)

where {aij} is an element of weight matrix, which represents a relationship between {Rxy}
and pi. Value of aij equal to the length of the intersection between image pixel j and X-ray i
as shown in Figure 2.

Figure 2. An example of Ii X-ray propagation along the pixels Rj of a reconstructed image in a
parallel scheme.

Formula (3) is a direct representation of matrix multiplication:

P = AR0, (4)

where P is a vector of all measured values, R0 is a vector of all pixel values within the
Rxy image, and A is a weight matrix. To calculate R0 from (4), we will solve the inverse
linear problem:

R = M(P), (5)

where M(·) is an arbitrary reconstruction algorithm. Let there be some reconstruction
perturbation ∆R0 that leads to an incorrect diagnosis. Then sinogram P′ from the perturbed
reconstruction R′0 equals

R′0 = R0 + ∆R0, (6)

where R′0 is a perturbed reconstruction.

P′ = AR′0 = A(R0 + ∆R0) + ν = AR0 + A∆R0 + ν. (7)

The sinogram perturbation ∆P of the original sinogram can be estimated as

∆P = P′ − P, (8)

∆P = A∆R0, (9)

If a reconstruction algorithm can change the diagnosis under projection and the change
is much smaller than ∆P, then such an algorithm is not robust. The minimum difference
between projections leading to a change in diagnosis can be calculated by solving the
optimization problem:

∆PM = arg min
∆P′M
‖M(P) + ∆R0 −M(P + ∆P′M)‖2 + λ‖∆P′M‖2, (10)
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where ∆PM is the perturbation with minimal norm which is required for the chosen per-
turbation ∆R0, M(·) is the reconstruction algorithm, and λ is the regularization parameter.
From now on, we will refer to ‖M(P) + ∆R0 −M(P + ∆P′M)‖2 as “target reconstruction
error rate”.

Thus, we will calculate the robustness score as the difference in the norms of projec-
tions’ deviations

SM = 1− |‖∆P‖2 − ‖∆PM‖2

‖∆P‖2 |. (11)

In a robust reconstruction algorithm, SM is expected to be approximately equal to 1 for
any ∆R0. In Appendix A, we provide the explicit form of SM for any linear reconstruction
algorithm. Moreover, we demonstrate that the proposed score is always equal to 1 for the
ideal linear algorithm for the tomography problem under the noise-free conditions.

To find ∆PM from minimization problem (10) in a general case, we employed the
L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) [30] algorithm
with λ = 1. L-BFGS is the optimization algorithm in a family of quasi-Newton methods.
L-BFGS evaluates the inverse Hessian matrix, the inverse matrix of second derivatives.
The peculiarity of this method is that it has the proven property of convergence in a finite
number of iterations for a linear equation system. This makes it applicable to this class of
problems of finding the minimum perturbation. We select λ = 1 for the following reasons.
For λ = 10, regularization has a noticeable effect on ∆PM, for λ = 0.1, we did not observe
noticeable changes in SM; however, the number of L-BFGS algorithm iterations increased.
Therefore, we consider λ = 1 to be a near-optimal value for SM calculation.

2.2. Data and Modeling

The NN algorithms for CT reconstruction were trained and their robustness was
evaluated for the open dataset of medical tomography data “Low Dose CT Grand Chal-
lenge” [31–33]. The dataset comprises 99 head scans, 100 chest scans, and 100 abdomen
scans, which were measured by Siemens and General Eclectic CT-scanners. The pixel width
and height of each slice is 512. The example of chest reconstruction is shown in Figure 3.

Figure 3. Chest reconstruction from the “Low Dose CT Grand Challenge” dataset.

The dataset also contains the measurements used for reconstructed images.
Projection data are provided within the dataset acquired by medical CT scanners in a
helical scanning scheme (Figure 4A). However, most NN models for CT reconstruction
have been developed to work with data collected based on a circular scanning scheme
(Figure 4B). Therefore, for training and testing NN models, we used the projections which
were simulated as follows.
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Figure 4. Images of two measurement schemes: (A) helical scheme, (B) circular scheme.

We simulated the projections under a two-dimensional parallel-beam measurement
scheme. This scheme suggests that the X-ray detectors are arranged along a line as illus-
trated in Figure 2. The rays directed at these cells are parallel to one another. We simulated
512 detectors, and the dimensions of each corresponded to that of the pixel within the
considered region. According to Figure 4B, the measured volume is additionally rotated
around its axis by a fixed step of π

512 . We simulated 512 rotation steps to uniformly cover the
range between 0 and 180 degrees. Therefore, for each reconstructed image, we simulated
512× 512 projection values. The noise was simulated according to the Poisson distribution
as follows.

I′i = Poisson(I) = Poisson(I(0)e−pi ). (12)

On the other hand, I′i can be represented as

I′i = I(0)e−p′i . (13)

So, we can calculate noisy p′i

p′i = − ln
Poisson(I(0)e−pi )

I(0)
, (14)

where p′i is the noisy sinogram value, Poisson(x) is a realization of a random variable: the
Poisson distribution with x mean and dispersion of the distribution. This noise operation is
applied to all values of all calculated projections with I(0) = 105. This number of photons
roughly corresponds to the number of photons received by X-ray detectors in medical
CT-scanners. Each projection contains 512 values. The original high-dose reconstructions
and noisy sinograms were used to train and test NN algorithms.

2.3. Reconstruction Perturbations

Based on the medical atlas [29], four reconstruction perturbations (pathologies) for
the reconstructed images were formed. The perturbations corresponded to the airway
involution and obstruction. These four perturbations were added to reconstructed images
to construct ground truth for the L-BFGS algorithm. In (10), these perturbations are ∆R0.
Perturbations and examples of their addition to the reconstructed image are shown in
Figure 5. Simulated perturbations are binary masks without internal structure and these
perturbations are placed in different parts of the lungs and have different shapes and sizes.
These specific pathologies are relatively small and have simple inner structure; hence, they
were chosen for the simulation. The localization of the simulated perturbations allows
for a minimal distortion of the sinogram to ensure reproducibility. Images A and C show
resuscitation and obstruction of the airways. This may be the sole sign of infection, typical
for a viral one, such as in this example of a patient with a rhinovirus infection. Images B and
D show asymmetric central bronchiectasis and mucoid occlusion, which is characteristic
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of allergic bronchopulmonary aspergillosis and tuberculosis. When calculating our task-
oriented robustness score (11), these reconstruction perturbations acted as ∆R0.

Figure 5. (A,C) Airway inflammation and airway impaction. (B,D) Asymmetric central bronchiectasis
and mucoid impaction, which is typical for allergic bronchopulmonary aspergillosis, and tuberculosis.
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2.4. Neural Network Models

We investigate the issue of robustness of five NN algorithms: ResUNet [17], FBPCon-
vNet [16], LPDR [12], TiraFL [18], Unet1D [13]. We chose these algorithms to uniformly
cover all classes of neural network algorithms for CT reconstruction. UNet1D was cho-
sen as a representative of the preprocessing reconstructive network class. ResUNet and
FBPConvNet were chosen as representative of the postprocessing reconstructive network
class. LPDR and TiraFL were chosen as representative of the end-to-end reconstructive
network class.

The FBPConvNet algorithm relies on applying the FBP algorithm (Filtered Back
Projection) [14] to the sinogram, and then the FBP result is used as input of the neural
network. FBPConvNet was proposed for the small angle computed tomography problem.
The used U-Net network allowed to decrease the effect of small angle reconstruction
artifacts. These artifacts are commonly presented as lines with size equal to all reconstructed
image sizes. U-Net is widely used neural network architecture for segmentation [34] and
its modifications are also widely used for denoising [13,16,17]. The algorithm uses a neural
network with a modified version of U-Net architecture [34]. Unlike the case of U-Net,
the output of this neural network algorithm is added to the input data. Thus, the neural
network learns to predict the difference between the ideal reconstructed image and the
reconstruction obtained using the FBP algorithm.

The ResUNet algorithm is similar to the FBPConvNet. The ResUNet algorithm relies
on applying the FBP to the sinogram, and the result is used as input of the U-Net neural
network. Unlike FBPConvNet, in ResUnet there are replaced “max pool” layers to “average
pool” layers. This allows one to increase the robustness of a neural network to noise on the
input data.

LPDR modifies the iterative SIRT (Simultaneous Iterative Reconstruction Technique)
algorithm. In the SIRT algorithm, the reconstructed image is changed step by step as
follows: (1) the sinogram from the current reconstructed image is calculated; (2) the
difference between the measured sinogram and the computed sinogram is calculated;
(3) this difference is backprojected into the reconstruction space and (4) is added to the
current reconstructed image. In the LPDR algorithm, steps (2) and (4) are replaced by
neural networks. In [12], a set of small convolutional neural networks is used. Each such
NN included three consecutive 32 channel convolutions. LPDR contains only 10 modified
iterations of the SIRT algorithm. LPDR is a fully-learned network that accepts sinograms as
input and outputs a reconstructed image.

TiraFL is another fully-learned network. It was proposed to replace the back-projection
linear operator with a trainable linear operator which is applied to the values of the sino-
gram, and the result is processed by a neural network based on the Tiramisu architecture.
The trainable linear operator is a matrix with values that are calculated during the neural
network learning process. It allows one to optimise the present relationship between
reconstruction and projection value spaces.

The UNet1D algorithm is a modification of the FBP algorithm. The FBP reconstruction
algorithm includes two stages: filtering one-dimensional projections with a ramp filter,
and back-projecting the filtering results to obtain a reconstructed image. In the UNet 1D
algorithm, the projection filtering stage is replaced by a one-dimensional neural network,
which is a one-dimensional modification of the U-net neural network. According to the
authors, this approach [13] guarantees a significant increase in the reconstruction accuracy
without a large computational cost.
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All neural networks were trained using the Adam optimizer [35] with an initial
learning step of 1× 10−4 and a batch size of 1. Moreover, all neural networks, with the
exception of LPDR, were trained with a fixed learning step until convergence on the training
set. In this paper, the neural networks with the best loss on the validation set were used.
LPDR was trained over 100,000 learning steps and we used a cosine annealing [36] learning
rate scheduler according to the original LPDR article. The MSE (mean squared error) loss
function was employed for training the neural networks. The training and validation
datasets were generated by a random sampling of reconstructed images from the Low Dose
CT Grand Challenge dataset.

We implemented all neural network reconstruction algorithms using PyTorch li-
brary [37] and Astra Toolbox [38] to make the proposed score calculation uniform.

3. Results

We tested the proposed task-oriented score only for reconstructed images of lungs
because we introduced perturbations based on lung diseases. Additionally, all lung re-
constructed images did not contain any natural structures in the areas of proposed masks
from Section 2.3. For reconstruction perturbation A, shown in Figure 5, the task-oriented
robustness scores of NN algorithms (11) were calculated. λ from Equation (10) was set to
1 in all experiments. The calculation results are shown in Table 1 after 300 steps of the L-
BFGS optimization algorithm. Plots of the deviation norm ‖M(P) + ∆R0 −M(P + ∆P′M)‖2

from (10) and the L2 norm ∆P′M for the L-BFGS algorithm steps are shown in Figure 6.
All variables have reached stable values. This means that 300 iterations of the L-BFGS opti-
mization algorithm are enough to solve the given optimization problem. Each step of the
L-BFGS algorithm requires calculation of a completely new reconstruction by the selected
algorithms. In Figure 6, each iteration on the plot corresponds to a new reconstruction.
Thus, 300 SIRT reconstructions are required to measure the proposed task-oriented score
for the SIRT algorithm.

Table 1. Robustness scores calculated for “perturbation A” shown in Figure 5 over a single image
(also shown in Figure 5).

Reconstruction Algorithm Proposed Task-oriented
Robustness Score

Score (15) of the Maximum
Reconstruction Quality

Degradation from a Slight
Sinogram Perturbation

SIRT 0.96 20
FBP 0.87 74

SIRT-TV 0.82 18
ResUNet 0.64 30

TiraFL 0.60 39
UNet1D 0.52 33

LPDR 0.45 735
FBPConvNet 0.38 29
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Figure 6. (A) Sinogram perturbation norms versus iteration number of the optimizing algorithm
L-BFGS for various reconstruction algorithms. (B) Target reconstruction error rate from (10) versus
the L-BFGS iteration number for various reconstruction algorithms. All plots are provided for the
reconstructed images shown in Figure 7.

Additionally, we measured the robustness score already proposed in [26]. It is calcu-
lated as follows:

V =
min∆P:‖∆P‖≤ε− 1

2‖M(P)−M(P + ∆P)‖2

ε
, (15)

where M(P) is a reconstruction algorithm, P is a sinogram, ∆P is a sinogram perturbation,
ε is some fixed maximal norm of ∆P. We set ε to ‖∆P0‖ from Table 1 in order to ensure the
correct comparison of network robustness scores. Moreover, we visualized M(P + ∆P) (see
Figure 8) to demonstrate disadvantages of this score. The perturbed reconstructed images
contain only visually detectable reconstruction artifacts that cannot lead to an inaccurate
diagnosis based on a set of CT reconstructed images.

Tables 2 and 3 illustrate that FBP and SIRT algorithms are the most robust algorithms.
On the other hand, ResUnet is the most robust neural reconstruction algorithm among
all tested algorithms. For a visual assessment of the robustness for these algorithms, we
calculated corresponding reconstructions (see Figure 7). Figure 7 is structured as follows.
Each row shows reconstructions by the algorithm as indicated by the row label. The input
of these reconstruction algorithms is the perturbed sinograms calculated by Formula (10)
for algorithms which are indicated by the column label. Hence, we can observe the
perturbations which are specific for certain reconstruction algorithms in terms of other
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reconstruction algorithms. The perturbed sinograms acquired by non-robust algorithms
and used as input for other reconstruction algorithms produce reconstructions that are very
different compared to the ideal one.

Figure 7. The figure shows areas of lung reconstructed images with an added artifact which simulates
inflammation. Reconstructed images in each row of the table were created from one perturbed
sinogram calculated for the neural network as indicated in the row label. Each column of the table
contains reconstructed images created via an algorithm as indicated in the column labels.

The proposed task-oriented robustness score preserves the the algorithm ranking
when its value is averaged over a set of reconstructed images (Table 2) and over a set
of different masks (Table 3). The most robust algorithm is SIRT as illustrated in Table 3.
The least robust algorithm is FBPConvNet. According to Tables 1–3, the rank of each
algorithm is the same across the tables, except for the positions of the FBP and SIRT + TV
algorithms. Throughout the calculations carried out for Table 3, we did not observe any
significant changes in the values of the proposed metric for various masks.
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Figure 8. Images with distorted reconstructions M(P + ∆P) from Equation (15). The title of each
image corresponds to the reconstruction method.

Table 2. Averaged over 30 reconstructed images, the proposed task-oriented robustness score
of the reconstruction algorithms calculated for the reconstruction perturbation A applied to the
reconstructed image is shown in Figure 5.

Reconstruction Algorithm Proposed Task-Oriented Robustness Score

SIRT 0.90
FBP 0.85

SIRT-TV 0.90
ResUNet 0.66

TiraFL 0.61
UNet1D 0.47

LPDR 0.46
FBPConvNet 0.40

Table 3. Proposed task-oriented score averaged over a set of 4 reconstruction perturbations and over
7 reconstructed images.

Reconstruction Algorithm Proposed Task-Oriented Robustness Score

SIRT 0.989
FBP 0.997

SIRT-TV 0.892
ResUNet 0.649

TiraFL 0.594
UNet1D 0.486

LPDR 0.427
FBPConvNet 0.379

4. Discussion

The paper proposes a novel method for the numerical assessment of the neural
network-based reconstruction algorithms’ robustness. The measure is based on the repro-
jection of the selected reconstructed image perturbation and the minimum perturbation of
the sinogram necessary for the appearance of the selected reconstructed image perturbation.
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The proposed method evaluates the possibility of the appearance of selected perturbations
in the reconstructed image. With the correct choice of perturbations, the proposed method
evaluates the possibility of making an incorrect diagnosis when using the reconstructed
image exclusively.

However, the proposed method also has some disadvantages. First, it depends on
the chosen perturbations for the reconstructed image. Second, this paper does not math-
ematically prove that the reprojection from the reconstructed image based on synthetic
low-exposure sinograms (from Section 2.2) is close in the `2 norm to the reconstructed
image based on high-exposure sinograms. Although in certain cases the distribution
function of values in the reconstructed image may assume the shape of a normal distri-
bution, in general, the noise in the reconstructed image is more complex and requires
additional study.

Computed tomography allows for the early diagnosis of various diseases. During the
examination, the patient receives a dose of X-rays. Decreasing the dose may lead to de-
graded reconstructed image quality. Artificial intelligence technologies make it possible
to strike a balance between reconstruction quality and radiation dose. However, neu-
ral network methods require a detailed study of their robustness; this will be done in
future works.

5. Conclusions

In this work, we consider the CT reconstruction NN algorithms’ robustness in terms
of prominent features emerging in the reconstructed image due to noise-like distortions in
the input data. This problem is crucial for medical applications since such artifacts may
lead to a misdiagnosis.

We proposed a novel task-oriented robustness score that numerically measures neural
network algorithm robustness. This score is based on the `2 norm of reprojection of the
reconstruction perturbation as well as on the norm of the minimum sinogram perturbation,
which is sufficient to generate the doubtful structure. Emergence of such a structure within
the reconstructed images results in misdiagnosis. We calculated the proposed task-oriented
score for five NN reconstruction algorithms as well as for both SIRT and FBP. According to
our experiments, ResUNet has shown the best robustness score (0.65, see Table 3) among
the investigated NN algorithms. However, in other NN algorithms, LPDR (0.43, see Table 3)
and FBPConvNet (0.38, see Table 3), even much smaller sinogram deviations than expected
can change the diagnosis when it is based on the reconstruction. This shows that LPDR
and FBPConvNet are not sufficiently robust reconstruction methods. We have shown that
both algorithms can output additional structures in lung CT data.
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Appendix A. Properties of the Proposed Task-Oriented Score for Linear
Reconstruction Algorithm

Let us consider a linear reconstruction algorithm

R = BP, (A1)

https://doi.org/10.7937/9npb-2637
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where B is a matrix which represents a reconstruction algorithm. Let us calculate ∆PM
as follows:

∆PM = arg min
∆P′M
‖BP + ∆R0 − B(P + ∆P′M)‖2 + λ‖∆P′M‖2, (A2)

where ∆R0 is a chosen arbitrary perturbation of reconstruction, λ is a regularization param-
eter. We can simplify equation by expanding the brackets

∆PM = arg min
∆P′M
‖BP + ∆R0 − BP− B∆P′M)‖2 + λ‖∆P′M‖2, (A3)

∆PM = arg min
∆P′M
‖∆R0 − B∆P′M)‖2 + λ‖∆P′M‖2. (A4)

Equation (A4) is a well-known optimization problem with Tikhonov regulariza-
tion [39], and the solution is as follows:

∆PM = (BT ∗ B + λI)−1BT∆R0. (A5)

Then, we can calculate the proposed task-oriented score SM without the minimiza-
tion problem:

SM = 1− |‖∆P‖2 − ‖(BT ∗ B + λI)−1BT∆R0‖2

‖∆P‖ |. (A6)

We can introduce the known value of ∆P = A∆R0, where A is a projection matrix.

SM = 1− |‖A∆R0‖2 − ‖(BT ∗ B + λI)−1BT∆R0‖2

‖A∆R0‖2 |. (A7)

Based on Equation (A7), we derived 5 properties of the proposed evaluation function:

1. the proposed task-oriented score for any linear algorithm depends only on the chosen
perturbation ∆R0;

2. for any linear algorithm, the value of the proposed score does not change if ∆R0 is
multiplied by any constant α 6= 0;

3. if λ = 0 and B = A−1, then SM = 1;
4. SM = 1 for ∀B : AAT − TTT = 0, where T = (BT ∗ B + λI)−1BT ;
5. SM = 1 for ∀B : (BT ∗ B + λI)−1BT = A.

The proofs of properties 1 and 5 are trivial, so they will not be provided here.
The proof of property 2 can be introduced as follows. Let SM(α) be the proposed task-

oriented score, which was calculated for multiplied reconstruction perturbation α∆R0 then

SM(α) = 1− |‖A(α∆R0)‖2 − ‖(B ∗ B + λI)−1B(α∆R0)‖2

‖A(α∆R0)‖2 |, (A8)

SM(α) = 1− |α
2‖A∆R0‖2 − α2‖(BT ∗ B + λI)−1BT∆R0‖2

α2‖A∆R0‖2 |, (A9)

SM(α) = 1− α2

α2 |
‖A∆R0‖2 − ‖(BT ∗ B + λI)−1BT∆R0‖2

‖A∆R0‖2 | = SM, (A10)

SM(α) = SM. (A11)

The proof of property 3 can be achieved via a direct introduction of values B = A−1

and λ = 0 in Equation (A7)

SM = 1− |‖A∆R0‖2 − ‖(BT ∗ B + λI)−1BT∆R0‖2

‖A∆R0‖2 |, (A12)
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SM = 1− |‖A∆R0‖2 − ‖((A−1)T ∗ A−1)−1(A−1)T∆R0‖2

‖A∆R0‖2 |, (A13)

SM = 1− |‖A∆R0‖2 − ‖((AT)−1 ∗ A−1)−1(AT)−1∆R0‖2

‖A∆R0‖2 |, (A14)

SM = 1− |‖A∆R0‖2 − ‖AAT(AT)−1∆R0‖2

‖A∆R0‖2 |, (A15)

SM = 1− |‖A∆R0‖2 − ‖A∆R0‖2

‖A∆R0‖2 |, (A16)

SM = 1− | 0
‖A∆R0‖2 |, (A17)

SM = 1. (A18)

Thus, the proposed robustness score for an ideal linear algorithm always equals 1
under the noise-free conditions and if there is no regularization.

The proof of property 4 can be achieved by representing the norm as the scalar product:

SM = 1− |‖A∆R0‖2 − ‖(BT ∗ B + λI)−1BT∆R0‖2

‖A∆R0‖2 | = 1, (A19)

‖A∆R0‖2 − ‖(BT ∗ B + λI)−1BT∆R0‖2 = 0. (A20)

Let T = (BT ∗ B + λI)−1BT then

‖A∆R0‖2 − ‖T∆R0‖2 = 0, (A21)

(A∆R0, A∆R0)− (T∆R0, T∆R0) = 0, (A22)

(AAT∆R0, ∆R0)− (TTT∆R0, ∆R0) = 0, (A23)

((AAT − TTT)∆R0, ∆R0) = 0, (A24)

AAT − TTT = 0, (A25)

Solving the Minimization Problem with Tikhonov Regularization

∆PM = arg min
∆P′M
‖BP + ∆R0 − B(P + ∆P′M)‖2 + λ‖∆P′M‖2, (A26)

∆PM = arg min
∆P′M
‖BP + ∆R0 − BP− B∆P′M)‖2 + λ‖∆P′M‖2, (A27)

∆PM = arg min
∆P′M
‖B∆P′M − ∆R0‖2 + λ‖∆P′M‖2. (A28)

Let K(∆P′M) = ‖B∆P′M − ∆R0‖2 + λ‖∆P′M‖2 and then

∆PM = arg min
∆P′M

K(∆P′M). (A29)

Equation (A29) can be solved through differentiation of K(∆P′M) by ∆P′M. The mini-
mum ∆PM must satisfy the condition

∂K(∆PM)

∂∆PM
= 0. (A30)
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In accordance with the rules of differentiation of norms, the Equation (A30) can be
expanded as follows:

∂K(∆PM))

∂∆PM
= 2‖B∆PM −∆R0‖(

B∆PM − ∆R0

‖B∆P′M − ∆R0‖
, Bh) + 2λ‖∆PM‖(

∆PM
‖∆PM‖

, h) = 0, (A31)

where h is any vector. Next, we can simplify the equation as follows:

(B∆PM − ∆R0, Bh) + λ(∆PM, h) = 0, (A32)

(BT(B∆PM − ∆R0) + λ∆PM, h) = 0, (A33)

BT(B∆P′M − ∆R0) + λ∆PM = 0, (A34)

(BT B + λI)∆PM = BT∆R0, (A35)

∆PM = (BT B + λI)−1BT∆R0. (A36)

Equation (A36) is a solving of minimization problem with Tikhonov regularization.
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