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Abstract: In recent years, it has become a trend to analyze shoreline changes through satellite images
in coastal engineering research. The results of sea–land segmentation are very important for shoreline
detection. CoastSat is a time-series shoreline detection system that uses an artificial neural network
(ANN) on sea–land segmentation. However, the method of CoastSat only uses the spectral features
of a single pixel and ignores the local relationships of adjacent pixels. This impedes optimal category
prediction, particularly considering interference by climate features such as clouds, shadows, and
waves. It is easy to cause the classifier to be disturbed in the classification results, resulting in
classification errors. To solve the problem of misclassification of sea–land segmentation caused by
climate interference, this paper applies HED-UNet to the image dataset obtained from CoastSat and
learns the relationship between adjacent pixels by training the deep network architecture, thereby
improving the results of erroneous sea–land segmentation due to climate disturbances. By using
different optimizers and loss functions in the HED-Unet model, the experiment verifies that Adam
+ Focal loss has the best performance. The results also show that the deep learning model, HED-
Unet, can effectively improve the accuracy of the sea–land segmentation to 97% in a situation with
interference from atmospheric factors such as clouds and waves.
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MSC: 68T07

1. Introduction

It is crucial to observe and quantify changes along the shoreline to grasp the current
dynamic changes and long-term trends of coastal changes and to provide key reference in-
formation for relevant government agencies in long-term coastal planning and management
and coastal disaster prevention.

In recent years, satellite imagery has become easier to obtain than ever, which has
saved time and manpower. Therefore, the study of shoreline changes focuses on satellite
image analysis. Our previous work [1] explored the sea–land segmentation methods in the
CoastSat [2] detection system proposed by Vos et al. and compared the classification results
and accuracy of various classifiers for the sea–land segmentation, including artificial neural
network (ANN), k-nearest neighbors (KNN), decision tree (DTC), linear support vector
machine, and nonlinear support vector machine. However, the method of CoastSat only
uses the spectral features of a single pixel and ignores the local relationships of adjacent
pixels, making it difficult to give the best category prediction, and the interferences to the
climate include: clouds, fog, waves, etc. It is easy to cause the classifier to be disturbed
in the classification results, resulting in classification errors. Our motivation is to solve
classification errors as shown in Figure 1. The results obtained by the classifier for sea–land
segmentation contain errors attributable to (a) waves, (b) clouds, and (c) fog. Therefore, the
contributions of this paper are as follows:
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segmentation from satellite images using HED-Unet, including data collecting, data label-
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the performance of the proposed methods and the limitations of this work are discussed 
in Section 4. Section 5 concludes the paper and outlines future work. 
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In the research topic of sea–land segmentation using satellite images, many studies 

have replaced conventional learning methods with deep learning due to the rapid devel-
opment and wide application of deep learning in recent years [4]. Dongcai et al. proposed 
SeNet [5] and mentioned that there are two problems in using DeconvNet [6] directly for 
sea–land segmentation. First, more complex texture and intensity variations appear in in-
land areas. Both conventional methods and DeconvNet produce misclassifications in land 
areas, and secondly, they perform [5] poorly on some slender structures. For the above 
reasons, this study makes two innovations in the network structures. First, a local positive 
normalization is proposed to obtain better spatially consistent results, getting rid of com-
plex morphological operations commonly used in traditional methods, and second, seg-
mentation and edge detection results are simultaneously obtained using a multi-task loss. 
An additional structured edge detection branch can further refine the segmentation re-
sults and significantly improve edge accuracy, and the system architecture diagram is 
shown in Figure 2. 

Figure 1. Misclassification results of sea–land segmentation on the Kaohsiung Port of (a) waves,
(b) clouds, and (c) fog.

1. Our work applies the HED-Unet [3] to improve the segmentation of sea and land in
the factor interferences of the atmosphere such as clouds and waves.

2. We have collected our own satellite imagery of important ports in Taiwan with climate
influences.

The rest of this paper is organized as follows: Section 2 introduces the related work
for sea–land segmentation using deep learning. Section 3 describes the steps in sea–
land segmentation from satellite images using HED-Unet, including data collecting, data
labeling, and model training. Section 4 presents the experiment results intended to evaluate
the performance of the proposed methods and the limitations of this work are discussed in
Section 4. Section 5 concludes the paper and outlines future work.

2. Related Work

In the research topic of sea–land segmentation using satellite images, many studies
have replaced conventional learning methods with deep learning due to the rapid develop-
ment and wide application of deep learning in recent years [4]. Dongcai et al. proposed
SeNet [5] and mentioned that there are two problems in using DeconvNet [6] directly for
sea–land segmentation. First, more complex texture and intensity variations appear in
inland areas. Both conventional methods and DeconvNet produce misclassifications in
land areas, and secondly, they perform [5] poorly on some slender structures. For the
above reasons, this study makes two innovations in the network structures. First, a local
positive normalization is proposed to obtain better spatially consistent results, getting rid
of complex morphological operations commonly used in traditional methods, and second,
segmentation and edge detection results are simultaneously obtained using a multi-task
loss. An additional structured edge detection branch can further refine the segmentation
results and significantly improve edge accuracy, and the system architecture diagram is
shown in Figure 2.
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the classification of coastal and land boundaries, such as ships, ports, vegetation, etc. An-
other convolutional neural network structure commonly used for segmentation tasks is 
U-Net [7], which is used for biomedical image segmentation. Its architecture consists of a 
shrinking path and an expanding path, and its feature maps are cropped and copied from 
the shrinking path for corresponding upsampling in the expanding path. 

DeepUnet [8], proposed by Ruirui Li et al., performed the best at the time. Satellite 
and medical images differ in the occurrence of small objects in the images. Deeper convo-
lutional neural networks are required to consider global contention and local features. In 
this research, inspired by the U-Net architecture, two connections are proposed in the net-
work model, namely, U-connection and connection, to reduce the loss of wrong infor-
mation and accelerate the collection speed. After increasing the number of layers in the 
experimental results, it is better than Unet and SeNet, it has successfully improved the 
problems such as wave interference, and it has a more accurate effect on the boundary 
classification of sea and land. The system architecture diagram of this method is shown in 
Figure 3. 
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Figure 2. SeNet system architecture [5].

However, SeNet is easily affected by disturbances such as waves and shadows. The
reason is that its architecture cannot provide a deeper convolutional layer for the local
relationship between adjacent pixels, so it cannot clearly distinguish detailed features
in the classification of coastal and land boundaries, such as ships, ports, vegetation, etc.
Another convolutional neural network structure commonly used for segmentation tasks is
U-Net [7], which is used for biomedical image segmentation. Its architecture consists of a
shrinking path and an expanding path, and its feature maps are cropped and copied from
the shrinking path for corresponding upsampling in the expanding path.

DeepUnet [8], proposed by Ruirui Li et al., performed the best at the time. Satellite and
medical images differ in the occurrence of small objects in the images. Deeper convolutional
neural networks are required to consider global contention and local features. In this
research, inspired by the U-Net architecture, two connections are proposed in the network
model, namely, U-connection and connection, to reduce the loss of wrong information and
accelerate the collection speed. After increasing the number of layers in the experimental
results, it is better than Unet and SeNet, it has successfully improved the problems such as
wave interference, and it has a more accurate effect on the boundary classification of sea
and land. The system architecture diagram of this method is shown in Figure 3.
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Finally, HED-Unet [3] was recently proposed by Konrad Heidler et al. to detect the
Antarctic coastline. Encoder–decoder-based works are mainly used in image enhancement
to obtain high-resolution images [9–11]. In HED-Unet, the main purpose is to obtain images
of different resolutions and to classify images of different resolutions in different regions
through the attention mechanism. For example, coastal areas use higher-resolution imagery
for detailed classification, while land, ports, buildings, and other areas far from the coast
use lower-resolution imagery.

Since the southern and coastal land is white iceberg, it is more difficult to distinguish
the sea surface from the land. In the experiment, many existing deep learning models
cannot accurately predict the Antarctic coast, but HED-Unet introduces the idea that
humans will perform segmentation and edge detection at the same time when observing
edges. So, the Unet [7] semantic segmentation is combined with the holistically-nested
edge detection (HED) [12] model architecture. Training efficiency can be improved by deep
supervision [13] for side predictions at multiple resolutions. Finally, a hierarchical attention
mechanism [14] is introduced to adaptively incorporate these multiscale predictions into
the final model output. Experiments show that the dataset covers part of the Antarctic
coast and outperforms DeepUnet. Figure 4 shows the system architecture diagram.
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In our previous work [1], there were waves and clouds in the satellite image, and
these noises were classified as land by the machine learning model. The CoastSat system
very easily confuses the boundaries of beaches and waves in terms of pixel intensity. The
difference between pixel intensities is not considered when the CoastSat system trains the
model, while the HED model can encode deep feature maps with rich adjacent relationship
information into shallower feature maps while gaining the advantage of deep and shallow
features.

For the above reasons, the novelty of our work is making the model have a better
anti-climate-interference ability. In order to do this, the model must take into consideration
the feature relationships between adjacent pixels in satellite images, and HED-Unet extracts
features from images of different scales, and thus can obtain the relationship between
adjacent pixels. Therefore, we use HED-Unet as a model to improve the results of sea–land
segmentation.

3. Sea–Land Segmentation from Satellite Images Using HED-Unet

We used HED-Unet [3] as a deep learning model to improve the impact of climate
disturbance. The method of data collection utilizes Google Earth Engine [15] to obtain the
same satellite images as in CoastSat. Different from the CoastSat, our work did not use
spectral images for feature extraction and used RGB satellite images instead. There are also
differences in the methods of data labeling and model training.

In the system process, the satellite image of Kaohsiung Port is obtained first through
Google Earth Engine (GEE) API, and then the satellite image is labeled through La-
belMe [16], and the annotation is divided into two categories, seawater and land. The
satellite image is used as the input to the deep learning model HED-Unet to perform feature
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extraction and prediction of images of different scales and then fuse the predictions of
different scales to finally obtain sea–land segmentation images. The high-level structure of
our work is shown in Figure 5.
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3.1. Data Collecting

The first step of the method is to use Google Earth Pro to frame the target to obtain
the RGB image of the coast from the satellite’s multi-spectral image. The frame method is
shown in Figure 6. A total of five points are marked, and the start and end points will be
clockwise. We then overlap, frame the target, and convert it through Google Earth Pro to
obtain a .kml file, which records the geographic information and coordinates of the target.
Then, convert the kml file into latitude and longitude coordinates and use the time and
satellite mission (Landsat) as input parameters to the Google Earth Engine. We follow the
steps of CoastSat [2] to obtain images of relevant spectral bands, as shown in Figure 7,
including multispectral band images and panchromatic, which sharpens the judgment
image.
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land. During the labeling process, it was found that the unlabeled part is regarded as the 
background and also as a category. Therefore, in this study, the land is the foreground, 
and the sea is the background. In the process, the Google Maps satellite imagery is used 
for labeling and comparison to ensure that there is no wrong labeling during the labeling 
process. The labeling process is shown in Figure 9a. During the process, images of differ-
ent scales of the Kaohsiung seaport are also labeled to ensure thorough training. The ro-
bustness of each scale includes near, medium, and far, and the labeling results are shown 
in Figure 9b–d. The testing data are the satellite images of Taichung and Keelung ports, 
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Figure 7. Landsat spectral images: (a) Multispectral band; (b) Panchromatic sharpening band.

The final step is to process the multispectral images to obtain RGB images. To improve
the efficiency and accuracy of sea–land segmentation, the methods use panchromatic
image sharpening and downsampling to enhance the resolution and obtain better coastline-
detection performance; and cloud masking to reduce the misjudgment of white foam
during subsequent classification. Figure 8a is the pre-processed color satellite image of the
Kaohsiung port, and Figure 8b is an image of the Kaohsiung port covered by clouds and
fog.
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Figure 8. Kaohsiung Port: (a) Color image; (b) Cloud removal image.

3.2. Data Labeling

RGB images are obtained after processing the multispectral images. Next, the RGB
images need to be labeled. The labeling method is carried out through the LabelMe tool.
LabelMe [16] was made by the MIT Computer Science and Artificial Intelligence Laboratory
(CSAIL) for image annotation. The Annotation Suite, which allows users to create custom
annotation tasks or perform image annotation, has the advantage of being easy to use.

The satellite image is framed to mark the target through the point, and the target is
land. During the labeling process, it was found that the unlabeled part is regarded as the
background and also as a category. Therefore, in this study, the land is the foreground,
and the sea is the background. In the process, the Google Maps satellite imagery is
used for labeling and comparison to ensure that there is no wrong labeling during the
labeling process. The labeling process is shown in Figure 9a. During the process, images
of different scales of the Kaohsiung seaport are also labeled to ensure thorough training.
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The robustness of each scale includes near, medium, and far, and the labeling results are
shown in Figure 9b–d. The testing data are the satellite images of Taichung and Keelung
ports, as shown in Figure 10. The reason for choosing Kaohsiung Port is that this paper was
supported by developing a school-specific project of the National Kaohsiung University
of Science and Technology. The Kaohsiung port, Taichung port, and Keelung port are
important ports in Taiwan. All of them have encountered cloud, fog, and wave interferences
in sea–land segmentation.
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3.3. Model Training

After the process of data collection and data annotation, we input the acquired images
into the model for training. We divide it into three parts for detailed description, which
are the details and process of image input pre-processing, feature extraction, and feature
fusion. First, the input image is cut into 256∗256 tiles as shown in Figure 11, and each tile is
converted into a vector as the input of the model structure. This method can be carried out
in the case of scarce labeled data.

Second, feature extraction is performed through Unet to obtain context information
and location information. Since the process is up-sampling and down-sampling, it can also
be called the process of encoding and decoding. The advantage lies in that feature fusion is
performed through channels. Avoid missing feature information during up-sampling. In
the second section of the second chapter, it is mentioned that five steps of up-sampling and
down-sampling are used in the system, and six information features of different scales are
obtained to form a feature pyramid; the features of different scales represent the meaning
of shallow features and are used to represent textures, and deep low-resolution features are
used to determine the relationship between adjacent pixels.

Finally, in the process of training the HED model, Deep Supervision [13] is used to
encode the deep feature map with rich adjacent relationship information to the shallower
feature map to obtain the advantages of deep and shallow features at the same time. The
process is to first predict the feature map in Deep Supervision to obtain the probability
distribution map of each layer’s feature map and its classification, and then compare the
predicted result with the target to obtain additional loss values as the basis for additional
judgment, as shown in Figure 11.

In the network architecture, merging heads combine information of different scales
through convolution. The purpose is to obtain the required features of each region through
fusion according to the different features required by different regions in the satellite image.
In the study [3], the authors propose to use an attention mechanism for fusion, which
allows the network to focus on the features it thinks are most useful for each pixel of the
current scene, rather than setting fixed weights for feature fusion. Therefore, the attention
mechanism allows the model to pay attention to resolutions at different scales.
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4. Experiments and Results
4.1. Experiment Setting

The experimental environment of this research is mainly based on personal computers,
and the training is carried out on the local machine, including the software and hardware
equipment used in the experimental process, as shown in Table 1.
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Table 1. Experimental environment.

Component Specifications

Central Processing Unit (CPU) Intel Core I7-8700

Graphics Processing Unit (GPU) NVIDIA GeForce GTX 950M

Compute Unified Device Architecture (CUDA) CUDA 10.2

Random Access Memory (RAM) 64GB

Operating System Windows 10

Programming Language Python 3.7

Packages
Google Earth Engine-API 1.12.8
LabelMe 4.5.9
Pytorch 1.9.0

HED-Unet deep learning is used to set the parameters used in the experimental design
for model training. During the training process of this experimental design, eight satellite
images of Kaohsiung Port are used for data annotation. The images include different
situations such as clouds, fog, and waves; they are cut into 3000 tiles for training through
image processing; and they use Taichung Port and Keelung Port as test locations in the
test data set. The test sets are Keelung Port and Taichung Port. There are eight images
individually and each image is divided into 3000 tiles individually. In the experimental
design, we use different optimizers including Adam and stochastic gradient descent (SGD).
For comparison, we also use different loss functions including binary cross-entropy (BCE)
and focal loss, and in the learning depth of Unet, as mentioned in the literature, more than
five layers cannot increase the performance of prediction, so five layers were selected, in
terms of parameters. As shown in Table 2, the parameters are set in the design of this
training.

Table 2. Parameter settings of HED-Unet.

Input channels 3

Output channels 2

Stack height 5 (literature mentioned)

Batch size 20 (limited by computer equipment)

Epochs 50 (limited by computer equipment)

Learning rate 0.001 (Make sure to converge)

Loss function Binary Cross-Entropy (BCE) [17], Focal Loss [18]

Active function Sigmoid

Optimizer Adam [19], Stochastic Gradient Decent (SGD) [20]

4.2. Results

As the optimizer in the model, Adam is an adaptive algorithm that is suitable for
unstable functions and gradient noise problems and can have different learning rates
for different memory calculations. Zhang et al. (2019) proved that Adam outperforms
the SGD for the attention model [21]. Stochastic gradient descent (SGD) [20] is a typical
optimizer algorithm in the training model. It is fast for large data sets, but the learning rate
cannot be adjusted in the process, and it is easy to converge to a locally optimal solution.
The results also show differences in their predictions. Focal loss [18] is a loss function
proposed by Tsung-Yi Lin et al. in 2017. Focal loss is proposed for object detection to
solve extreme foreground–background class imbalance encountered during the training
of dense detectors as the central cause. So, there will be an extreme imbalance in the
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calculation of loss, and this loss function is mainly used to solve the category imbalance in
the classification problem. Its effect can be seen in the experimental results.

Figure 12 shows the results of the sea–land segmentation experiment performed by
HED-Unet with different loss functions and optimizers; Figure 12a is the input satellite
image; Figure 12d is the real value of sea–land segmentation obtained in the data labeling;
and Figure 12b is the use of the Adam optimizer with the binary cross-entropy (BCE)
loss function. For the predicted results of the sea–land segmentation, Figure 12e is the
predicted result using the Adam optimizer and the loss function of focal loss; Figure 12c is
the predicted result using the SGD optimizer with the binary cross-entropy loss function;
and Figure 12f is the result predicted using the SGD optimizer with the loss function of focal
loss. Although the segmentation of sea and land is more accurate in Figure 12f, Figure 12c
is clearer in terms of clarity, and it used the SGD optimizer as well. Although it can be seen
that some predictions work well locally, it is less clear than using the Adam optimizer as a
whole.

Accuracy is examined in the evaluation criteria, and we use the verification data
and test data for different locations to conduct objective verification. In the experimental
results in Table 3, it is found that the accuracy of using focal loss as the loss function is
quite high. The convergence loss value is also close to 0, and the SGD optimizer with the
BCE loss function has the worst performance. The accuracy rate of the test data is only
0.597. There are differences between the HED-UNet and the CoastSat system in the training
model. As HED-Unet cuts satellite images and labeled images into multiple partial images
through image preprocessing data, it is less likely to be disturbed by other features during
the training process, and its categories are only ocean and land. Meanwhile, there are
four categories in each classification model in the Coastsat system, which is less prone to
misclassification.
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Table 3. Accuracy of sea–land segmentation using HED-Unet with different loss functions and
optimizers.

Model Adam+
BCE

Adam+
Focal

SGD+
BCE

SGD+
Focal

Val Acc. 0.933 0.972 0.720 0.956

Test Acc. 0.915 0.983 0.597 0.931

In addition to the analysis of the accuracy, the change of the loss value within 50 epochs
is also observed according to the use of different optimizers and different loss functions.
The lesser the loss value, the greater the convergence effect. As shown in 13a, based on
the change of the loss value of the Adam optimizer with the binary cross-entropy loss
function, the convergence starts at the third epoch during the training process, and the final
convergence loss value is about 0.17. As shown in Figure 13b, based on the change of the
loss value using the Adam optimizer and the loss function of focal loss, the convergence
starts at the sixth epoch during the training process, and the final convergence loss value is
about 0.15. As shown in Figure 13c, based on the change of the loss value using the SGD
optimizer with the binary cross-entropy loss function, the convergence starts at the fifth
epoch during the training process, and the final convergence loss value is about 0.48. As
shown in Figure 13d, based on the change of the loss value using the SGD optimizer with
the focal loss, the convergence starts at the second epoch during the training process, and
the final convergence loss value is about 0.25.
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Based on the use of the Adam optimizer and focal loss, the convergence value is at
least 0.15, and the convergence value of the SGD optimizer with binary cross-entropy loss
function is about 0.5. The focal loss is more stable in convergence for different optimizations.
It has little effect, and the convergence value is about 0.2. According to its convergence
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results, it can be found that using the Adam optimizer with the focal loss can achieve a
smaller loss value on the training model.

Next, it is explained that the ANN in Coastsat and HED-Unet in our work have
differences in data labeling in the experimental method. Coastsat uses pixel sampling
for local labeling, while HED-Unet performs global labeling for the entire satellite image
while training the model line. The method of feature extraction is also different. In the
ANN classification model in Coastsat, the feature extraction method obtains 20 features
in each sampled pixel through multispectral image information and uses these features to
develop four categories. In the training of the HED-Unet model, feature extraction uses
encoding and decoding to obtain feature maps of different scales, which can be used to
predict satellite images of different scales.

Finally, we will explain and compare the results of the sea–land segmentation caused
by different climate disturbances in sequence, as shown in Figure 14a–c. Because of the
different conditions caused by climate influence, the Kaohsiung port includes waves,
fog, and clouds, it can be seen from the figures that the pixel-based classification lacks
information on the surrounding relationships with the adjacent pixels, resulting in the
wrong classification of the land and the sea surface. In addition, because the Kaohsiung
port has a black sand beach, it is easy to detect areas with similar pixel intensities. However,
the HED-Unet model can better grasp the adjacent relationships due to the increase in the
number of layers. It can be seen from the results that the sea and land segmentation results
of the Kaohsiung port in different situations are not greatly affected, but the results in the
details of the port classification need to be strengthened.
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4.3. Discussion

This study conducts experiments through data collection, data labeling, and training
models. In the process of using the deep learning model HED-Unet on the satellite images
of the Kaohsiung port, one of the limitations in our work lies in data labeling. In the data
labeling process, satellite images are occluded by a large number of clouds and fog. The
data annotation of them cannot be effectively performed in the sea–land segmentation task.

Before training the model, it is necessary to manually screen images with large num-
bers of clouds and fog, which takes a lot of manpower and time.

The other limitation, as illustrated by the results in Figure 15, is that the task of sea–
land segmentation cannot be effectively performed on large-scale images occluded by
clouds and fog. The reason is that Figure 15’s land features and sea surface features are
heavily occluded by clouds and fog, which makes the model unable to obtain effective
features for training during the training process. It is hoped that in the future, continuous
time-series satellite image data sets can be obtained, and the time series model architecture
can be used for prediction. It is expected that a large number of cloud and fog masks can
also detect its sea and land segmentation results.
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5. Conclusions

In recent years, rapid climate change and global warming have made it very important
to study the changes in the coastlines of ports. In this study, the Coastsat shoreline detection
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system was used to obtain satellite images, and then the images were segmented into sea
and land.

This study uses the deep learning model HED-Unet to perform sea–land segmentation
on the satellite images of Kaohsiung Port to improve the classifier against the interference
of atmospheric factors such as clouds and waves. The experimental results of HED-Unet
in the sea–land segmentation task show that the use of the Adam optimizer and the loss
function of focal loss has the best convergence and prediction results. It is suitable for the
general sea surface, and the limit of the deep learning model HED-Unet was also found
during the experiment; in the case of a large number of occlusions by clouds and fog, its
prediction results are not ideal.

Finally, we hope that the contribution of this research can give some feedback to
coastal engineering. We also hope that in future experiments of various classification
models, more satellite images of ports around Taiwan can be added to the data set to
increase the objectivity of the experiment. The problem would be best addressed by
implementing a time series model architecture.
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