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Abstract: In classical continuum mechanics, a monolithic Eulerian formulation is used for numerically
solving fluid–structure interaction (FSI) problems in the frame of a physically deformed configuration.
This numerical approach is well adapted to large-displacement fluid–structure configurations where
velocities of solids and fluids are computed all at once in a single variational equation. In the recent
past, a monolithic Eulerian formulation for solving FSI problems of finite deformation to study the
different physical features of fluid flow has been employed. Almost all the current studies use a
classical framework in their approach. Despite producing decent results, such methods still need to
be appropriately configured to generate exceptional results. Recently, a number of researchers have
used a non-classical framework in their approach to analyze several physical problems. Therefore,
in this paper, a monolithic Eulerian formulation is employed for solving FSI problems in a non-
classical framework to study the micro-structural characteristics of fluid flow by validating the
results with classical benchmark solutions present in the literature. In this respect, the Cosserat
theory of continuum is considered where a continuum of oriented rigid particles has, in addition
to the three translational degrees of freedom of classical continuum, three micro-rotational degrees
of freedom. The mathematical formulation of model equations is derived from the general laws of
continuum mechanics. Based on the variational formulation of the FSI system, we propose the finite
element method and semi-implicit scheme for discretizing space and time domains. The results are
obtained by computing a well-known classical FSI benchmark test problem FLUSTRUK-FSI-3* with
FreeFem++. The results of the study indicate that the increase in micro-rotational viscosity µr leads
to significantly large micro-rotations in fluid flow at the micro-structural level. Further, it is found
that the amplitude of oscillations is related inversely to the material parameters c1 and µr while the
increase in c1 stabilizes the amplitude of oscillations relatively more quickly than increasing µr. The
color snapshots of the numerical results at different times during the computer simulations and
general conclusions drawn from the results are presented.

Keywords: monolithic Eulerian formulation; Cosserat continuum; fluid–structure interaction; finite
element; FreeFem++

MSC: 74F10

1. Introduction

Fluid–structure interaction (FSI) is the mutual interaction between a fluid flow and
a moving or deforming solid structure which occur in a wide variety of science and engi-
neering fields. Different numerical strategies have been proposed to solve such coupling
problems, and the selection of the most effective approach strongly depends on the charac-
teristics of the problem to be analyzed.

There exists a rich literature on solving numerically FSI problems in a classical frame-
work. Among the existing numerical approaches, some are based on monolithic meth-
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ods [1], where a single mathematical framework is solved for both fluid and structural
dynamics with implicit interfacial conditions in the solution procedure [2,3], or more re-
cently in [4–11]. A monolithic Eulerian formulation [9,11] is similar to the fully Eulerian
formulation [2,12]. This approach is well adapted to large displacement fluid–structure
configurations to solve FSI problems in an Eulerian framework, prefers to work with ve-
locities everywhere in the problem domain, while the fully Eulerian formulation [2,12–16]
proposes to work with velocities in the fluid domain and displacement in the solid do-
main. In the partitioned methods, the fluid and solid fields are solved separately using an
iterative process with explicit interfacial conditions such as: fixed point iterations [17–19],
Newton-like methods [20–22], or optimization techniques [23–25].

In some numerical approaches, such as the arbitrary Lagrangian Eulerian (ALE)
formulation—which incorporates the material, spatial, and referential descriptions of the
fluid and structure domains—enable solving the discretized governing system in structural
and fluid dynamics. In this approach, the fluid equations are written over a moving mesh
which follows the structure displacement [26,27], are used for thin structures, and are
efficient in the case of small displacement [28,29]. This approach matches the velocities and
stresses at the fluid–structure interface; the fluid equations are then mapped back into the
solid domain at every time step during the numerical simulation [1,30]. However, in the
case of large displacements the ALE formulation fails which leads to heavy distortion of
the fluid mesh [31,32]. The immersed boundary method (IBM) [33] works on a fixed mesh
for fluid domain, and is efficient for shells in fluid but implementation in thick structures is
challenging [34].

Recently, a monolithic Eulerian formulation has attracted researchers for solving FSI
problems with large displacements in a classical framework. In [9], the authors employed
this approach to study the different physical features of fluid flow. Despite excellent results
in a classical framework, this approach has not been applied to a FSI system for analyzing
the interesting micro-structural characteristics of fluid flow in a non-classical framework.

The mathematical modeling of a governing system in a classical framework considers
a continuum as a simple point continua with points having three displacement degrees of
freedom, and a symmetric Cauchy stress tensor characterizes the response of a material
to the displacement. Such classical models may not be sufficient for the description of
non-classical physical phenomena, where a continuum of oriented rigid particles has, in
addition to the three translational degrees of freedom of the classical continuum, three
micro-rotational degrees of freedom. In such non-classical physical phenomena, where
micro-structural effects are observed most in high-strain-gradient regions, the response of
the material to the displacement and micro-rotation is characterized by a non-symmetric
Cauchy stress tensor and couple stress tensor, respectively. In this respect, the Cosserat
theory of continuum [35], one of the most prominent theory is taken into account to model
coupling problems in a non-classical framework. Further, this concept was applied to
describe fluids with micro-structures [36–38], and the mathematical details with some of its
applications are presented in [39].

In this paper, a monolithic Eulerian formulation is employed for solving FSI problems
in a non-classical framework to study the micro-structural characteristics of fluid flow by
validating the results with classical benchmark solutions present in the literature. The
results of the present non-classical Cosserat fluid–structure interaction (CFSI) model are
obtained by computing a well-known classical FSI benchmark test problem FLUSTRUK-
FSI-3*, where the flow around a flag attached with a cylinder is considered for numerical
tests. This benchmark problem was first studied by [40] and later by [9,12,41]. A schematic
representation of the core steps of the study is illustrated in Figure 1. The algorithmic
description is presented and implemented using publicly available FreeFem++ [42] soft-
ware, which is very convenient for FEM simulations. Many numerical codes have been
developed using this free software to simulate different partial differential equations in
a variety of multi-physics problems [43–46]. The results obtained indicate the significant
micro-rotational effect of material parameters at the micro-structural level in flow.
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Figure 1. Core steps in the study.

Contributions of the Study

Fluid–structure interaction problems play an important role in the daily routine of
life. In such problems, the physical features of flow depending on structure displacement
are analyzed. A rich literature exists on analyzing different physical features of flow
in a classical framework, but the non-classical framework still requires attention from
researchers for this analysis. This study focuses on the following key points:

• The analysis of different micro-structural characteristics of flow by employing a mono-
lithic Eulerian formulation to FSI problems of finite deformation by taking into account
the Cosserat continuum in a non-classical framework.

• The use of a well-known classical benchmark test FLUSTRUK- FSI-3* in numerical
tests for validation of the results in a non-classical framework.

• The implementation of algorithmic description with FreeFem ++.

The rest of the paper is organized as follows:
In Section 2, we detail the mathematical formulation of the present CFSI problem,

where we introduce the basic notations used for the continuum description followed by
the complete derivation of the governing equations of fluid and solid structures from
conservation laws by employing constitutive equations in a monolithic Eulerian frame.
In Section 3, we present the variational formulation of the CFSI model. Subsequently,
in Section 4, based on the variational formulation, time and space discretization using a
semi-implicit scheme and the finite element method are presented. Numerical tests and
the comparative results from simulations are discussed and analyzed in Sections 5 and 6.
Finally, in Section 7, we draw conclusion with some future developments.

2. Mathematical Formulation from the General Laws of Continuum Mechanics

In this section, we detail the mathematical formulation of the present CFSI problem.
We introduce the notations used for the continuum description of the FSI problem and the
respective domains of fluid and structure models with boundary conditions. A complete
derivation of the governing equations of fluid and solid structures from conservation laws
by employing constitutive equations in a monolithic Eulerian frame is presented.
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2.1. Fluid–Structure Interaction Description: Notations

Let Ωt be a time-dependent computational domain made of a fluid region Ωt
f and a

solid region Ωt
s with no overlap: Ωt

= Ωt
f ∪ Ωt

s, Ωt
f ∩ Ωt

s = ∅ at any time t ∈ (0, T). The

interface of fluid and structure is denoted by Σt = Ωt
f ∪ Ωt

s and the boundary of Ωt is ∂Ωt.
Initially, Ω0

f and Ω0
s are prescribed. The part of ∂Ωt on which either structure is clamped

or fluid has a ‘no-slip condition’ is denoted by Γ, assumed to be independent of time. A
geometrical representation of this description is shown in Figure 2 below.
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Based on standard notations in [1,19,47–51], we consider X : Ω0 × (0, T) 7→ Ωt : X
(
x0, t

)
,

the Lagrangian position at time t of x0 ∈ Rd, d = 2 or 3. The displacement, velocity, and
micro-rotation fields are represented by d = X

(
x0, t

)
− x0, u = ∂tX and ω, respectively.

The transposed gradient and the Jacobian of the deformation are given as Fji = ∂xi
0Xj,

J = detF.
The density and the stress tensor at a given position x and time t are represented as

ρ(x, t) and σ(x, t). In the case of an incompressible medium, the density ρ remains constant
for all time t. Denoting the density constants by ρ f and ρs at any point x and time t, we
define density ρ(x, t) by using the set function indicator 1Ω(x) as

ρ(x, t) = ρ f 1Ωt
f
(x, t) + ρs1Ωt

s
(x, t), (1)

where

1Ω(x) =
{

1 i f x ∈ Ω
0 otherwise

. (2)

Similarly, the stress tensor σ(x, t) is defined as

σ(x, t) = σ f 1Ωt
f
(x, t) +σs1Ωt

s
(x, t). (3)

In this mathematical formulation, all spatial derivatives are taken with respect to
x ∈ Ωt and not with respect to x0 ∈ Ω0. If φ is a function of x = X

(
x0, t

)
where x0 ∈ Ω0,

then
∇x0 φ =

[
∂xi

0 φ
]
=
[
∂xi

0Xj∂xj φ
]
= FT∇φ. (4)

Further, the deformation gradient F and displacement field d can be seen as a function
of (x, t) instead of

(
x0, t

)
. In the case when X is one-to-one and invertible, F and d are

related mathematically as

FT = ∇x0X = ∇x0

(
d + x0

)
= ∇x0d + I = FT∇d + I⇒F = (I−∇d)−T , (5)
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and time derivatives are related by

Dtφ :=
∂

∂t
φ
(

X
(

x0, t
)

, t
)
= ∂tφ(x, t) + u · ∇φ(x, t). (6)

Finally, we introduce the deformation tensor Du and the micro-rotation strain tensor
κ as

Du =
(
∇u +∇uT

)
, (7)

κ = ∇ω. (8)

A list of the notations used in the entire text is given below in Table 1.

Table 1. List of the notations.

Notation Description

Ωt Time-dependent computational domain (deformed configuration).

Ωt
f & Ωt

s Fluid and solid regions in time-dependent computational domain.

Ω0
f & Ω0

s Fluid and solid domains prescribed initially (undeformed configuration).

∂Ωt The boundary of time-dependent computational domain.

Γ The part of boundary on which either structure is clamped or fluid satisfies
‘no-slip condition’.

Σt Fluid–structure interface.

∇ Del operator.

Dt Total time derivative.

X & x Lagrangian (material) and Eulerian (spatial) coordinates.

d, u &ω Displacement, velocity, and micro-rotation fields.

Du & κ The deformation and the micro-rotation strain tensors.

F The deformation gradient tensor.

J = detF Jacobian of the deformation gradient tensor.

σ & C Symmetric Cauchy stress and the couple stress tensors.

B The left Cauchy–Green tensor.

I & ε The identity and the Levi Civita tensors.

ρ The density.

1Ω(x) The set function indicator.

Ψ The Helmholtz potential for a Mooney–Rivlin material.

c1 & c2 Material constants.

α′ Scalar function of material constants.

f & g The body force density and the body couple density.

p & µ Pressure field and coefficient of dynamic viscosity.

µr, α, β, γ & I Coefficients of micro-viscosity and micro-inertia coefficient.

λ & λ0 Fluid medium parameters related to micro-viscosities.
~
u, ω̃ & p̃ Test functions for velocity, micro-rotation, and pressure fields.

Vh, Wh & Qh
Finite element functional spaces for the displacements, velocities,
micro-rotational velocities, and pressure fields.
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Table 1. Cont.

Notation Description

=h & ζ Triangulation and a small penalization parameter.

¯
U Mean inflow velocity.

¯
UH Flux.

2.2. Conservation Laws

In a monolithic Eulerian frame, conservation of mass, conservation of linear mo-
mentum, and conservation of angular momentum for fluid and solid mediums take the
form

Dtρ + ρ∇ · u = Dt(Jρ) = 0, (9)

ρDtu = ∇ ·σs, f + f, (10)

ρIDtω = ∇ ·C f + ε : σ f + g. (11)

The body force density, the body couple density, and the micro-inertia coefficient are
denoted by f, g, and I, respectively. Moreover, an incompressibility condition implies that
J = 1 and ρ = ρ0.

2.3. Constitutive Equations

We consider a two-dimensional hyper-elastic incompressible Mooney–Rivlin material
and an incompressible viscous Cosserat fluid.

• For a hyper-elastic incompressible material, the constitutive equation is

σs = −psI + ρs
∂Ψ
∂F

FT . (12)

The Helmholtz potential Ψ for a Mooney–Rivlin material is given by

Ψ(F) = c1tr
(

FTF
)
+ c2

{
tr
(

FTF
)2
− tr2

(
FTF

)}
, (13)

where constants c1 and c2 are empirically determined [51].
Consequently,

∂FΨFT = (2c1 − 4c2c)B + 4c2B2. (14)

Taking B = FFT =
(
(I−∇d)(I−∇d)T

)−1
, b = detB, c = tr B, B2 = cB− bI, and

applying the Cayley–Hamilton theorem Equation (14) leads to

∂FΨFT = 2c1

(
Dd−∇d∇dT

)
+ α′I, (15)

where α′ =
{

2c1tr
(
FFT)− (2c1 + 4c2)det

(
FFT)} is some scalar function of material con-

stants c1 and c2.

• For an incompressible viscous Cosserat fluid, the constitutive equations are described as

σ f = −p f I + µ
(
∇u +∇uT

)
+ µr

(
∇u−∇uT

)
− 2µrε ·ω, (16)

C f = α(trκ)I + β
(

κ + κT
)
+ γ

(
κ− κT

)
. (17)

Here, σf , C f , I, and ε are the non-symmetric stress tensor, the couple stress tensor, the
identity tensor, and the Levi Civita tensor, respectively. p, µ denote the pressure field
and coefficient of dynamic viscosity, respectively, and µr, α, β, γ are the coefficients of
micro-viscosity.
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2.4. The Governing Equations of Cosserat Fluid in a Non-Classical Framework

Subjected to certain prescribed boundary conditions according to the description of
the physical problem and taking into consideration the constitutive Equations (16) and (17),
the governing conservation Equations (9)–(11) for an incompressible viscous Cosserat fluid
as described in [39] leads to

∇ · u = 0, (18)

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + (µ + µr)∆u + 2µr(∇×ω) + f, (19)

ρ

(
I

∂ω

∂t
+ Iu · ∇ω

)
= λ∆ω+ λ0∇(∇ ·ω)− 4µrω+ 2µr(∇× u) + g, (20)

where λ = β + γ and λ0 = α + β− γ are material parameters related to micro-viscosities.
In the above governing system, the conservation of linear momentum becomes in-

dependent of the micro-rotation in case of µr = 0. The governing system reduces to the
classical Navier–Stokes system if the coefficients of micro-viscosity µr, α, β, γ and the body
couple density g vanish.

3. Monolithic Eulerian Variational Formulation in 2D

In this non-classical variational formulation, homogeneous boundary conditions on
Γ ⊂ ∂Ωt are considered, i.e., either a solid is clamped or a fluid has a ‘no-slip condition’
and homogeneous Neumann conditions on ∂Ωt\Γ. For an incompressible material, the
Cosserat fluid–structure interaction CFSI formulation in two dimensions thus reads:

Given Ω0
f , Ω0

s and d, u at t = 0, find
(

u,ω, p, d , Ωt
f , Ωt

s

)
with u|Γ = 0 andω|Γ = 0 ,

such that

∫
Ω f ∪ Ωs

{
ρDtu ·

~
u− p∇ · ~

u− p̃∇ · u + (µ + µr)Du : D
~
u−2µr(∇×ω) · ~

u
}

dΩ

+
∫

Ωs

c3(Dd− ∇d∇dT) : D
~
u dΩs =

∫
Ω f ∪ Ωs

f · ~
u dΩ , (21)

∫
Ω f ∪ Ωs

{ρDt(Iω) · ω̃ + λ1(∇ω : ∇ω̃)− λ2∇(∇ ·ω) · ω̃ + 4µrω · ω̃ − 2µr(∇× u) · ω̃} dΩ =
∫

Ω f∪ Ωs

g · ω̃ dΩ, (22)

∀(~
u, ω̃, p̃) taking

~
u
∣∣∣Γ = 0 and ω̃|Γ = 0 , where Ωt

f and Ωt
s are defined incrementally by

Dtd = u and

dX
dτ

= u(X(τ), τ), X(t) ∈ Ωt
r ⇒ X(τ) ∈ Ωτ

r ∀τ ∈ (0, T), r = s, f . (23)

The relation in (23) defines Ωt
f and Ωt

s forward in time, while the notations B : C =

tr(BTC) and c3 = ρsc1 are used.

4. Discretization Schemes for a Monolithic Eulerian Variational Formulation

In this section, we propose the discretization schemes in time and space of the
present non-classical CFSI problem based on its variational Formulations (21) and (22).
The study employs a semi-implicit scheme and the finite element method to discretize
respective domains.
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4.1. Time Discretization Scheme

Let t ∈ [0, T] be the time of simulation where T is the total time. The interval [0, T]
is discretized into equal subintervals each of the length δt = T

N such that t = n δt where
n = 0, 1, · · · , N. Let dn+1 = dn + δtun+1. Hence

Dd−∇d∇dT ≈ Ddn−∇dndnT
+ δt

(
Dun+1 −∇un+1dnT −∇dn∇un+1T

)
+ o(δt). (24)

Now, if Xn is a first-order approximation of X
(
tn+1 − δt

)
defined by

.
X = u(X(τ), τ),

X
(
tn+1) = x, where X

(
tn+1) = x such that Xn(x) = x− δtun(x), then a first-order-in-time

approximation for the CFSI problem of Equations (21) and (22) reads:
Find un+1 ∈ H1

0

(
Ωn+1

)
, ωn+1 ∈ H1

0

(
Ωn+1

)
, pn+1 ∈ L2

0

(
Ωn+1

)
, Ωn+1

f and Ωn+1
s

such that with un+1
∣∣Γ = 0, ωn+1

∣∣Γ = 0 and Ωn+1 = Ωn+1
f ∪Ωn+1

s , ∀ ~
u ∈ H1

0

(
Ωn+1

)
, ω̃ ∈

H1
0

(
Ωn+1

)
, p̃ ∈ L2

0

(
Ωn+1

)
with

~
u
∣∣∣Γ = 0 and ω̃|Γ = 0, the following holds

∫
Ωn

f ∪ Ωn
s

{(
ρn un+1−unoXn

δt

)
· ~
u− pn+1∇ · ~

u− p̃∇ · un+1 + (µ + µr)Dun+1 : D
~
u−2µr

(
∇×ωn+1) · ~

u
}

dΩn

+
∫

Ωn
s

c3

[{
Ddn −∇dnT∇dn + δt

(
Dun+1 −∇un+1∇dnT −∇dn∇un+1T

)}
: D

~
u
]
dΩn

s =
∫

Ωn
f ∪ Ωn

s

f · ~
u dΩn,

(25)

∫
Ωn

f ∪ Ωn
s

{
ρn In

(
ωn+1−ωnoXn

δt

)
· ω̃+ λ1

(
∇ωn+1 : ∇ω̃

)
− λ2∇

(
∇ ·ωn+1) · ω̃+ 4µrω

n+1 · ω̃− 2µr
(
∇× un+1) · ω̃}dΩn

=
∫

Ωn
f ∪ Ωn

s

g · ω̃ dΩn.
(26)

Now, update d by dn+1 = dno Xn + δtun+1, and Ωn
r by Ωn+1

r =
{

x + δtun+1(x) : x ∈ Ωn
r
}

,
where r = s, f .

4.2. Space Discretization Scheme

Let Vh and Wh represent the finite element functional spaces for the velocities, dis-
placements, and micro-rotational velocities, respectively, and let Qh be the functional space
for the pressure field. Let =0

h be a triangulation of the initial domain Ω0 with quadratic
elements for displacements and translational and micro-rotational velocities, and linear
elements for the pressure field. Given that the pressure is different in the fluid domain and
structural domain because of the discontinuity of pressure at the fluid–structure interface
Σ, the functional space Qh is the space of piecewise linear functions on the triangulation
and is continuous in Ωn+1

r , r = s, f . A small penalization parameter ζ � 1 needs to be
added to impose the uniqueness of the pressure when one desires to use a direct linear
solver. The discrete variational formulation of CFSI thus reads:

Find un+1
h ,ω n+1

h , pn+1
h : ∀ ~

uh ∈ V0h, ω̃h ∈ W̃0h, p̃h ∈ Qh with V0h|Γ = 0 and
W0h|Γ = 0 are subspaces of Vh and Wh, such that

∫
Ωn

f ∪ Ωn
s

{(
ρn uh

n+1−uh
n o Xn

δt

)
· ~
uh − ph

n+1∇ · ~
uh − p̃h∇ · un+1

h +(µ + µr)Dun+1
h : D

~
uh − 2µr

(
∇×ωh

n+1) · ~
uh

}
Ωn

+
∫

Ωn
s

c3

[{
Ddn

h −∇dnT

h ∇dn
h + δt

(
Dun+1

h −∇un+1
h ∇dnT

h −∇dn
h∇un+1T

h

)}
: D

~
uh

]
dΩn

s

+
∫

Ωn
f ∪ Ωn

s

ζ ph p̃h dΩn =
∫

Ωn
f ∪ Ωn

s

f · ~
uh dΩn,

(27)

∫
Ωn

f ∪ Ωn
s

{
ρn In

(
ωn+1

h −ωn
h o Xn

δt

)
· ω̃h + λ1

(
∇ωn+1

h : ∇ω̃h

)
− λ2∇

(
∇ ·ωn+1

h

)
· ω̃h +4µrω

n+1
h · ω̃h − 2µr

(
∇× un+1

h

)
· ω̃h

}
dΩn

=
∫

Ωn
f ∪ Ωn

s

g · ω̃hdΩn.
(28)
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To update the triangulation at each vertex (say qn
i ) of the triangle Th ∈ =n

h , the vertex
is moved to a new position by

qn+1
i := qn

i + δtun+1
h . (29)

By denoting dn
i := dn(qi), it can be seen that

dno Xn
(

qn+1
i

)
= dn

(
qn

i + δtun+1
h − δtun+1

h

)
= dn(qn

i ). (30)

This implies that the displacement vector of vertices dn
h can be copied to dn+1

i plus the
addition of δt un+1

h
(
qn

i
)

in order to obtain dn+1
h , i.e.,

dn+1
h = dn

ho Xn + δtun+1
h (qn

i ) = dn
h + δtun+1

h (qn
i ). (31)

Moreover, the fluid domain mesh is moved by
~
u which is a solution of the Laplace

problem −∆
~
u = 0 ∀~

u ∈ V0h, subjected to
~
u
∣∣∣Σ = u where Σ is the Cosserat fluid–structure

interface and
~
u = 0 at the boundaries Γ f ∪ Γs\Σ. Moving the vertices of each triangle

Th ∈ =n
h by the above procedure gives a new triangulation =n+1

h .

5. Numerical Tests in a Non-Classical Framework

In this section, the numerical results for the present non-classical FSI problem are
obtained by computing FLUSTRUK-FSI-3*, which is an incompressible variant of the suc-
cessful classical FSI benchmark test problem FLUSTRUK-FSI-3. The spatial discretization
is performed by using Lagrangian triangular finite elements with quadratic elements for
displacements and translational and micro-rotational velocities, and linear elements for
the pressure field. The publicly available tool FreeFem++ [42] has been used to implement
the algorithms.

5.1. The Cylinder–Flag Test

The selection of this prominent classical FSI benchmark test FLUSTRUK-FSI-3* ‘flow
around a cylinder’, is based on its complexity and implementation which has remained
challenging, especially in a non-classical framework. Moreover, this test is most relevant
to the proposed FSI problem and is reliable for achieving the desired accuracy in results
for analyzing the micro-structural characteristics of flow in a non-classical framework.
The results are then compared and validated with the classical solutions present in the
literature [9,12,41].

This benchmark test problem was first studied by [40] and later by [9,12,41]. The de-
scription of the model problem under consideration is shown schematically in Figure 3. For
numerical tests, a hyper-elastic incompressible Mooney–Rivlin material, like a rectangular
flag of size [0, l]× [0, h], is attached at the back of a hard, fixed cylinder in the computational
rectangular domain [0, L]× [0, H]; the fluid flow enters and leaves freely at the left inlet
and the right outlet.
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5.2. Geometry, Boundary, and Initial Conditions

We consider the geometry, boundary conditions, and initial conditions for the flag–
cylinder test described in [9] as:

Geometry: the point (0.2 m, 0.2 m)) and r = 0.05 m are center and radius of a cylin-
der; other parameters are considered in the computation as l = 0.35 m, h = 0.02 m,
L = 2.5 m, and H = 0.41 m, which puts the cylinder slightly below the symmetry line
of the computational domain.

Boundary and initial conditions: top and bottom boundaries satisfy the ‘no-slip’ con-

dition. A parabolic velocity profile is prescribed at the left inlet, u f (0, y) =
¯
U
(

6y(H−y)
H2

)
,

where
¯
U is mean inflow velocity with flux

¯
UH and

¯
U = 2. The zero-stress σ · n = 0 is

employed at the right outlet using the ‘do-nothing’ approach. Initially, all velocities and
structure displacements are zero.

In addition, the density and the reduced kinematic viscosity of the fluid takes values
ρ f = 103 kgm−3 and ν f = µ

ρ f
= 10−3 m2s−1. For a solid structure, we consider ρs = ρ f ,

c1 = 106 kgm−1s−1 and no external force.

6. Results Analysis

In this section, the results obtained are utilized to analyze some interesting micro-
structural characteristics of flow in a non-classical CFSI problem. In this regard, we find
the relationship between the amplitude of oscillations and the material parameters c1 and
µr by validating the results with classical benchmark solutions followed by determining
the effects of micro-rotational viscosity µr on the velocity and the micro-rotation fields.
During numerical simulation, the flow starts oscillating and develops a Karman vortex
street around t ∼ 2. Figures 4 and 5 show the horizontal and vertical displacement of
the flagella end tip by using micro-viscosity and micro-inertia parameters, respectively.
The results are obtained with a mesh of 2199 vertices and a uniform time step size of
0.005 s. The frequency 4.5 s−1 and the amplitude 0.03 are found to be the same as in [9],
which validates the results of the present non-classical model with classical benchmark
solutions. Here, µc = I and µr denote the coefficient of micro-inertia and micro-rotational
viscosity, respectively, while λ combines the shear spin and rotational spin viscosities in the
numerical simulation.

The structural and fluid parameters c = c1 and µr play important roles in the numerical
simulation and have a significant effect on the vertical displacement of the flagella end tip.
The results suggest that the amplitude of oscillations varies inversely with the material
parameters c1 and µr as displayed in Figures 6 and 7, respectively. Further, the amplitude
of oscillations becomes stable relatively more quickly by increasing c1 than increasing µr,
which leads to the almost vanishing of the oscillations and makes c1 very sensitive.
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Figure 7. Vertical displacement of flagella end tip against µr in a non-classical framework shown up
to t = 6.

After validation, the effects of the micro-rotational viscosity µr on the velocity and
micro-rotation fields were analyzed to understand the micro-structural characteristics of
flow by comparing the results with the classical case of FSI solutions. The results in Figure 8
indicate that the increase in micro-rotational viscosity µr causes significantly larger micro-
rotations in flow at the micro-structural level. This micro-rotational effect vanishes in the
classical case which strengthen the governing dynamics of the Cosserat continuum for the
present coupling problem in a non-classical framework.
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Figure 8. Effects of micro-rotational viscosity µr on the micro-rotation field by comparing the results
with classical solution.

Despite producing large micro-rotation, it is observed that micro-rotational viscosity
µr does not affect the velocity profiles of flow as shown in Figures 9 and 10. The magnitude
of the horizontal velocity of fluid particles is found to be somewhat greater than that of the
vertical velocity against a large value of µr in the computational domain. All the numerical

results are obtained by taking the Reynolds number Re = 200 and mean velocity
¯
U = 2,

and the relation between them is found to be linear.
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Figure 10. Effects of micro-rotational viscosity µr on vertical velocity profile of flow by comparing
the results with classical solution.

Finally, in Figure 11, some color snapshots are presented to show the velocity profile
and behavior of the flagella pictorially in FSI phenomena at different times during the
numerical simulation. In these color snapshots, the displacement of the solid structure can
be seen clearly during the simulation which in turn affects the flow domain and produces
Karman vortices. (Note: we only represent the most significant and visible color legend to
show the velocity magnitudes in the fluid flow simulation.)
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7. Conclusions

In this paper, a monolithic Eulerian formulation has been presented for fluid–structure
interaction (FSI) problems with large structural displacements in a non-classical framework
to study the micro-structural characteristics of fluid flow by validating the results with
classical benchmark solutions. In this respect, the Cosserat theory of continuum taking
into account the micro-rotational degrees of freedom of the particles has been considered.
The mathematical formulation of the governing system has been derived from the general
laws of continuum mechanics. The finite element method and semi-implicit scheme were
proposed to discretize space and time domains, respectively. The results of the study
were obtained by a well-known classical FSI benchmark test problem FLUSTRUK-FSI-3*
with FreeFem++. The results of the study indicated that the effect of increasing the micro-
rotational viscosity µr on the micro-rotation field was significantly large compared to the
velocity field in fluid flow at the micro-structural level. It has also been observed that the
amplitude of oscillations was related inversely to the material parameters c1 and µr while
increasing c1 stabilized the amplitude of oscillations relatively more quickly than increasing
µr in the computer simulations. Furthermore, the micro-rotational effect vanished in the
classical framework which strengthened the governing dynamics of the present FSI model
in a non-classical framework. Finally, the present study can be extended to analyze the
effect of other micro-viscosity parameters on velocity fields in FSI phenomena with an
additional benchmark test using significant computational resources for better results in a
non-classical framework.
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