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Abstract: Making use of the Boyd-Wong fixed point theorem, we establish a new existence and
uniqueness result and an approximation process of the fixed point for the product of two nonlinear
operators in Banach algebras. This provides an adequate tool for deriving the existence and
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applicability of our results we give some numerical examples.
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1. Introduction

Many phenomena in physics, chemistry, mechanics, electricity, and so as, can be
formulated by using the following nonlinear differential equations with nonlocal initial
condition of the form:

d
dt

(
x(t)

f (t, x(t))

)
= g(t, x(t)), t ∈ J := [0, ρ],

x(0) = µ(x),

(1)

where ρ > 0 is a real constant, f : J × R → R \ {0}, g : J × R → R are supposed to
be D-Lipschitzian with respect to the second variable, and the operator µ : C(J) → R
represents the nonlocal initial condition, see [1,2]. Here, C(J) is the space of all continuous
functions from J into R endowed with the norm ‖ · ‖∞ = supt∈J‖x(t)‖.

The nonlocal condition x(0) = µ(x) can be more descriptive in physics with better
effect than the classical initial condition x(0) = x0, (see, e.g., [2–5]). In the last case, i.e.,
x(0) = x0, the problem (1) has been studied by Dhage [6] and O’Regan [7]. Therefore it is of
interest to discuss and to approximate the solution of (1) with a nonlocal initial condition.

Similarly another class of nonlinear equations is used frequently to describe many
phenomena in different fields of applied sciences such as physics, control theory, chemistry,
biology, and so forth (see [8–11]). This class is generated by the nonlinear integral equations
of the form:

x(t) = f (t, x(σ(t))) ·
[

q(t) +
∫ η(t)

0
K(t, s, x(τ(s)))ds

]
, t ∈ J := [0, ρ], (2)
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where ρ > 0 is a real constant, σ, τ, η : J → J and q : J → R are supposed to be continuous,
and the functions f : J×R→ R, K : J × J ×R→ R are supposed to be D-Lipschizian with
respect to the second and the third variable, respectively.

Both, (1) and (2), can be interpreted as fixed point problems in which the equation
involved is a nonlinear hybrid equation on a Banach algebra E of the type

x = A(x) · B(x), (3)

where A and B are nonlinear operators map a nonempty closed convex subset Ω ⊂ E
into E.

A hybrid fixed point result to (3) was proved by Dhage in [12] and since then, several
extensions and generalizations of this result have been achieved. See [13–15] and the
references therein. These results can be used to achieves the existence of solutions. Although
the explicit calculation of the fixed point is difficult in most cases, the previous cited results
are regarded as one of the most powerful tools to give an approximation of the fixed
point by a computational method and to develop numerical methods that allow us to
approximate the solution of these equations.

In Banach spaces, several works deals with developing numerical techniques in
order to approximate the solutions of integral and integro–differential equations, by using
different methods such as the Chebyshev polynomial [16], the secant-like methods [17],
using Schauder’s basis [18,19], the parameterization method [20], the wavelet methods [21],
a collocation method in combination with operational matrices of Berstein polynomials [22],
the contraction principle and a suitable quadrature formula [23], the variational iteration
method [24], etc.

Since the Banach algebras represents a practical framework for several equations such
as (1) and (2), and in general (3), the purposes of this paper are twofold. Firstly, to present,
under suitable conditions, a method to approximate the fixed point of a hybrid equation of
type (3), by means of the product and composition of operators defined in a Banach algebra.
Secondly, to set forth and apply the proposed method to obtain an approximation of the
solutions of (1) and (2).

The structure of this work is as follows: in Section 2 we present some definitions and
auxiliary results; in Section 3 we derive an approximation method for the fixed point of the
hybrid Equation (3); in Sections 4 and 5, we apply our results to prove the existence and the
uniqueness of solution of (1) and (2), we give an approximation method for these solutions
and moreover, we establish some numerical examples to illustrate the applicability of our
results. Finally, some conclusions are quoted in Section 6.

2. Analytical Tools

In this section, we provide some concepts and results that we will need in the following
sections. The first analytical tool to be used comes from the theory of the fixed point. Let X
be a Banach space with norm ‖ · ‖ and the zero element θ. We denote by B(x, r) the closed
ball centered at x with radius r. We write Br to denote B(θ, r). For any bounded subset Ω of
X, the symbol ‖Ω‖ denotes the norm of a set Ω, i.e., ‖Ω‖ = sup{‖x‖, x ∈ Ω}.

Let us introduce the concept of D-Lipschitzian mappings which will be used in
the sequel.

Definition 1. Let X be a Banach space. A mapping A : X −→ X is said to be D-Lipschitzian if

‖Ax− Ay‖ ≤ φ(‖x− y‖) ∀x, y ∈ X

with φ : R+ −→ R+ a continuous nondecreasing function such that φ(0) = 0. The mapping φ is
called the D-function associate to A. When φ(r) < r for r > 0, the mapping A is called a nonlinear
contraction on X.
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The class of D-Lipschitzian mappings on X contains the class of Lipschitzian mapping
on X, indeed if φ(r) = α r, for some α > 0, then A is called Lipschitzian mapping with
Lipschitz constant α or an α-Lipschitzian mapping. When 0 ≤ α < 1, we say that A is
a contraction.

The Banach fixed point theorem ensures that every contraction operator A on a
complete metric space X has a unique fixed point x̃ ∈ X, and, for every x0 ∈ X, the
sequence {An(x0)}n∈N converges to x̃. Much attention has been paid to Banach principle
and it was generalized in different works (we quote, for instance, [25,26]). In [25], Boyd
and Wong established the following result.

Theorem 1. Let (X, d) be a complete metric space, and let A : X → X be a mapping satisfying

d(A(x), A(y)) ≤ ϕ(d(x, y)), ∀x, y ∈ X

where ϕ : [0, ∞) → [0, ∞) is a continuous function such that ϕ(r) < r if r > 0. Then A has a
unique fixed point x̃ ∈ X and for any x0 ∈ X, the sequence {An(x0)}n∈N converges to x̃.

On the other hand, Schauder bases will constitute the second essential tool. We recall
that a Schauder basis in a Banach space E is a sequence {en}n∈N ⊂ E such that for every
x ∈ E, there is a unique sequence {an}n∈N ⊂ R such that

x = ∑
n≥1

anen.

This notion produces the concept of the sequence of projections Pn : E→ E, defined by the
formula

Pn

(
∑
k≥1

akek

)
=

n

∑
k=1

akek,

and the sequence of coordinate functionals e∗n ∈ E∗ defined as

e∗n

(
∑
k≥1

akek

)
= an.

Moreover, in view of the Baire category Theorem [27], that for all n ≥ 1, e∗n and Pn are
continuous. This yields, in particular, that

lim
n→∞

‖Pn(x)− x‖ = 0.

3. Existence, Uniqueness and Approximation of a Fixed Point of the Product of Two
Operators in Banach Algebras

Based on the Boyd-Wong Theorem, we establish the following fixed point result for
the product of two nonlinear operators in Banach algebras.

Theorem 2. Let X be a nonempty closed convex subset of a Banach algebra E. Let A, B : X → E
be two operators satisfying the following conditions:

(i) A and B are D-lipschitzian with D-functions ϕ and ψ respectively,
(ii) A(X) and B(X) are bounded,
(iii) A(x) · B(x) ∈ X, for all x ∈ X.

Then, if ‖A(X)‖ψ(r) + ‖B(X)‖ϕ(r) < r when r > 0, there is a unique point x̃ ∈ X such that
A(x̃) · B(x̃) = x̃. In addition, for each x0 ∈ X, the sequence {(A · B)n(x0)}n∈N converges to x̃.

Proof. Let x, y ∈ X. we have

‖A(x) · B(x)− A(y) · B(y)‖ ≤ ‖A(x) · (B(x)− B(y))‖+ ‖(A(x)− A(y)) · B(y)‖ ≤
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‖A(x)‖ ‖B(x)− B(y)‖+ ‖B(y)‖ ‖A(x)− A(y)‖ ≤ ‖A(X)‖ψ(‖x− y‖) + ‖B(X)‖ ϕ(‖x− y‖).
This implies that A · B defines a nonlinear contraction with D-function

φ(r) = ‖A(X)‖ψ(r) + ‖B(X)‖ ϕ(r), r > 0.

Applying the cited Boyd-Wong’s fixed point Theorem, we obtain the desired result.

Boyd-Wong’s fixed point Theorem expresses the fixed point of A · B as the limit of the
sequence {(A · B)n(x0)}n∈N with x0 ∈ X. If it is possible explicitly compute (A · B)n(x0),
then for each n, the expression (A · B)n(x0) would be an approximation of the fixed point.
But in the practice, this explicit calculation use to be not possible. For that, our aim is to
propose another approximation of the fixed point which simple to calculate. We will need
the following lemma.

Lemma 1. Let X be a nonempty closed convex subset of a Banach algebra E. Let A, B : X → E be
two D-Lipschitzian operators with D-functions ϕ and ψ, respectively, and A · B maps X into X.
Moreover, suppose that

φ(r) < r, r > 0.

Let x̃ be the unique fixed point of A · B and x0 ∈ X. Let ε > 0, m ∈ N, and T0, T1, . . . , Tm : E→ E,
with T0 ≡ I, I being the identity operator on E, such that

‖x̃− (A · B)m(x0)‖ ≤
ε

2
(4)

and

m−1

∑
p=1

φm−p(∥∥(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)− Tp ◦ . . . ◦ T1(x0)
∥∥)+

‖(A · B) ◦ Tm−1 ◦ . . . ◦ T1(x0)− Tm ◦ . . . ◦ T1(x0)‖ ≤
ε

2
. (5)

Then,
‖x̃− Tm ◦ . . . ◦ T1(x0)‖ ≤ ε.

Proof. Arguing as in the proof of Theorem 2, it follows that A · B is a nonlinear contraction
with D-function φ, and by induction argument, it is easy to show that

‖(A · B)n(x)− (A · B)n(y)‖ ≤ φn(‖x− y‖), x, y ∈ X. (6)

By using the triangular inequality, we have

‖(A · B)m(x0)− Tm ◦ . . . ◦ T1(x0)‖ ≤∥∥∥(A · B)m−1 ◦ (A · B)(x0)− (A · B)m−1 ◦ T1(x0)
∥∥∥

+
∥∥∥(A · B)m−2 ◦ (A · B) ◦ T1(x0)− (A · B)m−2 ◦ T2 ◦ T1(x0)

∥∥∥+ · · ·+
+ ‖(A · B) ◦ (A · B) ◦ Tm−2 ◦ . . . ◦ T1(x0)− (A · B) ◦ Tm−1 ◦ . . . ◦ T1(x0)‖

+ ‖(A · B) ◦ Tm−1 ◦ . . . ◦ T1(x0)− Tm ◦ . . . ◦ T1(x0)‖.

Taking into account (6), we obtain

‖(A · B)m(x0)− Tm ◦ . . . ◦ T1(x0)‖ ≤
m−1

∑
p=1

φm−p(∥∥(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)− Tp ◦ . . . ◦ T1(x0)
∥∥)

+ ‖(A · B) ◦ Tm−1 ◦ . . . ◦ T1(x0)− Tm ◦ . . . ◦ T1(x0)‖.
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This implies, by using the Triangular inequality again, that

‖x̃− Tm ◦ . . . ◦ T1(x0)‖ ≤
m−1

∑
p=1

φm−p(∥∥(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)− Tp ◦ . . . ◦ T1(x0)
∥∥)

+ ‖(A · B) ◦ Tm−1 ◦ . . . ◦ T1(x0)− Tm ◦ . . . ◦ T1(x0)‖+ ‖x̃− (A · B)m(x0)‖ ≤ ε. (7)

Taking into account the above lemma, observe that, under the previous hypotheses,

x∗ = Tm ◦ . . . ◦ T1(x0) ≈ x̃

In order to get the approximation x∗ = Tm ◦ . . . ◦ T1(x0) of the fixed point x̃, it is evident
that, given ε > 0, by Theorem 2, condition (4) is satisfied for m sufficiently large. So, we are
interested in building T1, T2, . . ., Tm satisfying (5), i. e. with the idea that

(A · B)m(x0) ≈ Tm ◦ . . . ◦ T1(x0).

Schauder bases are the tool we will use next to build such operators. Concretely, for the
case of problems (1) and (2), which can be written as a fixed point problem x = A(x) · B(x),
where B is given by an integral operator, we will choice to approximate only the power
terms of the operator B which is difficult to compute in general, unlike operator A which is
easy to calculate and does not need to approximate their power terms. For this reason, we
specifically propose the following scheme, in which we will construct S1, S2,· · · , Sm:

x0
↓

(A · B)(x0) ≈ T1(x0) = A(x0) · S1(x0)
↓ ↓

(A · B)2(x0) ≈ T2 ◦ T1x0 = (A · S2) ◦ T1(x0)
...

...
...

...
...

...
↓ ↓

(A · B)m(x0) ≈ Tm ◦ . . . ◦ T1(x0) = (A · Sm) ◦ Tm−1 ◦ . . . ◦ T1(x0) ≈ x̃

Remark 1. The above scheme is constructed as follows. In the first term, we approximate B(x0)
by S1(x0), then we obtain T1(x0) := A(x0) · S1(x0) as an approximation of the first term of the
Picard iterate, A(x0) · B(x0). In the second term of our scheme, we approximate the second term
of the Picard iterate, (A · B)2(x0) = A((A · B)(x0)) · B((A · B)(x0)). So we obtain the second
term of our scheme by combining the first term T1(x0), with an approximation of the operator
B, which denoted by S2, and consequently we obtain a second term of our scheme T2 ◦ T1(x0) =
(A · S2)(T1(x0)) which approximate (A · B)2(x0).

4. Nonlinear Differential Equations with Nonlocal Initial Condition

In this section we focus our attention in the nonlinear differential equation with
nonlocal initial condition (1). This equation will be studied when the mappings f , g :
J ×R→ R are such that:

(i) The partial mappings t 7→ f (t, x), t 7→ g(t, x) are continuous and the mapping
µ : C(J)→ R is Lµ-Lipschitzian.
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(ii) There exist r > 0, α, γ : J → R two continuous functions and ϕ, ψ : R+ −→ R+ two
nondecreasing, continuous functions such that

| f (t, x)− f (t, y)| ≤ α(t)ϕ(|x− y|), t ∈ J, and x, y ∈ R with |x|, |y| ≤ r,

and

|g(t, x)− g(t, y)| ≤ γ(t)ψ(|x− y|), t ∈ J and x, y ∈ R with |x|, |y| ≤ r.

(iii) There is a constant δ > 0 such that supx∈R,|x|≤r | f (0, x)|−1 ≤ δ.

Throughout this section, Ω will denote the closed ball Br of C(J), where r is defined in
the above assumption (ii). Observe that Ω is a non-empty, closed, convex and bounded
subset of C(J).

4.1. Existence and Uniqueness of Solutions

In this subsection, we prove the existence and the uniqueness of a solution to the
functional differential problem (1).

Theorem 3. Assume that the assumptions (i), (ii) and (iii) hold. If

MA MB ≤ r and

MAδLµt +
(

MAδ2|α(0)|Mµ + MB‖α‖∞

)
ϕ(t) + MA‖γ(·)‖L1 ψ(t) < t, ∀t > 0,

where MA = ‖α‖∞ ϕ(r) + ‖ f (·, 0)‖∞, MB = δMµ + ‖γ‖∞ρψ(r) + ρ‖g(·, 0)‖∞ and
Mµ =

(
Lµr + |µ(0)|

)
, then the nonlinear differential problem (1) has a unique solution in Ω.

Proof. Notice that the problem of the existence of a solution to (1) can be formulated in the
following fixed point problem x = A(x) · B(x), where A, B are given for x ∈ C(J) by

(A(x))(t) = f (t, x(t))

(B(x))(t) =

[
1

f (0, x(0))
µ(x) +

∫ t

0
g(s, x(s))ds

]
, t ∈ J.

(8)

Let x ∈ Ω and t, t′ ∈ J. Since f is D-lipschitzian with respect to the second variable and is
continuous with respect to the first variable, then by using the inequality

| f (t, x(t))− f (t′, x(t′))| ≤ | f (t, x(t))− f (t′, x(t))|+ | f (t′, x(t))− f (t′, x(t′))|,

we can show that A maps Ω into C(J).
Now, let us claim that B maps Ω into C(J). In fact, let x ∈ Ω and t, t′ ∈ J be arbitrary.

Taking into account that t 7→ g(t, x) is a continuous mapping, it follows from assumption
(ii) that

|(B(x))(t)− (B(x))(t′)| ≤
∫ t

t′
|g(s, x(s))− g(s, 0)|ds + (t− t′)‖g(·, 0)‖∞ ≤

(t− t′)(‖γ‖∞ψ(r) + ‖g(·, 0)‖∞).

This proves the claim. Our strategy is to apply Theorem 2 to show the existence and the
uniqueness of a fixed point for the product A · B in Ω which in turn is a continuous solution
for problem (1).

For this purpose, we will claim, first, that A and B are D-lipschitzian mappings on Ω.
The claim regarding A is clear in view of assumption (ii), that is A is D-lipschitzian with
D-function Φ such that

Φ(t) = ‖α‖∞ ϕ(t), t ∈ J.
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We corroborate now the claim for B. Let x, y ∈ Ω, and let t ∈ J. By using our assumptions,
we obtain

|(B(x))(t)− (B(y))(t)| =∣∣∣∣ 1
f (0, x(0))

µ(x)− 1
f (0, y(0))

µ(y) +
∫ t

0
g(s, x(s))− g(s, y(s))ds

∣∣∣∣ ≤
Lµ

| f (0, x(0))| ‖x− y‖+ |α(0)|
| f (0, x(0)) f (0, y(0))|

(
Lµr + |µ(0)|

)
ϕ(‖x− y‖)+∫ t

0
|γ(s)|ψ(|x(s)− y(s)|)ds ≤

δLµ‖x− y‖+ δ2|α(0)|
(

Lµr + |µ(0)|
)

ϕ(‖x− y‖) + ‖γ(·)‖L1 ψ(‖x− y‖).

Taking the supremum over t, we obtain that B is D-lipschitzian with D-function Ψ such
that

Ψ(t) = δLµt + δ2|α(0)|
(

Lµr + |µ(0)|
)

ϕ(t) + ‖γ(·)‖L1 ψ(t), t ∈ J.

On the other hand, bearing in mind assumption (i), by using the above discussion we can
see that A(Ω) and B(Ω) are bounded with bounds MA and MB respectively. Taking into
account the estimate MA MB ≤ r, we obtain that A · B maps Ω into Ω.
Since

|(B(x))(t)| ≤
∣∣∣∣ 1

f (0, x(0))
µ(x)

∣∣∣∣+ ∫ t

0
|g(s, x(s))|ds

≤ δ(|µ(x)− µ(0)|+ |µ(0)|) +
∫ t

0
|g(s, x(s))− g(s, 0)|ds +

∫ t

0
|g(s, 0)|ds

≤ δ(Lµ‖x‖+ |µ(0)|) +
∫ t

0
|γ(s)|ψ(|x(s)|)ds +

∫ t

0
|g(s, 0)|ds,

and using the fact that |γ(s)|ψ(|x(s)|) ≤ ‖γ‖∞ψ(‖x‖) ≤ ‖γ‖∞ψ(r), we have that

‖B(x)‖ ≤ δ(Lµ‖x‖+ |µ(0)|) + ρ‖γ‖∞ψ(r) + ρ‖g(·, 0)‖∞ = MB.

On the other hand, ‖A(x)‖ ≤ MA since

|(A(x))(t)| = | f (t, x(t))| ≤ | f (t, x(t))− f (t, 0)|+ | f (t, 0)| ≤
|α(t)| ϕ(|x(t)|) + | f (t, 0)| ≤ ‖α‖∞ ϕ(r) + ‖ f (·, 0)‖∞ = MA.

Taking into account that

‖(A · B)(x) − (A · B)(y)‖ ≤ ‖A(x)‖‖B(x) − B(y)‖ + ‖B(y)‖‖A(x) − A(y)‖,

we can notice that A · B is a nonlinear contraction with D-function
Θ(·) := MAΨ(·) + MBΦ(·), i.e.,

‖(A · B)(x)− (A · B)(y)‖ ≤ Θ(‖x− y‖), x, y ∈ Ω. (9)

Now, applying Theorem 2, we infer that (1) has one and only one solution x̃ in Ω, and
for each x0 ∈ Ω we have

lim
n→∞

(A · B)n(x0) = x̃. (10)
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In what follows we will assume that the hypotheses of the Theorem 3 are satisfied.

4.2. Numerical Method to Approximate the Solution

In this subsection we find a numerical approximation of the solution to the nonlinear
Equation (1) using a Schauder basis {en}n≥1 in C(J) and the sequence of associated
projections {Pn}n≥1. Let p ∈ N and np ∈ N. We consider

Sp : C(J) −→ C(J)
x −→ Sp(x)

defined as

Sp(x)(t) =
1

f (0, x(0))
µ(x) +

∫ t

0
Pnp(U0(x))(s)ds,

where U0 : C(J) −→ C(J) is given by U0(x)(s) = g(s, x(s)).
Now consider the operator Tp : C(J) −→ C(J) such that for each x ∈ C(J), Tp(x) is

defined by

Tp(x)(t) = A(x)(t)Sp(x)(t), t ∈ J, (11)

with A : C(J) −→ C(J), A(x)(t) = f (t, x(t)).

Remark 2. For p ≥ 1 and any np ∈ N that we use for defining Tp, the operator Tp maps Ω into
Ω, since just keep in mind that for x ∈ Ω, we have

∣∣Tp(x)(t)
∣∣ = ∣∣∣∣A(x)(t)

(
1

f (0, x(0))
µ(x) +

∫ t

0
Pnp(U0(x))(s)ds

)∣∣∣∣ ≤
| f (t, x(t))|

(
δ|µ(x)|+

∫ t

0

∣∣∣Pnp(U0(x))(s)
∣∣∣ds
)

,

and proceeding as in the above subsection and using the fact that Pnp is a bounded linear operator
on C(J), we get ∣∣Tp(x)(t)

∣∣ ≤ MA

[
δ|µ(x)|+ ρ

∥∥∥Pnp(U0(x))
∥∥∥] ≤

MA

[
δ(Lµr + |µ(0)|) + ρ sup

s∈J
|g(s, x(s))|

]
≤ MA MB < r.

In particular, for m ≥ 1, the operator Tm ◦ . . . ◦ T1 maps Ω into Ω.

Our goal is to prove that we can chose n1, n2, . . . ∈ N in order that T1, T2, . . ., which
are defined above, can be used to approximate the solution of (1).

Theorem 4. Let x̃ be the unique solution to the nonlinear problem (1). Let x0 ∈ Ω and ε > 0, then
there exist m ∈ N and ni ∈ N to construct Ti for i = 1, . . . , m, in such a way that

‖x̃− Tm ◦ . . . ◦ T1(x0)‖ ≤ ε.

Proof. Let x0 ∈ Ω and ε > 0. By using (10), there is m ∈ N such that

‖(A · B)m(x0)− x̃‖ ≤ ε/2.

For that m, and for p ∈ {1, . . . , m}, we define Up : C(J)→ C(J) by

Up(x)(s) := g(s, Tp ◦ . . . ◦ T1(x)(s)), s ∈ J, x ∈ C(J)
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and Ap : C(J)→ C(J) by

Ap(x)(s) := f
(
s, Tp ◦ . . . ◦ T1(x)(s)

)
, s ∈ J, x ∈ C(J).

According to inequality (9), in view of (5) of Lemma 1, it suffices to show that

m−1

∑
p=1

Θm−p(∥∥(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)− Tp ◦ . . . ◦ T1(x0)
∥∥)+

‖(A · B) ◦ Tm−1 ◦ . . . ◦ T1(x0)− Tm ◦ . . . ◦ T1(x0)‖ ≤ ε/2.

In view of (11), we have∣∣(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)− Tp ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)
∣∣ =∣∣(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)− (A · Sp) ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)
∣∣ =∣∣Ap−1(x0)(t)

(
B ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)− Sp ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)

)∣∣.
Taking into account Remark 2, we infer that

∥∥Ap−1(x)
∥∥ is bounded, and consequently

we get ∣∣(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)− Tp ◦ Tp−1 ◦ . . . ◦ T1(x0)(t)
∣∣ =∣∣∣∣Ap−1(x0)(t)

(∫ t

0
g
(
s, Tp−1 ◦ . . . ◦ T1(x0)(s)

)
ds−

∫ t

0
Pnp(Up−1(x0))(s) ds

)∣∣∣∣ ≤
∣∣Ap−1(x0)(t)

∣∣ ∫ t

0

∣∣∣(Pnp(Up−1(x0))−Up−1(x0)
)
(s)
∣∣∣ ds ≤

ρ
∥∥Ap−1(x0)

∥∥ ∥∥∥Pnp(Up−1)(x0)−Up−1(x0)
∥∥∥.

Taking the supremum over t, we get∥∥(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)− Tp ◦ Tp−1 ◦ . . . ◦ T1(x0)
∥∥ ≤

ρMA

∥∥∥Pnp(Up−1)(x0)−Up−1(x0)
∥∥∥.

Since Θ is a nondecreasing continuous mapping, and taking into account the convergence
of the projection operators associated to the Schauder basis, for all 1 ≤ p ≤ m we obtain

Θm−p
(

ρMA

∥∥∥Pnp(Up−1(x0))−Up−1(x0)
∥∥∥) ≤ ε/2m,

for np sufficiently large. Consequently, we consider those n1, . . . , nm ∈ N for defining T1,
T2, . . . , Tm respectively, and we obtain

m−1

∑
p=1

Θm−p(∥∥(A · B) ◦ Tp−1 ◦ . . . ◦ T1(x0)− Tp ◦ . . . ◦ T1(x0)
∥∥)+

‖(A · B) ◦ Tm−1 ◦ . . . ◦ T1(x0)− Tm ◦ . . . ◦ T1(x0)‖ ≤
m−1

∑
p=1

Θm−p
(

ρMA

∥∥∥Pnp (Up−1(x0))−Up−1(x0)
∥∥∥)+ ρMA ‖Pnm (Um−1(x0))−Um−1(x0)‖ ≤ ε/2.

Now apply Lemma 1, in order to get ‖x̃− Tm ◦ . . . ◦ T1(x0)‖ < ε.

4.3. Numerical Experiments

This subsection is devoted to providing some examples and their numerical results
to illustrate the theorems of the above sections. We will consider J = [0, 1] and the
classical Faber-Schauder system in C(J) where the nodes are the naturally ordered dyadic
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numbers (see Table 1 in [18] and [28,29] for details). In following examples, we will denote
x∗ = Tm ◦ . . . ◦ T1(x0) with m = 4 and n1 = · · · = nm = l with l = 9 or l = 33.

Example 1. Consider the nonlinear differential equation with a nonlocal initial condition

d
dt

(
x(t)

f (t, x(t))

)
= ae−x(t), t ∈ J,

x(0) = b

(
sup
t∈J
|x(t)|+ 3

4

)
,

(12)

where 0 < a < 1/ log(2) and f (t, x) =
b

1 + ae−bt
.

Let us define the mappings g : J ×R→ R and µ : C(J)→ R by

g(t, x) = ae−x, t ∈ J, x ∈ R

and

µ(u) = b

(
sup
t∈J
|u(t)|+ 3/4

)
, u ∈ C(J).

Let R be small enough such that a(log(2) + R) < 1. Let x, y ∈ [−R, R], by an elementary
calculus we can show that the functions f and g satisfy the condition (ii), with α(t) = ϕ(t) = 0,
γ(t) = aeR(1− e−t), and ψ(t) = t.
On the other hand, we have that µ is Lipschizian with a Lipschiz constant Lµ = b, and

sup
x,|x|≤R

[ f (0, x)]−1 ≤ δ =
1
b

.

Applying Theorem 3, we obtain that (12) has a unique solution in BR = {x ∈ C(J); ‖x‖ ≤ R} with
R = 3/4, when a is small enough. In fact the solution is x̃(t) = b. We apply the numerical method
for a = 0.1, b = 1

4 and the initial x0(t) = 1
4

(√
bt + 1

)
. Table 1 collects the obtained results.

Table 1. Numerical results for (12) with initial x0(t) = 1
4

(√
bt + 1

)
.

t x̃(t) x∗(t) with l = 9 x∗(t) with l = 33

0.1 0.25 0.2526360625738145 0.2506238401703868

0.2 0.25 0.2512245431325148 0.2506151528771704

0.3 0.25 0.2510208953229317 0.2506066551064274

0.4 0.25 0.2510087458298449 0.2505983412941664

0.5 0.25 0.2509968386936278 0.2505902060799007

0.6 0.25 0.2509851672563384 0.2505822442972077

0.7 0.25 0.2509737250885047 0.2505744509661791

0.8 0.25 0.2509625059364119 0.2505668212861210

0.9 0.25 0.2509515037642987 0.2505593506272617

1 0.25 0.2509407127451644 0.2505520345235613

‖x∗ − x̃‖∞ 2.86369× 10−3 1.0862× 10−3
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Example 2. Consider the nonlinear differential equation with a nonlocal initial condition
d
dt

(
x(t)

f (t, x(t))

)
= a(x(t))2, t ∈ J,

x(0) = 1/(4b) sup
t∈J
|x(t)|2,

(13)

where a, b are positive constants such that ab2 < 3 and f (t, x) =
b(t + 1)

1 + ab2

3 (x3/b3 − 1)
.

Let us define the mappings g : J ×R→ R and µ : C(J)→ R by

g(t, x) = ax2, t ∈ J, x ∈ R and µ(u) = 1/(4b) sup
t∈J
|u(t)|2, u ∈ C(J).

Let R > 0 such that 2b ≤ R and a
3b (b

3 + R3) < 1. Let x, y ∈ [−R, R]. By an elementary calculus

we can show that f and g satisfy the condition (ii) with α(t) =
a(t + 1)R2(

1− a
3b (R3 + b3)

)2 , γ(t) = 2aR,

and ϕ(t) = ψ(t) = t.
On the other hand, we have that

|µ(u)− µ(v)| ≤ R
2b
‖u− v‖.

Consequently, µ is Lipschizian with a Lipschiz constant Lµ = R
2b . It is easy to prove that

sup
x∈R,|x|≤R

[ f (0, x)]−1 ≤ δ = aR3/(3b2) + 1/b.

Now, applying Theorem 3, in order to obtain that (13), with a is small enough, has a unique solution
in BR with R = 1/2. We can check that the solution is x̃(t) = b(t+ 1). Table 2 shows the numerical
results of the proposed method for a = 0.05, b = 1/4 and x0(t) = 1

2 t.

Table 2. Numerical results for (13) with initial x0(t) = 1
2 t.

t x̃(t) x∗(t) with l = 9 x∗(t) with l = 33

0.1 0.275 0.2715154513364088 0.2714532970472882

0.2 0.3 0.2961167353030552 0.2961332465465061

0.3 0.325 0.3207837845940706 0.3208140511167786

0.4 0.35 0.3454635279153586 0.3454958547548318

0.5 0.375 0.3701445199310059 0.3701788114857308

0.6 0.40 0.3948268789541488 0.3948630864085328

0.7 0.425 0.4195107187398104 0.4195488540144761

0.8 0.45 0.4441962543294659 0.4442362958308083

0.9 0.475 0.4688837174935067 0.4689256009587782

1 0.5 0.4935733558651244 0.4936169655580174

‖x∗ − x̃‖∞ 6.42664× 10−3 6.38303× 10−3

5. Nonlinear Integral Equations

This section deals with the nonlinear integral Equation (2). More precisely, we prove
the existence and the uniqueness of a solution to Equation (2) under the hypothesis that the
mappings f : J ×R→ R and K : J × J ×R→ R are such that:

(i) The partial mappings t 7→ f (t, x) and (t, s) 7→ K(t, s, x) are continuous.
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(ii) There exist r > 0, γ : J × J → R, α : J → R two continuous functions and
ϕ, ψ : R+ −→ R+ two nondecreasing continuous functions such that

| f (t, x)− f (t, y)| ≤ α(t)ϕ(|x− y|), t ∈ J, and x, y ∈ R with |x|, |y| ≤ r,

and

|K(t, s, x)− K(t, s, y)| ≤ γ(t, s)ψ(|x− y|), t, s ∈ J and x, y ∈ R with |x|, |y| ≤ r.

Throughout this section, Ω will denote the closed ball Br of C(J), where r is defined in
the above assumption (ii).

5.1. Existence and Uniqueness of Solutions

To allow the abstract formulation of Equation (2), we define the following operators
on C(J) by

(Ax)(t) = f (t, x(σ(t))),

(Bx)(t) =

[
q(t) +

∫ η(t)

0
K(t, s, x(τ(s)))ds

]
, t ∈ J.

(14)

First, we will establish the following result which shows the existence and uniqueness
of a solution.

Theorem 5. Assume that the assumptions (i) and (ii) hold. If

MA MB ≤ r and MAρ‖γ‖∞ψ(t) + MB‖α‖∞ ϕ(t) < t, ∀t > 0,

where

MA = ‖α‖∞ ϕ(r) + ‖ f (·, θ)‖∞ and MB = ‖q(·)‖∞ + ρ(‖K(·, ·, 0)‖∞ + ‖γ‖∞ψ(r)),

then the nonlinear integral Equation (2) has a unique solution in Ω.

Proof. By using similar arguments to those in the above section, we can show that A
and B define D-lipschitzian mappings from Ω into C(J), with D-functions ‖α‖∞ ϕ and
ρ‖γ‖∞ψ, respectively. Also it is easy to see that A(Ω) and B(Ω) are bounded with bounds,
respectively, MA and MB. Taking into account our assumptions, we deduce that A · B maps
Ω into Ω.
Notice that A · B defines a nonlinear contraction with D-function

Θ(t) := ρ‖γ‖∞ MAψ(t) + ‖α‖∞ MB ϕ(t), t ≥ 0, i.e.,

‖(A · B)(x)− (A · B)(y)‖ ≤ Θ(‖x− y‖), x, y ∈ Ω. (15)

Now, an application of Theorem 2 yields that (2) has one and only one solution x̃ in Ω, and
for each x0 ∈ Ω we have

lim
n→∞

(A · B)n(x0) = x̃. (16)
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5.2. A Numerical Method to Approximate the Solution

Now we consider a Schauder basis {en}n≥1 in C(J × J) and the sequence of associated
projections {Pn}n≥1. Let p ∈ N, np ∈ N and consider

Sp : C(J) −→ C(J)

x −→ Sp(x)(t) = q(t) +
∫ η(t)

0
Pnp(U0(x))(t, s)ds,

where U0 : C(J) −→ C(J × J) is defined as U0(x)(t, s) = K(t, s, x(τ(s))). Also, we consider
the operator Tp : C(J) −→ C(J), which assigns for all x ∈ C(J) the valued Tp(x) ∈ C(J)
such that

Tp(x)(t) = A(x)(t)Snp(x)(t), t ∈ J,

where A : C(J) −→ C(J) is defined as A(x)(t) = f (t, x(σ(t))).

Remark 3. Since for p ≥ 1,

∣∣Tp(x)(t)
∣∣ = ∣∣∣∣A(x)(t)

(
q(t) +

∫ η(t)

0
Pnp(U0(x))(t, s)ds

)∣∣∣∣ ≤
| f (t, x(σ(t)))|

(
|q(t)|+

∫ η(t)

0

∣∣∣Pnp(U0(x))(t, s)
∣∣∣ds
)

,

proceeding essentially as in the above section and using the fact that Pnp is a bounded linear operator
on C(J × J), we get

∣∣Tp(x)(t)
∣∣ ≤ MA

(
|q(t)|+ ρ

∥∥∥Pnp(U0(x))
∥∥∥) ≤

MA

(
‖q‖∞ + ρ sup

t,s∈J
|K(t, s, x(τ(s)))|

)
≤ MA MB.

Accordingly, under the hypotheses of the Theorem 5, the mapping Tp maps Ω into Ω. In particular,
for m ≥ 1, the operator Tm ◦ . . . ◦ T1 maps Ω into Ω.

Analogously as we did in the previous section, the following result allow us to justify
it is possible to choose n1, n2, . . . in order that T1, T2, . . . can be used to approximate the
unique solution to Equation (2).

Theorem 6. Let x̃ be the unique solution to the nonlinear Equation (2). Let x0 ∈ Ω and ε > 0,
then there exists m ∈ N and ni ∈ N to construct Ti for i = 1, . . . , m, such that

‖x̃− Tm ◦ . . . ◦ T1(x0)‖ ≤ ε.

Proof. Let ε > 0, by using (16), there is m ∈ N such that

‖(A · B)m(x0)− x̃‖ ≤ ε/2.

For that m, and for p ∈ {1, . . . , m}, we define Up : C(J)→ C(J × J) by

Up(x)(t, s) := K(t, s, Tp ◦ . . . ◦ T1(x)(s)), t, s ∈ J, x ∈ C(J)

and Ap : C(J)→ C(J) by

Ap(x)(s) := f
(
s, Tp ◦ . . . ◦ T1(x)(s)

)
, s ∈ J, x ∈ C(J).
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Proceeding essentially, as in the Theorem 4, and taking into account (15) together with
Remark 3 the desired thesis can be proved.

5.3. Numerical Experiments

This section is devoted to give some numerical examples to illustrate the previous
results using the usual Schauder basis in C([0, 1]2) with the well know square ordering
(see Table 1 in [18] and [28,29]). In each example, we will denote x∗ = Tm ◦ . . . ◦ T1(x0) for
m = 4 and n1 = · · · = nm = l2 with l = 9 or l = 33.

Example 3. Consider the nonlinear integral equation

x(t) = a(t + 1)
[

b
a
− b2

3

(
(t + 1)3 − 1

)
+
∫ t

0
(x(s))2ds

]
, t ∈ J. (17)

Now we consider the mappings q : J → J, f : J × R → R and K : J × J × R → R such
that q(t) = b/a− b2

3
(
(t + 1)3 − 1

)
, f (t, x) = a(t + 1) and K(t, s, x) = x2. Let R > 0 and let

x, y ∈ [−R, R]. We have that

|K(t, s, x)− K(t, s, y)| ≤ γ(t, s)ψ(|x− y|),

where γ(t, s) = 2R, and ψ(t) = t. An application of Theorem 5, yields that (17) has a unique
solution in BR, with R = 3. In fact the solution is x̃(t) = b(t + 1).

Using the proposed method with a = 0.1, b = 0.1 and x0(t) = t2, we obtain Table 3.

Table 3. Numerical results for the (17).

t x̃(t) x∗(t) with l = 9 x∗(t) with l = 33

0.1 0.11 0.1099446333333333 0.1099595576568532

0.2 0.12 0.1198179180577049 0.1199472782251611

0.3 0.13 0.1297511699020331 0.1299327014013851

0.4 0.14 0.1396866403161547 0.1399156114644378

0.5 0.15 0.1496116012197044 0.1498957849652041

0.6 0.16 0.1595251486759711 0.1598729913214837

0.7 0.17 0.1694262809122463 0.1698469898893412

0.8 0.18 0.1793140741901599 0.1798175262525480

0.9 0.19 0.1891875688779072 0.1897843325246908

1 0.2 0.1990457618518603 0.1997471266515799

‖x∗ − x̃‖∞ 9.544238× 10−4 2.52873× 10−4

Example 4. Consider the nonlinear differential equation

x(t) =
(

ae−x(t) + b
)[ t

ae−t + b
+

1
1− c

log(cos(1− c)t) +
∫ t

0
tan((1− c)x(s))ds

]
. (18)

Similarly to that above, (18) can be written as a fixed point problem with the same notations in (14).
Let R > 0 and let x, y ∈ [−R, R]. By an elementary calculus we can show that the functions f and
g satisfy the condition (ii), with α(t) = aeR, γ(t) = (1 + tan2(1− c)R), and ϕ(t) = (1− e−t)
and ψ(t) = tan(1− c)t.

Apply Theorem 5, (18), with a small enough and c = 1 − a, has a unique solution in
BR with R = 3, in fact the solution is x̃(t) = t. We obtain the results given in Table 4 for
a = 0.01, b = 1, R = 3, and x0(t) = sin(t).
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Table 4. Numerical results for (18) with initial x0(t) = sin(t).

t x̃(t) x∗(t) with l = 9 x∗(t) with l = 33

0.1 0.1 0.0999495927525812 0.0999734131829520

0.2 0.2 0.1998269806205324 0.1999419676240642

0.3 0.3 0.2997014781005956 0.2999105694862292

0.4 0.4 0.3995761128223367 0.3998792008487213

0.5 0.5 0.4994508163308592 0.4998478468962116

0.6 0.6 0.5993255387084228 0.5998164954408373

0.7 0.7 0.6992002390137386 0.6997851365136741

0.8 0.8 0.7990748839377436 0.7997537620153589

0.9 0.9 0.8989494465775325 0.8997223654190059

1 1 0.9988239054111422 0.9996909415162489

‖x∗ − x̃‖∞ 1.17609× 10−3 3.09058× 10−4

Example 5. Consider the problem (2) with

f (t, x) = at
[
(b + t)2 +

t
(t + 1)

∫ t

0

(
1− e−(t+1)(as+1)

)
ds
]−1

,

K(t, s, x) =
∫ x+1

0
e−(t+1)udu,

q(t) = (b + t)2.

(19)

Let 0 < R < 1 and let x, y ∈ [−R, R]. By an elementary calculus, we can show that f and g
satisfy the condition (ii), with α(t) = ϕ(t) = 0, ψ(t) =

∫ 2t
0 e−sds, and γ(t, s) = 1

t+1 e(t+1)(R−1).
Taking a = 0.1, b = 1, and applying Theorem 5, the problem has a unique solution in

BR = {x ∈ C([0, 1]); ‖x‖ ≤ R}, in fact the solution is x̃(t) = at. We obtain the results given in
Table 5.

Table 5. Numerical results for (19) with initial x0(t) = 1/2cos(10πt).

t x̃(t) x∗(t) with l = 9 x∗(t) with l = 33

0.1 0.01 0.0098078897681979 0.0098501736202539

0.2 0.02 0.0191334693414161 0.0197640067592651

0.3 0.03 0.0288588703908235 0.0297138485291223

0.4 0.04 0.0387456185368957 0.0396854768250511

0.5 0.05 0.0486866179763731 0.0496708731179798

0.6 0.06 0.0586657967463166 0.0596654694199951

0.7 0.06 0.0686685394448633 0.0696660302996126

0.8 0.08 0.0786865051341015 0.0796705375310556

0.9 0.09 0.0887140587924687 0.0896776281114000

1 0.09 0.0987473453913395 0.0996863636633998

‖x∗ − x̃‖∞ 1.33705× 10−3 3.34982× 10−4

6. Conclusions

In this paper we have presented a numerical method, based on the use of Schauder’s
bases, to solve hybrid nonlinear equations in Banach algebras. To do this, we have used
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Boyd-Wong’s theorem to establish the existence and uniqueness of a fixed point for the
product of two nonlinear operators in Banach algebra (Theorem 2). The method is applied
to a wide class of nonlinear hybrid equations such as the ones we have illustrated by means
of several numerical examples.

The possibility of applying this process or a similar idea to other types of hybrid
equations or systems of such equations is open and we hope to discuss this in the near future.
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