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Abstract: The present study aims to examine the effects of uniform lateral mass flux on the boundary
layer flow induced by a non-linearly stretching surface. For uniform mass flux, the boundary layer
flow does not conform to a similarity solution. The problem may be resolved by the similarity
solution only when the transverse velocity at the boundary of the porous stretching surface is of the
form vw ∼ x

p−1
2 . In other words, the flow becomes non-similar; to date, this has not been reported in

the literature. That is why, in the current study, the local-similarity approximation up to the third
level of truncation is utilized to solve the problem. The pseudo-similarity variable, stream function
and transformed streamwise coordinate are defined such that the continuity equation is identically
satisfied, and the momentum equation reduces to a non-similar dimensionless boundary layer
equation. We derived the non-similar equations of the first, second and third levels of truncations
and compared the numerical results obtained from different levels of truncations. In order to find
numerical solutions to these equations, the built-in MATLAB routine, known as bvp4c, is used.
Further, all non-similar terms that appear in the momentum equations are retained without any
approximations. The approximations are introduced only in the subsidiary equations and relative
boundary conditions. For the case of suction, the rate of increase in the numerical values of skin
friction coefficient obtained from the first level of truncation with increasing velocity index parameter
is found to be underestimated, while overestimation is found in the case of injection. The numerical
results that were obtained from the third level of truncations are plotted against the embedding
physical parameters and are then discussed.

Keywords: local non-similarity approximation; 3-equation model; porous boundary uniform lateral
mass flux; slope linear regression

MSC: 62J05

1. Introduction

The phenomenon of suction or blowing is of considerable practical significance in
many applications and has been used effectively in transpiration cooling, energizing the
inner boundary layer in an adverse pressure gradient, increasing the lift on aerofoils, pre-
venting corrosion or scaling, and cooling of surfaces exposed to high-temperature flows. In
drag reduction, suction is also used in chemical processes to remove reactants, while injec-
tion is applied to add reactants, to control boundary layers, etc. [1–4]. Boundary layer flows
over a stretching surface have many engineering and industrial applications. Crane [5] was
the first to investigate the flow of a boundary layer over a stretching surface. He opened a
new direction for researchers, which have started working on the boundary layer flows
induced by stretching surfaces to benefit industries involved in manufacturing processes
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like continuous casting, polymer extrusion, wire drawing, hot rolling, glass blowing, paper
production, annealing and drawing of plastic films, fiber spinning, etc. [6–12]. The first
attempt to analyze the effect of suction or injection (blowing) on the boundary layer flow
over a linearly stretching surface was made by Gupta and Gupta [13]. They reported a
similarity solution in the presence of constant mass suction/injection and observed that
an increase in suction causes a gradual thinning of the boundary layer, whereas blowing
has the opposite effect. Chen and Char [14] also investigated a linearly stretching surface
subject to suction or injection. A few recent investigations on the flow over permeable
(porous) linearly stretched sheets have been performed by [15–22]. Bank [23] firstly ex-
amined the flow over a nonlinear stretching (power law velocity variation of the form
U0xm, here m is the velocity exponent parameter and U0 is dimensional constant having
dimension

[
(length/time)(length)−m

]
) and computed the similarity solutions numerically.

Research by Vajravelu [24] focused on the investigation of fluid motion in conjunction
with heat transfer while maintaining a constant temperature at the wall. Ali [25] extended
the analysis reported in [13] from linear to non-linear stretching flow, and that in [14] by
considering the porous stretching sheets instead of impermeable ones. They also ana-
lyzed the impact of suction or blowing on the boundary layer thickness and skin-friction

coefficient. Ali [25] proposed that the suction/injection velocity Vw

(
=
√

νU0
x1−p

)
in which

(Vw, U0, x, p, ν) respectively represent the vertical velocity component at the boundary,
the dimensional constant, the Cartesian coordinate along the stretching boundary, the
velocity index parameter and the kinematic viscosity, must be a function of the distance
from the leading edge to permit similarity solutions. Hence, for the constant wall suc-
tion/blowing velocity, a similarity solution does not exist for the flow over a non-linearly
stretching surface [26,27]. In some prior studies, the number of independent variables
was not reduced after performing the proposed transformations, and a space variable x
appeared in the mass flux parameter. Researchers merged this space variable in the mass
suction/injection parameter and treated this as constant velocity and the corresponding
equations as locally self-similar, which actually corresponds to non-similar situations. The
elementary flow quantities in non-similar boundary layer flow changes in a stream-wise
direction. In summary, a more realistic scenario for the flow over a nonlinear porous stretch-
ing sheet would use uniform surface mass transfer [28]; this corresponds to non-similar
boundary layer flow.

The Navier Stokes equations are a set of coupled and nonlinear partial differential equa-
tions that govern fluid motion by employing the basic conservation laws of mass, momentum,
and energy. The nature of these equations (parabolic, hyperbolic, and elliptic), as well as their
nonlinearity and complexity, strongly depend on the flow configuration. Exact solutions of
these equations are very rare. Numerous analytical and numerical techniques have been devel-
oped to solve fluid flow problems in different configurations [29–38]. Notably, the techniques
developed to solve local non-similar boundary layer problems are mentioned in [39–50]. We
employed the local non-similar method initially introduced by Sparrow et al. [39] and derived
the equations up to the third level of truncation to compute the solutions of non-similar bound-
ary layer equations. The built-in MATLAB routine bvp4c [51,52] was used to numerically
solve the boundary value problem in a fourth-order method. The slope linear regression
approach was utilized to compare the numerical results obtained from the local non-similarity
method and local similarity approach. Moreover, the relative error was also computed to
compare the solutions with different levels of truncations.

2. Description of Mathematical Modeling

This comprehensive work incorporates the local non-similar flow induced by a non-
linear stretching surface with uniform lateral mass flux. This non-linear stretching surface
has a velocity us = u0xp where u0 > 1 is a constant having dimension T−1L1−p, x represents
the streamwise coordinate, and p > 1 is a dimensionless number which is called the velocity
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index parameter. The flow configuration, coordinate system, and boundary conditions are
presented in Figure 1.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 17 
 

 

2. Description of Mathematical Modeling 
This comprehensive work incorporates the local non-similar flow induced by a non-

linear stretching surface with uniform lateral mass flux. This non-linear stretching surface 
has a velocity 0

p
su u x=  where 0 1u >  is a constant having dimension 1 1 pT L− − , x  

represents the streamwise coordinate, and 1p >  is a dimensionless number which is 
called the velocity index parameter. The flow configuration, coordinate system, and 
boundary conditions are presented in Figure 1 

The basic equations that govern the flow in the current circumstance are as follows 
[24] 

0u v
x y

∂ ∂+ =
∂ ∂

 (1)

2

2 .u u uu v
x y y

μ
ρ
 ∂ ∂ ∂+ =  ∂ ∂ ∂ 

 (2)

The following set of boundary conditions has been applied [24]: 

( )
( )
( )

0, 0 ,
, 0 ,    
, 0,

p
s

w

u x y u u x

v x y v

u x y

= = =


= = 
→ ∞ → 

 (3)

 
Figure 1. Flow configuration with a coordinate system. 

  

Figure 1. Flow configuration with a coordinate system.

The basic equations that govern the flow in the current circumstance are as follows [24]

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µ

ρ

(
∂2u
∂y2

)
. (2)

The following set of boundary conditions has been applied [24]:

u(x, y = 0) = us = u0xp,
v(x, y = 0) = vw,
u(x, y→ ∞)→ 0,

 (3)

Introducing the following variables:

ψ(x, y) = f (χ)
√

2νu0xp+1

p+1 ,

v = −x
p−1

2

√
u0ν(p+1)

2

[(
p−1
p+1

)
χ

d f
dχ + f (χ)

]
,

χ = y
√

u0(p+1)
2ν x

p−1
2 ,

u = u0xp
(

d f
dχ

)
,


. (4)

Equation (1) satisfies identically, whereas Equation (2) and the relevant boundary
conditions provide:

d3 f
dχ3 =

2p
p + 1

(
d f
dχ

)2
− f

d2 f
d2χ

(5)

d f
dχ (χ = 0) = 1
f (χ = 0) = fw(x),
d f
dχ (χ→ ∞)→ 0,

, (6)
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As seen in the preceding system, the number of independent variables does not reduce
after performing the proposed transformations, and space variable x has appeared in the
physical parameter (i.e. the mass flux parameter), as defined below:

fw(x) = −

 vw

x
p−1

2

√
u0ν(p+1)

2

 (7)

Consequently, the elementary flow quantities change in a streamwise direction. Be-
cause of this, the governing equations can be turned into dimensionless partial differential
equations using non-similarity transformations. For this, we must select a non-similarity
variable that correlates to this mass flux parameter.

ψ(x, y) = f (χ, ξ)
√

2νu0xp+1

p+1 ,

v = −x
p−1

2

√
uoν(p+1)

2

[
p−1
p+1

(
χ

∂ f
∂χ − ξ

∂ f
∂ξ

)
+ f (χ, ξ)

]
,

fw(x) = ξ = −
(

vw

x
p−1

2

√
u0ν(p+1)

2

)
,

χ = y
√

uo(p+1)
2ν (x)

p−1
2 ,

u = uoxp
(

∂ f (χ,ξ)
∂χ

)
,


. (8)

The transformations defined in (8) satisfy Equation (1) identically, whereas Equations
(2) and (3) become:

∂3 f
∂χ3 −

2p
p + 1

(
∂ f
∂χ

)2
+ f (χ, ξ)

∂2 f
∂χ2 = ξ

(
1− p
1 + p

)
∂ f
∂χ

∂2 f
∂χ∂ξ

+ ξ

(
p− 1
p + 1

)
∂ f
∂ξ

∂2 f
∂2χ

(9)

with boundary conditions
∂ f
∂χ

(χ = 0, ξ) = 1, (10a)

f (χ = 0, ξ) = ξ

(
1 +

p− 1
p + 1

∂ f
∂ξ

(χ = 0, ξ)

)
, (10b)

∂ f
∂χ

(χ = ∞, ξ) = 0, (10c)

We can neglect the right-hand side of Equation (9) and the last term on the right-hand
side in Equation (10b) for the first truncation level [39]. By doing this, Equations (9) and
(10a–c) can be re-written as

d3 f
dχ3 −

2p
p + 1

(
d f
dχ

)2
+ f

d2 f
dχ2 + (Neglected terms) = 0 (11)

d f
dχ (χ = 0) = 1,
f (χ = 0) = ξ(1 + Neglected term),
d f
dχ (χ = ∞) = 0,

. (12)

Equations (11) and (12) represent the local similarity model. In this model, the variable
ξ is treated as a parameter. The above local similarity model can be reproduced by assuming
that f is a function of χ only and treats ξ as a parameter.

We now introduce the following variable to set up the second level of truncation.

∂ f
∂ξ

= F(χ, ξ) (13)
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Substituting Equation (13) into Equations (9) and (10) yields:

∂3 f
∂χ3 −

2p
p + 1

(
∂ f
∂χ

)2
+ f (χ, ξ)

∂2 f
∂χ2 = ξ

(
1− p
1 + p

)
∂ f
∂χ

∂F
∂χ

+ ξ

(
p− 1
p + 1

)
F

∂2 f
∂2χ

(14)

∂ f
∂χ (χ = 0, ξ) = 1,

f (χ = 0, ξ) = ξ
(

1 + p−1
p+1 F(χ = 0, ξ)

)
,

∂ f
∂χ (χ = ∞, ξ) = 0,

. (15)

With one new dependent variable introduced into the problem, it is necessary to create
one new equation with the corresponding boundary conditions. Therefore, Equations (14)
and (15) are differentiated with respect to ξ

∂3F
∂χ3 −

4p
p+1

∂ f
∂χ

∂F
∂χ + F ∂2 f

∂χ2 + f ∂2F
∂χ2 −

1−p
1+p

(
∂ f
∂χ

∂F
∂χ + ξ

(
∂F
∂χ

)2
)
−

p−1
p+1

(
F ∂2 f

∂χ2 + ξF ∂2F
∂χ2

)
= 1−p

1+p ξ
∂ f
∂χ

∂
∂ξ

(
∂F
∂χ

)
+ p−1

p+1 ξ
∂2 f
∂χ2

∂F
∂ξ

 (16)

∂F
∂χ

(χ = 0, ξ) = 0, (17a)

F(χ = 0, ξ) = 1 +
(

p− 1
p + 1

)
F(χ = 0, ξ) + ξ

(
p− 1
p + 1

)
∂F
∂ξ

(χ = 0, ξ), (17b)

∂F
∂χ

(χ = ∞, ξ) = 0, (17c)

We can neglect the right-hand side of Equation (16) and the last term on the right hand
in Equation (17b) for the second level of truncation [39]. Consequently, the set of equations
for the second level of truncations along with boundary conditions are as follows:

d3 f
dχ3 −

2p
p + 1

(
d f
dχ

)2
+ f

d2 f
dχ2 = ξ

(
1− p
1 + p

)
d f
dχ

dF
dχ

+ ξ

(
p− 1
p + 1

)
F

d2 f
dχ2 (18)

d3F
dχ3 −

4p
p+1

d f
dχ

dF
dχ + F d2 f

dχ2 + f d2F
dχ2 −

1−p
1+p

(
d f
dχ

dF
dχ + ξ

(
dF
dχ

)2
)
−

p−1
p+1

(
F d2 f

dχ2 + ξF d2F
dχ2

)
+ (Neglected terms) = 0

 (19)

with boundary conditions

d f
dχ (χ = 0, ξ) = 1,

f (χ = 0) = ξ
(

1 + p−1
p+1 F(χ = 0)

)
,

d f
dχ (χ = ∞) = 0,

 , (20)

dF
dχ (χ = 0) = 0,

F(χ = 0) = 1 +
(

p−1
p+1

)
F(χ = 0) + (Neglected term),

dF
dχ (χ = ∞) = 0,

. (21)

We now introduce the following variable to set up the third level of truncation.

G(χ, ξ) =
∂2 f
∂ξ2 =

∂F
∂ξ

(22)
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Substituting Equation (22) into Equations (16) and (17) yields:

∂3F
∂χ3 −

4p
p+1

∂ f
∂χ

∂F
∂χ + F ∂2 f

∂χ2 + f ∂2F
∂χ2 −

1−p
1+p

(
∂ f
∂χ

∂F
∂χ + ξ

(
∂F
∂χ

)2
)
−

p−1
p+1

(
F ∂2 f

∂χ2 + ξF ∂2F
∂χ2

)
= 1−p

1+p ξ
∂ f
∂χ

(
∂G
∂χ

)
+ p−1

p+1 ξ
∂2 f
∂χ2 G

 (23)

∂F
∂χ (χ = 0, ξ) = 0,

F(χ = 0, ξ) = 1 +
(

p−1
p+1

)
F(χ = 0, ξ) + ξ

(
p−1
p+1

)
G(χ = 0, ξ),

∂F
∂χ (χ = ∞, ξ) = 0,

 (24)

Since we have introduced a new dependent variable into the problem, it is necessary
to create one further equation with the corresponding boundary conditions. Therefore,
Equations (23) and (24) are differentiated with respect to ξ:

∂3G
∂χ3 −

4p
p+1

((
∂F
∂χ

)2
+ ∂ f

∂χ
∂G
∂χ

)
+
(

G ∂2 f
∂χ2 + 2F ∂2F

∂χ2 + f ∂2G
∂χ2

)
−

1−p
1+p

(
2
(

∂F
∂χ

)2
+ 2 ∂ f

∂χ
∂G
∂χ + 3ξ ∂F

∂χ
∂G
∂χ

)
−

p−1
p+1

(
2G ∂2 f

∂χ2 + 2F ∂2F
∂χ2 + 2ξG ∂2F

∂χ2 + ξF ∂2G
∂χ2

)
=

1−p
1+p ξ

∂ f
∂χ

∂
∂ξ

(
∂G
∂χ

)
+ p−1

p+1 ξ
∂2 f
∂χ2

∂G
∂ξ


(25)

∂G
∂χ

(χ = 0, ξ) = 0, (26a)

G(χ = 0, ξ) = 2
(

p− 1
p + 1

)
G(χ = 0, ξ) + ξ

(
p− 1
p + 1

)
∂G
∂ξ

(χ = 0, ξ), (26b)

∂G
∂χ

(χ = ∞, ξ) = 0, (26c)

We can neglect the right-hand side of Equation (25) and the last term on the right hand
in Equation (26b) for the third level of truncation [39]. Consequently, the set of equations
for third level of truncations along with boundary conditions are as follows:

d3 f
dχ3 −

2p
p + 1

(
d f
dχ

)2
+ f

d2 f
dχ2 = ξ

(
1− p
1 + p

)
d f
dχ

dF
dχ

+ ξ

(
p− 1
p + 1

)
F

d2 f
d2χ

(27)

d3F
dχ3 −

4p
p+1

d f
dχ

dF
dχ + F d2 f

dχ2 + f d2F
dχ2 −

1−p
1+p

(
d f
dχ

dF
dχ + ξ

(
dF
dχ

)2
)
−

p−1
p+1

(
F d2 f

dχ2 + ξF d2F
dχ2

)
= 1−p

1+p ξ
d f
dχ

(
dG
dχ

)
+ p−1

p+1 ξ
d2 f
dχ2 G

 (28)

d3G
dχ3 −

4p
p+1

((
dF
dχ

)2
+ d f

dχ
dG
dχ

)
+
(

G d2 f
dχ2 + 2F d2F

dχ2 + f d2G
dχ2

)
−

1−p
1+p

(
2
(

dF
dχ

)2
+ 2 d f

dχ
dG
dχ + 3ξ dF

dχ
dG
dχ

)
−

p−1
p+1

(
2G d2 f

dχ2 + 2F d2F
dχ2 + 2ξG d2F

dχ2 + ξF d2G
dχ2

)
+ (Neglected terms) = 0


(29)

With boundary conditions

d f
dχ (χ = 0) = 1,

f (χ = 0) = ξ
(

1 + p−1
p+1 F(χ = 0)

)
,

d f
dχ (χ = ∞) = 0,

 , (30)
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dF
dχ (χ = 0) = 0,

F(χ = 0) = 1 +
(

p−1
p+1

)
F(χ = 0) + ξ

(
p−1
p+1

)
G(χ = 0),

dF
dχ (χ = ∞) = 0,

, (31)

dG
dχ (χ = 0) = 0,

G(χ = 0) = 2
(

p−1
p+1

)
G(χ = 0, ξ),

dG
dχ (χ = ∞) = 0,

 (32)

After the utilization of Equation (8), the skin friction coefficient C fx = µ

ρu2
s (x)

(
∂u
∂y

)
y=0

takes the following form:

C fx
√

Rex =

√
p + 1√

2
d2 f (χ = 0, ξ)

dχ2 (33)

3. Results and Discussion

The uniform lateral mass flux causes no similarity in the momentum boundary layer
if the flow is driven by a nonlinear porous stretching surface. Therefore, the local non-
similarity approach is utilized to solve Equations (9) and (10). The one, two, and three-
equation model are developed with sufficient detail and are solved numerically by ap-
plication of bvp4c solver for −6.4 ≤ ξ ≤ 6.4. The numerical values of

[
−C fx

√
Rex

]
as

obtained from the different level of truncation by taking wide range of withdrawal and
injection parameters are respectively presented in Tables 1 and 2. Strengthening the suction
parameter enhances the skin friction coefficient. Table 2 reveals that

[
−C fx

√
Rex

]
decrease

with increasing strength of injection. Further, the first level of truncation overestimates skin
friction coefficient for injection, as shown in Table 2. In addition, the relative error between
the first and second truncation is high as compared to second and third levels.

Tables 3 and 4 respectively represent the numerical values of
[
−C fx

√
Rex

]
, assuming

that ξ = 3.0 (fluid suction) and ξ = −3.0 (fluid injection), against different velocity index
parameter values (p = 2.0, 4.0, 6.0, 8.0, 10.0, 12.0). Further, the rate of increase or decrease in
the numerical values of

[
−C fx

√
Rex

]
is estimated by the slope linear regression method, as

shown in Tables 3 and 4. It is clearly seen from the values of Slp in Table 3 that the rate of
increase in the numerical values of

[
−C fx

√
Rex

]
obtained from the first level of truncation

is low, compared to those of the second and third levels of truncation. The Slp values in
Table 4 show that the rate of increase in numerical values of

[
−C fx

√
Rex

]
obtained from

the first level of truncation is high, compared to those of the second and third levels of
truncation. In other words, the local similarity solution (solution obtained from the first
level of truncation) against various velocity index parameter values underestimates fluid
suction and overestimates for fluid injection. The relative percentage errors between the
first and second levels of truncation and between the second and third levels of truncation
are shown in Tables 3 and 4. The error in the numerical values obtained from local similarity
method is high for fluid injection, as compared to the fluid suction. This fact can be seen
from the relative percentage error in the third column of Tables 3 and 4. Further, it is
clearly seen that the relative percentage error is high between the first and second levels of
truncation compared to the second and third levels. In other words, the results obtained
from local similarity approach is less accurate than the local non-similar approach. This
fact can be explained by the fact that the non-similar terms are neglected in the first level of
truncation and related boundary conditions (Equations (11) and 12(b)); therefore, it would
be expected that the first level solutions would be less accurate than those using the second
and third levels of truncation. Deriving the second level of truncation, the non-similar terms
are neglected in the auxiliary equation and boundary conditions, but these non-similar
terms are retained in the momentum equation and related boundary conditions; this is
why the solution obtained from the second level of truncation is more accurate than that
from the first level of truncation. Similarly, for the three-equation model, the truncation
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is removed twice from the system of equations and relevant boundary conditions, and
therefore, the results are more accurate than those from the two-model equation.

Table 1. Skin friction coefficient
(
−C fx

√
Rex = −

√
p+1√

2
d2 f (χ=0,ξ)

dχ2

)
for withdrawal (vw < 0) of fluid

obtained from different levels of truncation by assuming that p = 2.

ξ
First Level of Truncation

Local Similarity Solution (LSS)
Second Level of Truncation

Local Non-Similarity Solution (LNSS)
Third Level of Truncation

Local Non-Similarity Solution (LNSS)

0.2 1.4729959 1.4799894 1.4799770

0.4 1.6089620 1.6231038 1.6230385

0.6 1.7560303 1.7769622 1.7768021

0.8 1.9136116 1.9406046 1.9403249

1.0 2.0809234 2.1130387 2.1126367

1.2 2.2570701 2.2933011 2.2927913

1.4 2.4411170 2.4804911 2.4798980

1.6 2.6321473 2.6737874 2.6731386

1.8 2.8293004 2.8724538 2.8717751

2.0 3.0317931 3.0758373 3.0751508

2.4 3.4500951 3.4945303 3.4938747

2.8 3.8824785 3.9260904 3.9254995

3.2 4.3255353 4.3676568 4.3671416

3.6 4.7767617 4.8170712 4.8166298

4.0 5.2343189 5.2727011 5.2723262

4.4 5.6968475 5.7333051 5.7329877

4.8 6.1633314 6.1979317 6.1976628

5.2 6.6330024 6.6658446 6.6656162

5.6 7.1052718 7.1364686 7.1362739

6.0 7.5796830 7.6093501 7.6091834

6.4 8.0558777 8.0841276 8.0839841

Table 2. Skin friction Coefficient
(
−C fx

√
Rex = −

√
p+1√

2
d2 f (χ=0,ξ)

dχ2

)
for injection (vw > 0) of fluid

obtained from different levels of truncation by assuming that p = 2.

ξ
First Level of Truncation

Local Similarity Solution (LSS)
Second Level of Truncation

Local Non-Similarity Solution (LNSS)
Third Level of Truncation

Local Non-Similarity Solution (LNSS)

−0.2 1.2353469 1.2290839 1.2290871

−0.4 1.1333676 1.1220791 1.1221296

−0.6 1.0419338 1.0271552 1.0273368

−0.8 0.96026100 0.94353422 0.94391565

−1.0 0.88744976 0.87006379 0.8706443

−1.2 0.82256644 0.80542791 0.8061354

−1.4 0.76470432 0.74835684 0.7491121

−1.6 0.71302153 0.69774737 0.6984893

−1.8 0.66675907 0.65267962 0.6533816
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Table 2. Cont.

ξ
First Level of Truncation

Local Similarity Solution (LSS)
Second Level of Truncation

Local Non-Similarity Solution (LNSS)
Third Level of Truncation

Local Non-Similarity Solution (LNSS)

−2.0 0.62524513 0.61238544 0.6130335

−2.4 0.55418619 0.54363424 0.5441597

−2.8 0.49600389 0.48743676 0.4878457

−3.2 0.44781280 0.44087278 0.4411842

−3.6 0.40744750 0.40181143 0.4020463

−4.0 0.37327611 0.36867532 0.3688520

−4.4 0.34406014 0.34027943 0.3404127

−4.8 0.31885132 0.31572174 0.3158228

−5.2 0.29691649 0.29430648 0.2943836

−5.6 0.27768312 0.27549026 0.2755495

−6.0 0.26069947 0.25884394 0.2588897

−6.4 0.24560576 0.24402445 0.2440602

Table 3. Skin friction Coefficient
(
−C fx

√
Rex = −

√
p+1√

2
d2 f (χ=0,ξ)

dχ2

)
for different values of velocity

index parameter (p) from different levels of truncation, assuming that ξ = 3.0.

p First Level of Truncation
(LSS)

Relative
Error

Second Level of Truncation
(LNSS)

Relative
Error

Third Level of Truncation
(LNSS)

2.0 4.1028474 1.035% 4.1457719 0.013% 4.1452185

4.0 5.3555085 1.746% 5.4507123 0.036% 5.4487423

6.0 6.3662282 2.024% 6.4977877 0.047% 6.4946904

8.0 7.2371275 2.172% 7.3978749 0.054% 7.3938529

10.0 8.0139291 2.264% 8.1996493 0.058% 8.1948346

12.0 8.7218145 2.327% 8.9296749 0.061% 8.9241594

Slp 0.45629996 0.47237733 0.47188776

Table 4. Skin friction Coefficient
(
−C fx

√
Rex = −

√
p+1√

2
d2 f (χ=0,ξ)

dχ2

)
for different values of velocity

index parameter (p) from different levels of truncation, assuming that ξ = −3.0.

p First Level of Truncation
(Local Similarity Solution)

Relative
Error

Second Level of Truncation
(Local Non-Similarity Solution)

Relative
Error

Third Level of Truncation
(Local Non-Similarity Solution)

2.0 0.4708092 1.664% 0.4630990 0.077% 0.4634566

4.0 0.7049463 2.568% 0.6872958 0.172% 0.6884808

6.0 0.8816791 2.881% 0.8569839 0.212% 0.8588066

8.0 1.0292481 3.040% 0.9988737 0.233% 1.0012157

10.0 1.1584652 3.137% 1.1232272 0.247% 1.1260135

12.0 1.2747936 3.201% 1.2352440 0.256% 1.2384229

Slp 0.0789721 0.0758629 0.0761405

Figures 2–4 are plots of dimensionless velocity profiles, as obtained from the solution
of the three-equation model (third level of truncation). These local non-similar velocity
profiles for a nonlinear stretching surface with uniform lateral mass flux have never been
reported before in the literature. Figure 2 shows the behavior of the velocity profile against
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various suction parameter values. As shown in the plot, the local non-similar velocity
boundary layer thickness is reduced as the suction parameter increases. Physically, if
there is suction, the fluid under ambient conditions will be drawn closer to the stretching
surface, which will result in a reduction in the thickness of the momentum boundary
layer (MBL). Figure 3 demonstrates the variation of the velocity profile with increasing
injection parameter values. The plot clearly shows the increase in the velocity profile as
the injection parameter increases. Additionally, as the values of the injection parameter
go up, so does the MBL thickness. Physically, the fluid under ambient conditions will be
pulled away from the stretching surface as the injection parameter is increased, resulting
in an increase in the thickness of the momentum boundary layer (MBL). Figure 4 shows
the changes in dimensionless velocity profile with the following velocity index parameters
p = 2.0, 3.0, 4.0, 12.0, 16.0, 20.0. It is observed that the decrease in velocity with an increase
in velocity index is almost negligible for high p values.
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4. Concluding Remarks

The momentum boundary layer, which does not permit similarity solutions, is the
subject of this article. One, two, and three-equation models were developed and solved
numerically using the fourth-order boundary value solver (the MATLAB inbuilt boundary
value solver called bvp4c). The key outcomes are as follows:

The uniform lateral mass flux causes the non-similarity in the boundary layer flow
over nonlinear stretching.

• The problem allows the similarity solution only when the transverse velocity at the

boundary of the porous stretching surface is of the form vw ∼ x
p−1

2 .
• The skin friction coefficient increases with enhancing the withdrawal parameter and

decreases for the injection parameter.
• With an increasing injection, the one-equation model (local similarity method) overes-

timates the skin friction coefficient.
• For the increasing value of the velocity index parameter, the one-model approach, also

known as the local similarity approach, underestimates the skin friction coefficient in
the presence of suction.

• For increasing velocity index values, the one-model overestimates the skin friction
coefficient in the presence of injection.

• The thickness of the non-similar boundary layer reduces with increasing suction and
velocity index parameters.

• The fluid inside the non-similar momentum boundary layer accelerates with increasing
injection parameters.

• Future research may focus on thermal and second law analyses of fluid flow over a
nonlinearly stretching surface with uniform lateral mass flux.
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Nomenclature

F New depended variable defined to set up second level of truncation
G New depended variable defined to set up third level of truncation
p > 1 Dimensionless constant
〈u, v〉 velocity components along and normal to the stretching boundary
u0 Dimensional constant
us velocity of the stretching surface
vw Normal component of the velocity at the stretching boundary
〈x, y〉 Directions along and normal to the stretching boundary.
d f
dχ Dimensionless velocity
µ Kinematic viscosity
ν Dynamics Viscosity
ρ Density
ψ Stream function
χ Pseudo-similarity variable
fw(x) = ξ Mass flux parameter/ transformed streamwise coordinate
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