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Abstract: It has become a tendency to use a combination of autoencoders and graph neural networks
for attribute graph clustering to solve the community detection problem. However, the existing
methods do not consider the influence differences between node neighborhood information and high-
order neighborhood information, and the fusion of structural and attribute features is insufficient. In
order to make better use of structural information and attribute information, we propose a model
named community detection fusing graph attention network (CDFG). Specifically, we firstly use an
autoencoder to learn attribute features. Then the graph attention network not only calculates the
influence weight of the neighborhood node on the target node but also adds the high-order neighbor-
hood information to learn the structural features. After that, the two features are initially fused by the
balance parameter. The feature fusion module extracts the hidden layer representation of the graph
attention layer to calculate the self-correlation matrix, which is multiplied by the node representation
obtained by the preliminary fusion to achieve secondary fusion. Finally, the self-supervision mecha-
nism makes it face the community detection task. Experiments are conducted on six real datasets.
Using four evaluation metrics, the CDFG model performs better on most datasets, especially for the
networks with longer average paths and diameters and smaller clustering coefficients.

Keywords: graph attention network; high-order neighborhood; attribute network; community detection

MSC: 68T01

1. Introduction

Community detection is a fundamental task in complex network analysis, which aims
to partition a network into multiple substructures (communities). Usually, a community is
defined as a set of nodes with a different affiliation from the rest of the network [1]. Com-
munity detection has been extensively studied and applied in many real-world network
problems, such as recommendation [2], anomaly detection [3], and terrorist organization
identification [4]. Classical community detection methods usually utilize probabilistic
models and statistical inference methods. These methods employ different varieties of
prior knowledge to infer community structure. For example, classical community detection
methods, spectral clustering [5], GN algorithm [6], etc. However, traditional community
detection algorithms usually focus only on the network structure and often ignore the
attributes of nodes, resulting in a lack of semantic community division. In the real world,
the attributes of nodes are becoming more affluent and more prosperous, and a more
reasonable solution is to consider both the relationships between nodes and semantic
information. For community detection in attribute networks, a balance should be achieved
between the following two properties: (1) structural closeness, i.e., nodes within a com-
munity are structurally close to each other, while nodes in different communities are not,
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and (2) attribute homogeneity, i.e., nodes in a community have similar attributes, while
nodes in different ones are different [7].

Community detection is a typical application of graph clustering. For attributed
graph clustering, capturing the network topology and utilizing the content information of
nodes is a crucial problem. The method based on graph embedding obtains the node low-
dimensional vector representation by learning the network topology and node content [8].
On this basis, the current research focus is the application of clustering methods such
as K-means to solve the problem of community detection. The autoencoder is the main-
stream solution for graph embedding-based methods [9], because the autoencoder-based
representation can be applied to unsupervised scenarios. Inspired by the above methods,
we use an autoencoder and a graph neural network as the basic framework for attribute
graph clustering.

In this paper, we propose a community detection fusing graph attention network
(CDFG) model. The main contributions are: (1) we fuse the autoencoder and the graph
attention network with high-order neighborhood information for the first time. (2) We
design the feature fusion module. Specifically, the graph attention layer in the graph atten-
tion network [10] aggregates node feature information in the neighborhood by trainable
weights and considers the different extent of influence of neighborhood nodes on the
target node. Then we obtain the high-order neighborhood information of the target node
by calculating the topological correlation matrix. The correlation between nodes is fully
utilized. The feature fusion module calculates the self-correlation matrix by taking the
hidden layer representation obtained from the graph attention network and then multiplies
the obtained autocorrelation matrix with the matrix obtained from the graph attention
module to obtain the final node representation using the principle of jump connection. The
results of conducted experiments on six real datasets and evaluating the model using four
evaluation metrics show that the model performs better than other methods.

2. Related Work
2.1. Traditional Methods

Traditional methods are based on network topology for community detection, which
can be divided into graph partitioning, statistical inference, hierarchical clustering, dynamic
methods, spectral clustering, density-based methods, and optimization methods according
to the principles applied [11]. These methods only capture the shallow structure of the
network and have a high computational complexity for large-scale network data. With
the increasing richness of information in the real world, traditional community detection
methods can no longer meet demands.

2.2. Graph Embedding Methods

Graph embedding methods can map high-dimensional sparse vectors into low-dimensional
dense vectors with the advantage of using high-dimensional nonlinear features (e.g., network
topology information) and high-dimensional relational features (e.g., node attribute infor-
mation) represented by nodes, neighbors, edges, subgraphs (e.g., communities), and en-
coded features [12]. In this kind of method, the nodes in a complex network are represented
by low-dimensional real-value vectors, and the traditional clustering method can be used to
solve the community detection problem. At present, deep clustering approaches focuses on
the graph convolutional network-based approaches and autoencoder-based approaches.

Clustering methods based on graph convolutional networks (GCN) [13] to learn
graph structure and node attributes have been widely studied [14–23]. For attribute
graphs, neighboring nodes and nodes with similar characteristics may gather in the same
community. Graph autoencoders (GAE) and variational graph autoencoders (VGAE) [14]
integrate graph structures into node attributes by iteratively aggregating the neighborhood
representation around each central node. Deep attentional embedded graph clustering
(DAEGC) [15] uses a graph structure and node attributes at the same time. It captures
the importance of the neighborhood nodes through a graph attention network as an
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encoder and uses KL-divergence loss to supervise the training process of graph clustering.
On the basis of DAEGC, the deep-neighbor-aware embedding for node clustering in
attributed graphs (DNENC) [16] uses GCN as the encoder, which complements the contrast
experiments. The experimental results show the effectiveness of the proposed framework.
According to the setting of DAEGC, the adversarially regularized graph autoencoder
(ARGA) [17] further developed an adversarial regulator to guide the learning of potential
representations. Structural deep clustering network (SDCN) [18] integrates an information
transfer operator, a dual self-supervised learning mechanism, an autoencoder, and a graph
convolution network into a unified framework for better representation learning better.
Experiments show that the autoencoder can alleviate the over-fitting phenomenon. The
hierarchical attention network (HiAN) [23] designs the hierarchical attentive aggregator
to fuse rich interpretable interactive information. These GCN-based methods still have
the problem of smoothing. Meanwhile, GCN only aggregates neighborhood information
equally when learning structural representation.

Many deep clustering methods based on the autoencoder also have been proposed [24–27].
The autoencoder (AE) [28] is the most commonly used solution for unsupervised commu-
nity detection. Deep embedded clustering (DEC) [24] first trains the encoder and then uses
a pretrained network to iteratively optimize the KL divergence-based clustering loss with
the help of self-learning-assisted target distributions so that the representation learned by
the autoencoder is closer to the center of the clusters and improves the cohesiveness of the
clusters. To improve the accuracy of the target distribution, the improved deep embedded
clustering (IDEC) [25] jointly optimizes the clustering assignment and learns features suit-
able for clustering while maintaining local structure. These methods help the autoencoder
learn data representations with higher relevance to clustering by computing clustering loss,
exploiting the features of the data itself but not incorporating structural information.

3. The Proposed Model

In this section, we present the community detection fusing graph attention network
(CDFG) shown in Figure 1. We first introduce the notation and the problem definition. In
the following subsections, we describe the CDFG model in detail in four modules, i.e., the
autoencoder module (AE), the graph attention network module (GAT), the feature fusion
module, and the self-supervision learning module.

A complex network whose nodes have attributes is an attribute network. Given an
attribute network G = {V, E, X}, where V = {v1, v2, . . . vN} is the set of nodes, E is the
set of edges. N is the number of nodes. X = {xi}N

1 is the feature matrix, where xi ⊆ Rd

denotes the attribute vector of node vi. Here, d is the attribute dimension. The topology
of the graph G can be represented by the adjacency matrix A =

(
aij
)

N×N ∈ RN×N and if(
vi, vj

)
∈ E, aij = 1, otherwise aij = 0.

Problem Definition. Given an attribute network G, it is divided into several disjoint
groups, i.e., {G1, G2, . . . Gk}. Each community Gi is a partition of the network G, and k
represents the number of communities divided from the original network G with common
properties of clustering. Nodes in the same community should satisfy to be structurally
tightly connected and have more similar attributes, while nodes in different communities
are sparsely connected and have different attributes. Gi ∩ Gj = ø means that there is no
intersection between communities, indicating non-overlapping community detection.
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Figure 1. The architecture of the CDFG. 𝐴 denotes the adjacency matrix of the graph. 𝑋 is the fea-
ture matrix of the node. 𝐴 and 𝑋 are both used as input to the GAT module. 𝑋 is used as input to 
the AE module. 𝑍  is the hidden layer representation obtained by the AE module. 𝑍  denotes 
the first layer representation obtained by the graph attention module. 𝑍  is the transpose of 𝑍 . 𝑆 is the self-correlation matrix. 𝑍  is the representation obtained after the fusion of the GAT 
module and the AE module. ⊗ denotes the computation of matrix multiplication, and 𝑍 is the 
final representation obtained after fusion. 𝑄 is obtained based on the Student’s t-distribution and 
denotes the distance relationship between 𝑍  and the clustering centre. 𝑃 is the target distribu-
tion calculated from 𝑄. 
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number of nodes. 𝑋 = 𝑥  is the feature matrix, where 𝑥 ⊆ ℝ𝒹 denotes the attribute vector of 
node 𝑣 . Here, 𝑑 is the attribute dimension. The topology of the graph 𝐺 can be represented by the 
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communities divided from the original network 𝐺 with common properties of clustering. Nodes in 
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3.1. AE Module 
A basic autoencoder [28] is used for unsupervised representation learning of the data 

from the perspective of generality to extract valid information from the attribute features 
of the data itself. The autoencoder consists of an encoder and a decoder. The encoder maps 
the input data to a particular feature space to obtain the hidden layer representation, and 
the decoder maps the hidden layer representation to the input space. It makes the hidden 
layer representation retain the features of the input data through the reconstruction of the 

Figure 1. The architecture of the CDFG. A denotes the adjacency matrix of the graph. X is the feature
matrix of the node. A and X are both used as input to the GAT module. X is used as input to the AE
module. ZAE is the hidden layer representation obtained by the AE module. Z(1) denotes the first

layer representation obtained by the graph attention module.
(

Z(1)
)T

is the transpose of Z(1). S is

the self-correlation matrix. Z̃(l) is the representation obtained after the fusion of the GAT module and
the AE module. ⊗ denotes the computation of matrix multiplication, and Z is the final representation
obtained after fusion. Q is obtained based on the Student’s t-distribution and denotes the distance
relationship between ZAE and the clustering centre. P is the target distribution calculated from Q.

3.1. AE Module

A basic autoencoder [28] is used for unsupervised representation learning of the data
from the perspective of generality to extract valid information from the attribute features of
the data itself. The autoencoder consists of an encoder and a decoder. The encoder maps
the input data to a particular feature space to obtain the hidden layer representation, and
the decoder maps the hidden layer representation to the input space. It makes the hidden
layer representation retain the features of the input data through the reconstruction of the
input data. We suppose there are L layers in the autoencoder and l denotes the l-th layer of
the autoencoder, then the learning representation H(l) of the l-th layer of the encoder part
is formulated as:

H(l) = σ
(

We
(l)H(l−1) + be

(l)
)

(1)

where σ is the activation function, We
(l) is the l-th layer weight matrix, and be

(l) is the bias
of the l-th layer in the encoder.

The decoder and the encoder are symmetric, and the corresponding learning represen-
tation H(l) is calculated as:

H(l) = σ
(

Wd
(l)H(l−1) + bd

(l)
)

(2)
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where Wd
(l) is the l-th layer weight matrix and bd

(l) is the bias of the l-th layer in the decoder.
The objective function can be obtained by minimizing the loss between the original

data and the reconstruction:
Lres =

1
2N
‖ X− X̂ ‖2

F (3)

where X̂ is the reconstruction of the original data X and ‖ · ‖F denotes the Frobenius norm.
The reconstruction loss of the autoencoder is used as part of the global loss of the model.

3.2. GAT Module

After obtaining the attribute features of the data from the autoencoder, it lacks the
structural information of the data. We use the graph attention network to encode the struc-
tural features and fuse the representation obtained from the two sub-module complexes
by balancing a parameter with the autoencoder. The representation of each layer learned
by the autoencoder is transferred to the graph attention layer by the balancing parameter,
which realizes the fusion of structure information and attribute information.

The essential component of the graph attention network is the graph attention layer,
which is based on the principle of learning the implicit representation of nodes by aggregat-
ing their neighbors. Each neighbor is given a different weight in the attention mechanism to
measure the importance of different neighbors. Furthermore, the high-order neighborhood
information of the nodes is considered when calculating the topology. We use both the
attribute values and the adjacency matrix as the input of the graph attention module. Then,
the learned representation of the autoencoder is combined with the learned representation
of the graph attention neural network to obtain more comprehensive information.

The learning representation z(l)i of the l-th layer of node vi in the attention layer of the
graph is calculated as:

z(l)i = σ

(
∑

j∈Ni

aijW(l−1)z(l−1)
j

)
(4)

where z(l)i is the hidden layer representation of node vi, Ni denotes the set of neighbors
of node vi, aij is the attention coefficient of node vj to node vi, and W(l−1) denotes the
learnable parameter matrix. The attention coefficients are calculated from the attribute
values and topological distances, respectively. In terms of attributes, it can be regarded as a
single-layer neural network with weight vector attribute value concatenation.

cij = aT[Wxi ‖Wxj
]

(5)

From a topological point of view, neighboring nodes influence the target node through
connected edges. While the classical GAT considers only first-order neighborhoods, the
graph attention layer used in this paper considers high-order neighborhoods of the graph.

R =
(

B + B2 + . . . + Bt
)

/t (6)

where B is the transition matrix and Bij = 1/mi if edges exist at nodes vi and vj, otherwise
Bij = 0 and mi is the degree of node vi. Rij denotes the topological correlation of node vi
and node vj up to t orders. Here, t can be chosen flexibly according to different datasets.

The attention coefficients are usually normalized for comparison between nodes using
the softmax function. The final attention coefficient after adding the topological weights
and activation functions can be expressed as:

aij =
exp

(
σRijcij

)
∑rεNi

exp(σRircir)
(7)
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The representation obtained by the autoencoder is passed to the graph attention
layer for each layer by balancing the parameters ε. The fused representation Z̃(l) of the
autoencoder, and the graph attention layer is obtained as follows:

Z̃(l) = (1− ε)Z(l) + εZ(l−1)
AE (8)

where Z(l) is the output of the graph attention layer and Z(l−1)
AE is the output of the au-

toencoder l − 1 layer, and the final representation is obtained by fusing the two learned
representations layer by layer with a balancing parameter. In this way, the hidden layer
representation inherits more attributes from the attribute space of the original graph,
preserving features that can be better clustered.

3.3. Feature Fusion Module

This module performs feature fusion of the node representations obtained from the
graph attention module using the principle of skip connection.

Firstly, a self-correlated learning mechanism is introduced. The latent representation
Z(1) obtained by encoding the first layer of the graph attention module is transposed and
then multiplied with itself. The normalized self-correlated matrix S is obtained using the
softmax function:

Sij =
e(Z(1)(Z(1))

T
)ij

∑N
k=1 e(Z(1)Z(1)T)ik

(9)

Then, S is used as the correlation coefficient and multiplied with the node representa-
tion Z̃(l) obtained from the graph attention module to calculate the node representation ZF:

ZF = SZ̃(l) (10)

Finally, we use the softmax function for multiple classifications:

Z = so f tmax(ZF) (11)

The result zik denotes that the probability of the node vi belongs to the k-th clustering
centre. Z is considered as a probability distribution.

3.4. Feature Fusion Module

After unifying the above three components in a framework, it is necessary to make
it oriented to the clustering task. We adopt the self-supervised learning mechanism for
model optimization.

For the i-th node and the k-th clustering centre, the similarity between the embedding
representation and the clustering centre is measured using the Student’s t-distribution as
a kernel:

qik =

(
1+ ‖ z(AE)(i) − µk ‖ /υ

)−(v+1)/2

∑k′
(

1+ ‖ z(AE)(i) − µk′ ‖ /υ
)−(v+1)/2

(12)

where z(AE)(i) is the i-th row of Z(L)
AE , µk is obtained by the autoencoder initialized by K-

means pretraining, υ is the degree of freedom of the Student’s t-distribution, qik is viewed
as the probability of assigning the i-th sample to the k-th clustering centre, and Q =

[
qij
]

is
the distribution of all samples.

In order to make the obtained embedding representation closer to the cluster center,
the target distribution is calculated as:

pik =
qik

2/ ∑i qik

∑k′(qik′
2/ ∑i qik′)

(13)
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The values of Q in the objective distribution P are normalised by the sum of squares
so that the results obtained have a high confidence level and the target function is obtained
in the following form:

Lclu = KL(P ‖ Q) = ∑
i

∑
k

pik log
pik
qik

(14)

By minimizing the KL-divergence loss between the Q and P distributions, the target
distribution P can help the autoencoder module learn a better representation of the cluster-
ing task by bringing the data closer to the cluster centres. Similarly, in order to train the
graph attention neural network, the KL-divergence loss is as follows:

LGAT = KL(P ‖ Z) = ∑
i

∑
k

pik log
pik
zik

(15)

By this way, GAT and AE optimize on the same objective, making their results con-
verge during the training process. Since the objective of the AE module and the GAT
module is to approximate the target distribution P, these two modules can supervise each
other’s learning.

The reconstruction loss, cluster learning loss, and graph attention neural network
classification loss obtained from the autoencoder are jointly optimized, and the final loss
function is:

L = Lres + αLclu + βLGAT (16)

where α is a hyperparameter to balance the cluster optimisation and local structure preser-
vation, and β is a coefficient to control the interference of GAT on the embedding space.

The final clustering result of the nodes is the soft distribution of the distribution Z,
i.e., the clustering result of i-th sample:

ri = argmax
k

zik (17)

4. Experiments
4.1. Datasets

We conduct experiments on six public datasets with the statistical information shown
in Table 1, including three non-graph datasets and three graph datasets. USPS [29],
HHAR, [30] and REUT [31] are non-graph datasets lacking graph structure information.
For non-graph datasets, the method of constructing a KNN graph in SDCN is used for
graph construction with the values of K being 3, 5, and 1, respectively. ACM, DBLP, and
CITE are classical graph datasets. There are significant differences among the six datasets
in average path length, clustering coefficient, and diameter.

Table 1. The details of the datasets.

Dataset Type Samples Dimension Average Path Length Clustering Coefficient Diameter Classes

USPS Image 9298 256 8.3 0.2306 43 10
HHAR Record 10,299 561 11.1 0.2084 71 6
REUT Text 10,000 2000 3.7 0.0005 9 4
ACM Graph 3025 1870 5.8 0.6886 20 3
DBLP Graph 4058 334 9.3 0.1301 28 4
CITE Graph 3327 3703 7.0 0.1941 24 6

4.2. Experiments Setup

Baselines. We compare our method with two types of methods: AE-based clustering
and GCN-based graph clustering.

• AE [28] is a deep clustering approach that performs a K-means algorithm on the
representation learned by the autoencoder.
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• DEC [24] designs a clustering target to guide the embedding process.
• IDEC [25] adds reconstruction loss to DEC to learn better embedding results.
• GAE and VGAE [14] are unsupervised graph embedding methods that use GCN to

learn data representations.
• DAEGC [15] uses graph attention networks as encoders to learn node representations

and uses clustering losses to supervise the graph clustering process.
• SDCN [18] integrates autoencoder and GCN to learn the data representations.

Parameters Setting. First, we pretrain the autoencoder to initialize the clustering center
using all data with 30 iterations, and the learning rate is 0.001. For fair comparisons, the
number of neural units for GAT and autoencoder is set to d-500-500-2000-10 as in the SDCN,
with d being the feature dimension of the input data. The structure of nodes with two-hop
neighbors is more common in graph data, and t is set to 2 for the generality of the model. α
is 0.1 and β is set to 0.01 in the loss function. The value of the balance parameter ε is kept the
same as that of the SDCN. To ensure the convergence of the clustering results, we trained
uniformly for all datasets for 500 iterations. To prevent extreme cases, we run 10 times for
each dataset. The average and standard deviation are calculated as the final results.

Evaluation Metrics. We use the four common metrics to evaluate the effect of clus-
tering, including accuracy (ACC), normalized mutual information (NMI), adjusted rand
index (ARI), and F1 score (F1). The higher value of each metric indicates a better result
of clustering.

4.3. Clustering Results

The clustering results of our proposed method on the six datasets are shown in Table 2,
with the bolded numbers indicating the optimal results.

Table 2. Clustering results on six datasets (mean ± std).

Dataset Metric AE DEC IDEC GAE VGAE DAEGC SDCN CDFG

USPS

ACC 71.0 ± 0.0 73.3 ± 0.2 76.2 ± 0.1 63.1 ± 0.3 56.2 ± 0.7 73.6 ± 0.4 78.1 ± 0.2 78.3 ± 0.1
NMI 67.5 ± 0.0 70.6 ± 0.3 75.6 ± 0.1 60.7 ± 0.6 51.1 ± 0.4 71.1 ± 0.2 79.5 ± 0.3 79.7 ± 0.1
ARI 58.8 ± 0.1 63.7 ± 0.3 67.9 ± 0.1 50.3 ± 0.6 41.0 ± 0.6 63.3 ± 0.3 71.8 ± 0.2 72.0 ± 0.2
F1 69.7 ± 0.0 71.8 ± 0.2 74.6 ± 0.1 61.8 ± 0.4 53.6 ± 1.1 72.5 ± 0.5 77.0 ± 0.2 77.2 ± 0.1

HHAR

ACC 68.7 ± 0.3 69.4 ± 0.3 71.1 ± 0.4 62.3 ± 1.0 71.3 ± 0.4 76.5 ± 2.2 84.3 ± 0.2 88.5 ± 0.6
NMI 71.4 ± 1.0 72.9 ± 0.4 74.2 ± 0.4 55.1 ± 1.4 63.0 ± 0.4 69.1 ± 2.3 79.9 ± 0.1 82.7 ± 0.5
ARI 60.4 ± 0.9 61.3 ± 0.5 62.8 ± 0.5 42.6 ± 1.6 51.5 ± 0.7 60.4 ± 2.2 72.8 ± 0.1 77.5 ± 0.5
F1 66.4 ± 0.3 67.3 ± 0.3 68.6 ± 0.3 62.6 ± 1.0 71.6 ± 0.3 76.9 ± 2.2 82.6 ± 0.1 88.3 ± 0.8

REUT

ACC 74.9 ± 0.2 73.6 ± 0.1 75.4 ± 0.1 54.4 ± 0.3 60.9 ± 0.2 65.6 ± 0.1 77.2 ± 0.2 78.0 ± 0.3
NMI 49.7 ± 0.3 47.5 ± 0.3 50.3 ± 0.2 25.9 ± 0.4 25.5 ± 0.2 30.6 ± 0.3 50.8 ± 0.2 53.5 ± 0.5
ARI 49.6 ± 0.4 48.4 ± 0.1 51.3 ± 0.2 19.6 ± 0.2 26.2 ± 0.4 31.1 ± 0.2 55.4 ± 0.4 56.8 ± 0.6
F1 61.0 ± 0.2 64.3 ± 0.2 63.2 ± 0.1 43.5 ± 0.4 57.1 ± 0.2 61.8 ± 0.1 65.5 ± 0.1 65.6 ± 0.0

ACM

ACC 81.8 ± 0.1 84.3 ± 0.8 85.1 ± 0.5 84.5 ± 1.4 84.1 ± 0.2 86.9 ± 2.8 90.5 ± 0.2 90.2 ± 0.3
NMI 49.3 ± 0.2 54.5 ± 1.5 56.6 ± 1.2 55.4 ± 1.9 53.2 ± 0.5 56.2 ± 4.2 68.3 ± 0.3 67.6 ± 0.4
ARI 54.6 ± 0.2 60.6 ± 1.9 62.2 ± 1.5 59.5 ± 3.1 57.7 ± 0.7 59.4 ± 3.9 73.9 ± 0.4 73.2 ± 0.6
F1 82.0 ± 0.1 84.5 ± 0.7 85.1 ± 0.5 84.7 ± 1.3 84.2 ± 0.2 87.1 ± 2.8 90.4 ± 0.2 90.1 ± 0.3

DBLP

ACC 51.4 ± 0.4 58.2 ± 0.6 60.3 ± 0.6 61.2 ± 1.2 58.6 ± 0.1 62.1 ± 0.5 68.1 ± 1.8 74.8 ± 1.1
NMI 25.4 ± 0.2 29.5 ± 0.3 31.2 ± 0.5 30.8 ± 0.9 26.9 ± 0.1 32.5 ± 0.5 39.5 ± 1.3 41.6 ± 1.6
ARI 12.2 ± 0.4 23.9 ± 0.4 25.4 ± 0.6 22.0 ± 1.4 17.9 ± 0.1 21.0 ± 0.5 39.2 ± 2.0 45.7 ± 1.8
F1 52.5 ± 0.4 59.4 ± 0.5 61.3 ± 0.6 61.4 ± 2.2 58.7 ± 0.1 61.8 ± 0.7 67.7 ± 1.5 73.7 ± 1.3

CITE

ACC 57.1 ± 0.1 55.9 ± 0.2 60.5 ± 1.4 61.4 ± 0.8 61.0 ± 0.4 64.5 ± 1.4 66.0 ± 0.3 69.2 ± 0.9
NMI 27.6 ± 0.1 28.3 ± 0.3 27.2 ± 2.4 34.6 ± 0.7 32.7 ± 0.3 36.4 ± 0.9 38.7 ± 0.3 42.2 ± 0.9
ARI 29.3 ± 0.1 28.1 ± 0.4 25.7 ± 2.7 33.6 ± 1.2 33.1 ± 0.5 37.8 ± 1.2 40.2 ± 0.4 44.4 ± 1.1
F1 53.8 ± 0.1 52.6 ± 0.2 61.6 ± 1.4 57.4 ± 0.8 57.7 ± 0.5 62.2 ± 1.3 63.6 ± 0.2 62.8 ± 0.6

From the clustering results in Table 2, we notice that the model with the addition of the
graph attention layer and feature fusion module performs well on most of the datasets. It is
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due to GAT’s better representation learning ability compared to GCN in the learning graph
structure. In addition, the feature fusion module further enhances the features. The model
can learn better about neighborhood information after adding the graph attention layer
and also considers the high-order neighborhood information of the nodes. The feature
fusion module makes a secondary fusion of structural and attribute features.

For the three non-graph datasets, USPS, HHAR, and REUT, all metrics perform well.
As far as the average is concerned, compared to the SDCN method, there is a more signifi-
cant improvement in HHAR. Our approach improves 4.2% on ACC, 2.8% on NMI, 4.7% on
ARI, and 5.7% on F1. The HHAR dataset has a longer average path length and network
diameter compared with the other two non-graph datasets. We consider the high-order
neighborhood information and learn more informative node representations. For REUT,
there is a more significant improvement on ACC, NMI, and ARI than USPS. From the
viewpoint of network features, REUT has a smaller clustering coefficient and higher feature
dimension than USPS.

For DBLP, the improvement is 6.7% on ACC, 2.1% on NMI, 6.5% on ARI, and 6%
on F1. For CITE, the improvement is 3.2% on ACC, 3.5% on NMI, and 4.2% on ARI. For
DBLP, there is a greater improvement on ACC and ARI than CITE because DBLP has a
longer average path length and network diameter than CITE, and a smaller clustering
coefficient. The effect is not improved for the ACM dataset because the network clustering
coefficient is higher and aggregation is higher than the other two graph datasets. There will
not be much difference in learning between GCN and GAT. The average path length and
network diameter are smaller for the ACM dataset, and there will not be much difference
considering high-order information.

In all metrics, our method significantly improved the graph dataset DBLP compared to
the non-graph dataset HHAR. In other words, the model performs better for the data with
graph structure than the data constructing the KNN graph. Since the edges in the KNN
graph are not real and there is some noise, it is necessary to construct an effective KNN
graph to improve the model’s effectiveness. In terms of the characteristics of the network,
the model proposed in this paper is more suitable for networks with longer average path
length and network diameter and smaller clustering coefficient.

4.4. Ablation Study

We conduct an ablation study to evaluate the effectiveness of the GAT module and the
feature fusion module. The results are reported in Figure 2.

Analysis of the GAT module. From Figure 2, we can see that CDFG-w has a 0.1% to
4.6% improvement over the SDCN method, which shows the effectiveness of the graph
attention network module. For non-graph datasets, the CDFG-w method performs better
on HHAR than the other two non-graph datasets. For graph datasets, the CDFG-w method
performs better on DBLP and CITE. The improvement is greater for networks with longer
average path lengths and network diameters and smaller clustering coefficients, i.e., HHAR,
DBLP, and CITE, which means that the graph attention layer considering high-order
neighborhood information is more effective for this type of network.

Analysis of the feature fusion module. The CDFG has a 0.1% to 4.3% improvement
over the CDFG-w method, which demonstrates the effectiveness of the feature fusion
module. We can find that CDFG method performs better on graph datasets than non-graph
datasets. For graph datasets, the CDFG method performs better on DBLP than on CITE.
Similarly, the feature fusion module is more effective for networks with long average path
length and network diameter and a small clustering coefficient. In addition, the feature
fusion module improves the dataset with actual graph structure to a greater extent than the
KNN graph because the dataset with actual graph structure reflects the characteristics of
the data more accurately. Moreover, the model learns better after further enhancement of
the features.
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Figure 2. Comparison of experimental ablation effects of graph attention network module and
feature fusion module. SDCN is the method using only graph convolution network and autoencoder.
CDFG-w is the method with the addition of a graph attention network module. CDFG is the method
with the addition of a feature fusion module.
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4.5. Parameter α Sensitivity Analysis

We conduct parameter sensitivity analysis of α in the loss function, which is an
important parameter for balancing the clustering loss and other losses. To evaluate the
effect of parameter α on model performance, the CDFG model is experimented with three
graph datasets, including ACM, DBLP, and CITE, by setting α = [0.01, 0.1, 1, 10, 100] with
fixed β = 0.01. We do not discuss β here because the CDFG method is insensitive to β. We
ran our method 10 times independently for each dataset and report the average results.
The results of each metric are shown in Figure 3.
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Figure 3. The influence of parameter α on the model effect.

From Figure 3, we can observe that the parameter α has a certain influence on the
clustering effect, and all three datasets reach the optimal value when α = 0.1. For ACM
and CITE, the trend of changes is gentler with the parameter α. However, for DBLP, the
variation is more significant compared to ACM and CITE. From the viewpoint of network
characteristics, networks with longer average path length and network diameter and
smaller clustering coefficient are more sensitive to the change of parameter α.

4.6. Network Visualisation

In order to verify the validity of the model more intuitively, we conduct an experiment
visualizing the clustering results. For the original data, we use PCA firstly to reduce the
dimension as the embedding representation obtained by CDFG, and use the t-SNE [32]
method for 2D visualization. For the learned embedding results, we directly visualize the
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data samples in 2D space by using the t-SNE method. The visualization results are shown
in Figure 4. The data points of the same color indicate the same category. The clearer the
boundary between clusters composed of sample points of different colors, the better the
clustering results.
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The visualization results show that the original data distribution is more scattered,
and the boundary is more confusing, while after the representation learning of the model,
the same category is more aggregated, and the boundary between categories is clearer,
which can verify the validity of the CDFG.

5. Conclusions

In this paper, we propose a community detection model fusing the graph attention
layer and the autoencoder. The innovation of the model is that it fuses the autoencoder and
the graph attention network with high-order neighborhood information for the first time.
In addition, the feature fusion module is designed to achieve secondary fusion. The graph
attention layer learns structural features better by considering the importance of neighbor-
hood information. Adding high-order neighborhood information is more robust and effec-
tive for networks with longer mean paths and network diameters. The autoencoder learns
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the data characteristics, and a balance parameter fuses the two parts. The feature fusion
module makes a secondary fusion of structural and attribute features. The experimental
results show that the proposed model performs better on network datasets with longer
mean paths and network diameters and smaller clustering coefficients. Compared with
various state-of-the-art methods, CDFG has better performance for community detection.

This is because the use of the graph attention network calculates the influence weight
of the neighborhood node on the target node through the attention mechanism, taking
into account the difference of the influence of different neighborhood nodes. At the same
time, high-order neighborhood information is added to the graph attention layer. The final
node representation contains more information. On the other hand, the feature fusion
module further fuses the structure information and the attribute information, and enhances
the feature.

Currently, the model only supports non-overlapping community detection and it is a
research direction to make model support overlapping community detection in the future.
How to improve the efficiency of the algorithm while keeping the excellent performance of
the model is also worth studying.
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