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Abstract: Recently, it has been demonstrated that the performance of an object detection network
can be improved by embedding an attention module into it. In this work, we propose a lightweight
and effective attention mechanism named multibranch attention (M3Att). For the input feature
map, our M3Att first uses the grouped convolutional layer with a pyramid structure for feature
extraction, and then calculates channel attention and spatial attention simultaneously and fuses
them to obtain more complementary features. It is a “plug and play” module that can be easily
added to the object detection network and significantly improves the performance of the object
detection network with a small increase in parameters. We demonstrate the effectiveness of M3Att on
various challenging object detection tasks, including PASCAL VOC2007, PASCAL VOC2012, KITTI,
and Zhanjiang Underwater Robot Competition. The experimental results show that this method
dramatically improves the object detection effect, especially for the PASCAL VOC2007, and the
mapping index of the original network increased by 4.93% when embedded in the YOLOV4 (You
Only Look Once v4) network.

Keywords: object detection; multiscale module; spatial attention; channel attention; spatial attention;
multibranch structure

MSC: 37M10

1. Introduction

Object detection is a fundamental task in the field of computer vision, where the main
task is to locate all objects of interest in an image and determine their type and location [1].
An important challenge in this phase is to improve the detection accuracy of high-noise
videos and images [2]. The noise environment is complicated, containing issues such as bad
weather and blurred video obtained underwater; low-quality images obtained as a result
of the image’s size, shape, and position, as well as the lighting and shooting conditions;
and interference factors such as occlusion and background. However, these noises are
unavoidable and are the major cause of missed and false detections, so improving object
detection performance in the presence of noise is an urgent problem.

Using attention mechanisms to improve the performance of object detection networks
has been widely recognized [3]. The intuitive interpretation of the attention mechanism is
to efficiently allocate limited computational resources to the analysis of salient regions of
an object and, therefore, to improve the accuracy of object detection. This is consistent with
the human visual system, which tends to focus on the useful information parts of an image
and ignore the irrelevant information parts, although the overall framework of existing
machine vision is still more focused on the holistic analysis of the image, and the detection
accuracy of the large object is generally reasonable; however, the detection accuracy of
the small and medium objects is poor. Therefore, introducing an attention mechanism can
compensate for this disadvantage to a certain extent.
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Attention mechanisms can be broadly classified into channel attention and spatial
attention [4]. Channel is a feature detector, and channel attention is a mechanism to mine a
set of representative features in a given image. The typical channel attention is the squeeze-
and-excitation (SE) module [5], whose central idea is to learn the weights of different
channels by compression and excitation operation and highlight the significant features.
However, the disadvantages of SE are also apparent. It ignores the importance of spatial
information [6]. Therefore, the bottleneck attention module (BAM) [7] and convolutional
block attention module (CBAM) [8] can better combine channel attention and spatial
attention to enrich feature maps. The above work on the attention mechanism is practical;
however, there are still two fundamental problems to be solved. Firstly, determining how
to mine and utilize the rich information in feature maps at different scales, and secondly,
channel or spatial attention can only establish short-term channel dependence but cannot
develop long-range channel dependence. Aiming at the above two problems, scholars
have proposed Res2Net [9] from the multiscale aspect and nonlocal neural networks [10]
from the long-range channel dependence aspect, respectively. Although the above two
methods solve the problem to a certain extent, they bring a heavy computational burden
to the network. Therefore, based on the above description, we believe it is necessary to
develop attention that has low cost and combines multiscale feature extraction and long-
range channel dependence. In this paper, we propose an effective and low-cost attention
mechanism named the multibranch attention mechanism (M3Att). Our M3Att can process
the input tensor at different scales. Specifically, our M3Att combines three parts: firstly, we
use group convolutions with different sizes to build a pyramid structure and then enrich
the feature map information after grouping convolutions through the channel shuffling
mechanism. Then, the feature maps that pass the grouped convolutional pyramid are sent
into the channel and spatial attention, respectively. Finally, we use the softmax function to
realize the attention weights, thus establishing the long-range channel dependence. At the
same time, introducing a skip connection can better compensate for the information loss
problem after multiple convolutions.

In this paper, a multibranch attention (M3Att) mechanism that merges channel at-
tention and spatial attention is proposed to address the two problems mentioned above,
and the main contributions of this paper are summarized as follows.

(1) We propose a new multibranch attention mechanism (M3Att), which can be flexibly
incorporated into existing object detection networks and improves the performance of the
object detection network without a significant increase in the parameters of the network.
Similarly, our M3Att can also be extended to other computer vision tasks.

(2) We propose a practical multiscale feature extraction module (MFE), which can
learn richer multiscale feature representation. Most importantly, the output of each MFE
is propagated to the next layer to generate the channel-wise attention vector by using
hybrid attention.

(3) The attention mechanism in this paper is inserted into the object detection network
of YoloV4 [11] and completes experiments on the detection accuracy. The experimental
results show that the M3Att can significantly improve detection accuracy. M3Att achieved
a 4.93% improvement in mAP over the YoloV4 for the PASCAL VOC2007 [12].

This paper is organized as follows: Section 1 presents relevant research works on
attention mechanisms. Section 2 presents the multibranch attention model proposed in this
paper. Section 3 compares the method of this paper with the existing mainstream dataset
algorithm and gives experimental results. Section 4 gives a summary.

2. Related Work

The attention model was first applied to machine translation [13] and has become a
central concept in convolutional neural networks. The attention model has two leading
roles: first, to tell the computer which parts of the content to focus on; second, to allocate
the limited computational resources to the important parts of the image. The attention
mechanism is proven to be one of the most significant ways to improve the effectiveness
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and efficiency of neural network learning. Currently, the mainstream attention methods
can be divided into three major categories, namely, channel attention, spatial attention,
and hybrid attention [14].

In deep neural networks, different channels in different feature maps usually represent
other objects [15]. Channel attention adaptively recalibrates each channel’s weight and
generates feature masks, a process of selecting objects to determine what to pay atten-
tion to. The squeeze-and-excitation (SE) can learn the consequences for each feature to
obtain its importance and uses the critical metric to assign a weight value to each channel.
GSop [16] builds on SENet and proposes a second-order pooling layer for aggregating
richer features; however, the above attention has fully connected layers, leading to much
computational redundancy. Therefore, ECANet [17] uses a one-dimensional convolutional
layer to replace the fully connected layer, significantly reducing the model’s number of
parameters. Fcanet [18] reconsiders the influence of the pooling layer on the attention
mechanism from the frequency domain perspective and proposes multispectral channel
attention. Distinct from channel attention focused on essential features, some researchers
have investigated where it is necessary to concentrate. Therefore, the notion of spatial
attention was proposed by Zhu et al. [19], which converts the information in the image’s
spatial domain into the corresponding space to extract the critical data. GENet [20] uses
feature context to aggregate features and then distributes them locally to tell the model
which regions are essential.

Hybrid attention has both advantages over the channel and spatial attention men-
tioned above and has attracted researchers’ attention in recent years. In 2017, Fei et al. [21]
pioneered the concept of hybrid attention. CBAM concatenates channel and spatial atten-
tion, and the generated feature vector has both channel and spatial attention advantages.
The dual attention network [22] sums the outputs into two different attention branches
and adaptively combines local and global features. Coordinate attention [23] embeds the
location information into the channel attention so that the network can focus the com-
putational cost on the sizeable important area. Unlike DANet and coordinate attention,
relation-aware global attention (RGA) [24] is a new hybrid attention that emphasizes the
importance of global structural information provided by pairwise relationships and uses
it to generate attention maps. While some of the above attention mechanisms focus on
designing more complex network structures, they will incur substantial computational
costs. Some concentrate on creating lightweight network structures, but the improvement
in model accuracy is not apparent. Thus, to further improve the model’s detection accuracy
and reduce the model’s complexity, a novel attention mechanism, M3Att, is proposed; this
mechanism aims to significantly improve the performance of the object detection network
while reducing the complexity of the model, while channel attention and spatial attention
are efficiently combined to generate complementary features.

In addition, some researchers have applied attention mechanisms to object detection
networks in practical applications. Yang [25] integrated the CBAM attention mechanism
into the YoloV4 object detection network, which significantly improved the ability and
accuracy of wheat ears’ extraction capability. Kim [26] proposed ECAP-Yolo, a modification
of the feature extraction network of the core network by the channel attention module,
which greatly optimizes the detection performance of small objects. These efforts provide
helpful background and scenarios for this and similar studies.

This paper proposes an attention mechanism with a multibranch structure and success-
fully incorporates it into the YoloV4 object detection network. The multibranching attention
mechanism first extracts rich multiscale features through a multilevel feature extraction
module and then suppresses the interference of spatial and channel dimensions, respec-
tively.
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3. Materials and Methods

The multiband attention model proposed in this paper mainly consists of a multiscale
feature extraction module, a spatial attention module, a channel attention module, and a
skip connection technique.

3.1. Multiscale Feature Extraction Module

As shown in Figure 1, it is the multiscale feature extraction module MFE that im-
plements feature extraction in M3Att. The input feature map X ∈ RC×H×W is divided
into N parts, denoted by [X0, X1, · · ·, XN−1]. For each partitioned feature map, the num-
ber of channels is C/S. Therefore, for the i − th feature map, it can be represented as
Xi ∈ R

C
S×H×W , i = 1, 2, · · ·, n− 1. The model can process multiple scales of input tensor in

parallel to obtain a topographic map with different scales. Accordingly, the input feature
maps are processed using multiscale convolutional kernels, which can extract different
spatial and depth information. As the size of the convolution kernel increases, the number
of parameters will increase significantly. This paper introduces a clustered convolution
approach to solve this issue so that the input tensor of different convolutional kernels can
be processed without increasing the computational cost. The relationship between the
convolution kernel size and the group size can be expressed as:

G = 2K−3 (1)

where K is the size of the convolution kernel and G represents the group size. The kernel
size of the convolution is 9× 9, especially when k is equal to 9 and the default of G is 32.
Equation refeq1 above will be demonstrated later in the paper by way of ablation experi-
ments. In addition, the use of clustered convolution can significantly reduce the number of
model parameters and increase the computation speed. However, communication between
channels is weakened, which leads to a reduction in the feature extraction capability [27].

Figure 1. Multiscale feature extraction module.

Thus, this paper introduces channel shuffling to address the lack of feature commu-
nication between models. The essence of channel shuffling is to cluster each group of
channels derived from the group convolution, randomly split them into new groups of
channels, and then stitch them together to obtain the final feature map. The feature map
after channel shuffling contains information from different channels, enriching the feature
map information and avoiding the loss of feature information due to group convolution.
Thus, the generate function of the multiscale feature map can be characterized as:

Fi = Shu f f le(Conv(ki × Ki, Gi)), i = 0, 1, 2, · · ·, N − 1 (2)
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where the size of the i − th convolution kernel ki is ki = 2 × (i + 1) + 1, and the size
of the grouped is Gi = 2K−3. To obtain the final output feature map, cascade stitching
is performed.

F = Cat([F0, F1, · · ·, FN−1]) (3)

3.2. Channel Attention Module

Figure 2 compares channel attention in this paper with the current mainstream channel
attention. The channel attention in this paper consists mainly of two parallel channel
attentions, which are responsible for establishing cross-dimensional interactions between
the channel dimension and the spatial dimension, respectively. Notably, instead of using
a fully connected layer for dimensionality reduction, M3Att adopts a 7× 7 convolutional
kernel for dimensionality reduction. This reduces computational overhead and achieves
greater efficiency when executing the forward propagation model [28].

Figure 2. Comparison with different attention mechanisms.

For a given input feature map F ∈ RC×H×W , it will be entered into the attention of two
branches of the channel. In the first branch, the interaction between the channel information
and the height information is constructed in this paper. Firstly, the input feature map is
rotated 90◦ counterclockwise along the H axis via the permute function, which changes
the shape of the input feature map to FH ∈ RW×H×C. Secondly, by arranging the GAP
(global average pooling) and GMP (global max pooling) in parallel, the shape of the feature
map is reduced F′H ∈ R2×H×W . In addition, the tensor of the input feature map retains
only two dimensions of information, which preserves the richness of the feature map and
reduces the computational overhead at the same moment. The feature map information is
then extracted via a standard convolutional layer with a convolution kernel size of 7× 7.
In turn, the final attention weights are generated by the BN layer and sigmoid activation
function. Then, the generated attention weights are directly multiplied point by point with
the original input feature map to obtain a feature map with cross-dimensional interaction
information and then rotated 90◦ clockwise along the H axis to preserve the original shape
of the feature map input for further operations.

Similarly, in the second branch, the interaction between width and height information
is constructed in this paper. Firstly, by rotating the input feature map 90◦ counterclockwise
along the W axis via the permute function, the shape of the input features map will be
transformed to FW ∈ RH×C×W . The feature map is simplified to FW ∈ RH×C×W by a
parallel GAP and GMP layout, and then the feature map information is extracted via a
standard convolutional layer with a convolution kernel size of 7× 7. The final attention
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weights are generated via the BN layer and the sigmoid activation function. The generated
attention weights are directly multiplied point by point with the original input feature map
to obtain a feature map with cross-dimensional interaction information, and then rotated
90◦ clockwise along the W axis to keep the original shape of the input feature.

Ultimately, the outputs of the two different branches are then summed element by
element and averaged uniformly to obtain the end output QF ∈ RC′×H′×W ′ . In conclusion,
for feature maps F ∈ RC×H×W , the calculation of channel attention weight can be expressed
mathematically as:

Q(F) =
1
2
(FHσ( f 7×7(F′H)) + FWσ( f 7×7(F′W))) (4)

where the convolution operation and activation function are denoted as f 7×7 and σ(·).

3.3. Spatial Attention Module

The spatial attention structure of this paper is shown in Figure 3. The spatial attention
mechanism in this paper draws on the idea of the spatial attention mechanism from SAM
and improves upon it.

Figure 3. Diagram of our spatial attention.

The input feature map F ∈ RC×H×W is obtained by two feature maps, max pooling
and average pooling, respectively, and the two feature maps are stitched together to obtain
the feature map for the next level.

Next, the stitched feature map of the shape F ∈ R2×H×W is fed into a standard
convolutional layer with a convolution kernel size of 7× 7 to generate a spatial attention
map. In this way, the spatial features are further extracted. The feature map is also
downscaled into a single-channel feature map, which completes the channel-matching
process. Next, a sigmoid function is adopted to obtain a weight of spatial attention feature
between (0,1) and apply it to the original feature map to obtain the final output feature map
with spatial attention weights. Therefore, the calculation process of spatial attention weight
can be presented as follows.

M(F) = σ(( f 7×7(C(Maxpool(F), Avgpool(F))))) (5)

The max pooling layer, average pooling layers operation, convolution operation, splicing
operation, and skip connection are used in Maxpool(·), Avgpool(·), f 7×7, C(·).

3.4. M3Att Attention Module

The module M3Att in this paper consists of the following four parts, as shown in
Figure 4. First, the feature map is divided by the MFE module to obtain different channel
feature maps and rich multiscale data. Secondly, the channel feature maps are fed into
the channel attention module and spatial attention module, respectively, for extracting
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attention information at different scales. Thirdly, the obtained channel and spatial attention
weights are cascaded and spliced. By this, channel attention and spatial attention fusion
can be achieved without destroying original attention, and more complementary attention
weights can be obtained. Therefore, the entire hybrid attention vector at multiple scales can
be described as follows:

Vatt = C(Q0(F), · · ·, MN−1(F)) (6)

Fourthly, the multiscale hybrid attention vector is fed into the softmax function for
recalibration to enable better information interaction between channel attention and spatial
attention, which can be represented as follows:

Z = so f tmax(Vatt) =
exp(Vatt)

∑N−1
i=0 exp(Vatt)

(7)

The calibrated attention vector is element-wise multiplied with the resulting feature map af-
ter splitting and the original feature map. Lastly, a feature map with multiscale information
is used as output. Thus, the whole process of attention training can be summed up:

Y = Z⊗MFE(X)⊗ L(X) (8)

MFE(·) is represented as a multiscale module; l(·) is skip connection.

Figure 4. The structure of M3Att.

4. Experimental Results and Analysis

The effectiveness of M3Att was verified by comparing it with eight current top–
down attention mechanisms on three public datasets, VOC2007, VOC2012, and KITTI [29],
and one live−action photographed underwater critter dataset (contracted from the Zhan-
jiang Underwater Robot Competition 2020). The eight attention mechanisms were SENet,
coordinate attention, CBAM, ECANet, DANet, EPSANet [30] and SPANet [31], and triplet
attention [32]. In addition, to evaluate the effectiveness of our final model, ablation experi-
ments were conducted to validate the model, which is the main focus of our study.

Six good object detection networks were then selected to validate the generalizability
of our M3Att, thus demonstrating the “plug-and-play” nature of M3Att and its ability
to improve object detection accuracy. The six object detection networks are YoloV3 [33],
YoloV4, Yolov5, YoloX [34], SSD [35], and Faster R-CNN [36]. The integration in M3Att and
YoloV4 is schematically represented as an example in Figure 5.
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Figure 5. M3Att integrated in YoloV4.

4.1. Dataset

The public datasets used in this paper are shown in Table 1, and the main parameters
of these three datasets are listed. Figure 6 shows some images of the dataset used in
this paper.

Table 1. Key parameters of three public datasets.

Name Train Image Test Image Class

VOC2007 5011 4952 20
VOC2007 + VOC2012 22,136 4952 20

KITTI 6883 765 4

Figure 6. Examples of some images from the datasets used in this paper.

Furthermore, to validate the model’s performance in real-world scenarios, the marine
life dataset from the 2020 National Underwater Robotics Competition (Zhanjiang) was
included in this paper for empirical validation. Since the dataset consisted of 3824 images,
the original image set was expanded using data augmentation techniques and after data
preprocessing, which resulted in 7648 images after data preprocessing. The dataset was
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divided 9:1 between training and test sets, with 6883 training images and 765 test images,
including Echinus, Starfish, Holothurian, and Scallop.

4.2. Experimental Environment and Parameter Settings

The experimental equipment used in this paper was configured with an Intel i7-
10700 CPU, an NVIDIA GeForce RTX 3090 GPU, video memory of 24 GB, and the Windows
10 operating system. The training model was constructed using the Pytorch deep learning
framework based on the Windows 10 operating system, using the Python 3.7 programming
language and Cuda 11.2. The main parameters of the experiment are shown in Table 2.

Table 2. Key parameters of the settings.

Experimental Parameters Parameter Values

Image size 416× 416
Learning rate 0.001

Batch size 16
Epochs 100

Optimizer Adam

4.3. Evaluation of the Model Performance

To evaluate the model’s performance more precisely, two metrics were chosen to
measure the model: the average precision of AP50 (average precision) and mAP (mean
average precision) for each type of object with an intersection ratio of 0.5. mAP is defined
as shown in Equation (9).

mAP =
∑K=1

K AP(P, R, K)
K

(9)

where P is precision, R represents recall, and K denotes the the number of class. In addition,
the VOC dataset K = 20, the KITTI dataset K = 3, and the marine biology dataset K = 4.
For a more intuitive evaluation of the model performance, the eight selected attention
mechanisms were also validated using visual analytical plots and heat maps.

4.4. Analysis of the Generalizability of the Model

The PASCAL VOC 2007 dataset and the PASCAL VOC 07+12 dataset were selected
for comparison in different networks to verify the generalizability of the model, and the
results are shown in Table 3.

As shown in Table 3, after adding M3Att, the performance of the one-stage object
detection network and the two-stage detection network improved compared to the original
one. Specifically, the Yolo series object detection algorithms (YoloV3, Yolov4, YoloV5,
and YoloX) improved by 1.41%, 4.93%, 2.05%, and 2.36%, respectively, over the original
algorithms. This shows that the proposed M3Att is effective and can significantly improve
object detection accuracy. This paper aims to improve the accuracy of the object detection
algorithm, and the data indicate that the work in this paper is efficient. The model’s
generalization capability can be further tested for object detection tasks with more extensive
datasets. Therefore, the VOC2007 dataset was fused with the VOC2012 dataset to test the
network’s performance further. When the M3Att module proposed in this paper was
added, the mAP of all networks improved further, with YoloV3, for example, improving
by 2.06%.
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Table 3. Experiments with M3Att embedded in different object detection networks.

Model Input Size Dataset mAP

Yolov3 [33] 416× 416 07/07 + 12 79.77/81.76
Yolov3 [33] + M3Att 416× 416 07/07 + 12 81.18/83.82

Yolov4 [11] 416× 416 07/07 + 12 82.22/87.79
Yolov4 [11] + M3Att 416× 416 07/07 + 12 87.15/87.41

Yolov5 416× 416 07/07 + 12 85.01/87.62
Yolov5 + M3Att 416× 416 07/07 + 12 87.06/88.48

YoloX [34] 416× 416 07/07 + 12 82.33/85.91
YoloX [34] + M3Att 416× 416 07/07 + 12 88.09/88.52

SSD [35] 300× 300 07/07 + 12 68.0/74.3
SSD [35] + M3Att 300× 300 07/07 + 12 76.41/77.50

Faster [36] 600× 600 07/07 + 12 73.28/76.86
Faster [36] + M3Att 600× 600 07/07 + 12 77.47/78.65

4.5. Experiment Comparing Different Attention Mechanisms

The experiments were conducted using the PASCAL VOC2007 dataset, and eight pop-
ular attentional mechanisms, such as SENet, coordinate attention (CA), CBAM, ECANet,
SPANet, DANet, EPASNet, and triplet attention (abbreviated as triplet), were selected.
Tables 4 and 5 show the accuracy comparison results along with the model complexity
of the YoloV4-based object detection algorithm. With the addition of the M3Att module,
the proposed M3Att–YoloV4 achieved 4.93% higher detection accuracy than the YoloV4
object detection network, and the number of parameters used was only 0.52 M higher, giv-
ing better results. In addition, compared to DANet, which is representative of the excellent
hybrid attention mechanism in the last years, M3Att reduced the number of parameters
and computational cost by 28.2% and 11.3% respectively, with a slight improvement in
detection accuracy. In summary, based on the above results, our M3Att module achieved
superior parametric number comparisons and detection accuracy comparisons at a lower
computational cost.

For a more intuitive comparison of the performance of this method with other attention
mechanisms for object detection, a visual comparison graph is introduced in this paper for
evaluation purposes. The visual contrast diagram is shown in Figure 7. Figure 7a shows
only one class of objects; however, there are occlusions and small objects, and the pose of
each object class varies, so whether objects in the image can be fully detected can be a good
test of the model’s performance in dealing with various complex conditions.

As can be easily seen from the figure, it is easy to see that M3Att alone does not have
any false or missed detection and detects all the objects completely. Figure 7b shows only
one object class, a boat, but it is more difficult to detect due to the dark background of
the image and the severe occlusion between objects. Only M3Att detects occluded objects,
as shown in Figure 7.

To quantitatively and intuitively explain how M3Att makes full use of the object’s
salient features to enhance the network’s performance, this paper introduces the Grad-CAM
technique [37], which shows a comparative analysis of eight attentional mechanisms with
the M3Att attentional map. The visualized class heat map allows one to identify the parts
of the object detection task, in which the darker colors represent the parts that have the
most significant impact on the results, that is, the most significant feature. A comparison
diagram is presented in Figure 8. The visualization in Figure 8 demonstrates the inherent
advantages of M3Att, which is better able to focus on salient features and cover salient
regions than the rest of the attention mechanisms. In other words, M3Att can learn to use
the information within the object region and cluster features from it very well. Therefore,
this feature can significantly improve the performance of object detection networks.



Mathematics 2022, 10, 4150 11 of 17

Table 4. Experimental results of different attention mechanisms (based on YoloV4).

Method mAP Areo Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV

YoloV4 [11] 82.22 91.78 89.98 86.21 73.60 74.48 90.65 93.33 91.35 68.92 92.03 76.22 89.48 93.61 92.96 90.34 54.78 86.67 91.41 91.99 86.49

YoloV4 [11] + SE [5] 85.54 93.72 92.33 84.48 78.70 77.82 91.50 93.62 89.74 72.93 89.15 80.21 86.44 91.32 93.31 89.93 61.42 85.55 79.61 91.70 87.37

YoloV4 [11] + CA [23] 84.31 90.15 91.90 83.78 75.05 74.32 89.86 93.36 90.57 68.90 91.39 78.50 85.14 91.73 90.60 89.41 60.21 86.36 76.22 92.08 86.71

YoloV4 [11] +
CBAM [8] 85.43 93.26 92.59 84.45 75.67 76.32 89.66 93.30 89.82 72.48 92.15 80.52 87.76 92.29 91.77 89.21 62.12 87.73 80.59 90.31 86.57

YoloV4 [11] + ECA [17] 85.99 83.66 91.16 86.21 75.02 78.43 91.10 93.61 90.79 73.15 93.13 81.21 87.81 92.59 92.76 90.63 63.44 88.71 80.37 90.59 85.47

YoloV4 [11] +
SPANet [31] 82.37 88.69 87.79 83.80 71.26 70.98 89.16 91.67 89.44 66.56 90.30 74.78 86.71 91.46 88.06 88.46 54.84 82.82 76.30 90.71 83.55

YoloV4 [11] +
DANet [22] 87.09 93.24 90.63 87.62 79.90 80.03 92.03 91.34 90.82 74.23 93.35 82.96 91.01 92.84 92.98 90.94 63.41 91.84 79.77 95.06 87.92

YoloV4 [11] +
ESPANet [30] 84.32 91.41 88.85 85.73 73.90 76.15 90.58 92.75 88.56 69.90 90.57 81.06 84.62 90.82 91.94 89.53 60.43 87.09 74.52 92.39 85.64

YoloV4 [11] +
Triplet [32] 82.41 90.68 87.65 82.25 70.38 73.49 89.10 91.46 89.64 66.55 88.96 75.20 85.79 91.15 88.17 87.56 55.79 83.99 76.08 91.50 82.91

YoloV4 [11] +
Residual [21] 85.81 93.93 91.78 84.96 78.95 77.61 89.25 92.84 90.37 71.57 92.14 81.91 88.09 93.14 92.43 89.69 60.39 88.02 80.72 92.18 86.29

YoloV4 [11] + M3Att 87.15 93.28 91.08 87.09 79.35 79.30 93.00 94.21 92.29 73.05 92.88 83.66 91.36 92.03 93.02 91.09 64.12 90.87 81.28 94.00 85.34

Table 5. Comparison of mechanisms parameters.

Model Input Size mAP(%) Parameters (M) GFlops (G)

Yolov4 [11] 416× 416 82.22 64.040 29.948
Yolov4 [11] + SE [5] 416× 416 85.54 64.083 59.898

Yolov4 [11] + CA [23] 416× 416 84.31 64.075 59.659
Yolov4 [11] + CBAM [8] 416× 416 85.43 64.731 59.900
Yolov4 [11] + ECA [17] 416× 416 85.99 64.040 59.898

Yolov4 [11] + SPANet [31] 416× 416 85.54 64.513 59.901
YoloV4 [11] + DANet [22] 416× 416 87.09 89.806 68.606

YoloV4 [11] + EPSANet [30] 416× 416 84.32 65.755 60.482
YoloV4 [11] + Triplet [32] 416× 416 82.41 64.041 59.902

YoloV4 [11] + Residual [21] 416× 416 85.81 64.999 61.204
YoloV4 [11] + M3Att 416× 416 87.15 64.467 60.822
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Figure 7. Visual comparison of VOC datasets.

Figure 8. Visualization of Grad-CAM.

4.6. KITTI Dataset Experiment

To test the performance of our algorithm in complex scenarios, the KITTI dataset
was selected for the experiments. The dataset contained 7482 images with eight object
categories, including 6733 images in the training set and 749 in the test set. For statistical
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and analysis purposes, the eight categories in the KITTI dataset were combined into three
categories, namely, Car, Cyclist, and Pedestrian. The images in this dataset were captured
from real street scenes and therefore involved many small and medium objects in complex
environments. Experiments on the KITTI dataset can further demonstrate the model’s
performance. Table 6 shows the comparison results of the proposed module M3Att with
the other eight attention mechanisms on the KITTI dataset. Compared with the other eight
mainstream attention mechanisms on mAP, M3Att achieved the best results. Compared
with other methods, this algorithm achieved the best improvement over YoloV4 with a
5.38% improvement in mAP. For these eight classical attentional mechanisms, the simple
global mean pool ignores the local information in the channel, so the algorithm does not
perform exceptionally well in datasets with large numbers of small and medium objects.

Experimental results of different attention mechanisms on the KITTI dataset are shown
in Figure 8. The P-R graph of the three objects types on the KITTI dataset are shown in
Figure 9.

Experimental results of different attention mechanisms and the P–R graph of the three
object types on the KITTI dataset are shown in Figure 9. An irregular curve enclosed by the
vertical axis of accuracy and the horizontal axis of completeness is called a P–R curve. P and
R values should be as high as possible for better experimental results, but precision and re-
call are contradictory. A higher precision rate tends to be associated with a lower recall rate.
Thus, the P–R curve plotting can better study the model performance. From Figure 9, the P–
R graph of this algorithm is significantly better than the other algorithms. The proposed
M3Att module in this paper can successfully capture object information. It improves object
detection accuracy significantly compared to YoloV4, SENet, CA, CBAM, ECANet, SPANet,
and DANet, as well as EPSANet networks, triplet networks, and other object detection and
attention mechanisms. The final mAP achieved 86.94% with good detection results.

Table 6. Experimental comparison results on the KITTI dataset.

Model Input Size mAP

Yolov4 [11] 416× 416 81.56
Yolov4 [11] + SE [5] 416× 416 84.55

Yolov4 [11] + CA [23] 416× 416 85.11
Yolov4 [11] + CBAM [8] 416× 416 83.39

Yolov4 [11] + ECANet [17] 416× 416 85.92
Yolov4 [11] + SPANet [31] 416× 416 85.21
Yolov4 [11] + DANet [22] 416× 416 86.09

Yolov4 [11] + EPSANet [30] 416× 416 82.72
Yolov4 [11] + Triplet [32] 416× 416 82.99

YoloV4 [11] + Residual [21] 416× 416 83.35
Yolov4 [11] + M3Att 416× 416 86.94

Figure 9. P–R graph for objects in the KITTI dataset.

4.7. Ablation Studies

As indicated in Table 7, this set of experiments verified the effectiveness of M3Att on
the PASCAL VOC2007 dataset by adjusting the cluster size of the clustered convolution.
Since parallel computing will significantly increase the number of model parameters,
clustered convolution is introduced to deal with the increasing number of parameters.
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Table 7. Results of group size ablation experiments.

Kernel Size Group Size Input Size mAP (%) Parameters (M)

(3,5,7,9) (4,8,16,16) 416× 416 86.28 64.409
(3,5,7,9) (4,4,4,4) 416× 416 87.29 64.972
(3,5,7,9) (16,16,16,16) 416× 416 87.08 64.343
(3,5,7,9) (1,4,8,16) 416× 416 87.01 64.674
(3,5,7,9) (1,4,16,32) 416× 416 87.15 64.467
(3,5,7,9) (1,8,16,32) 416× 416 86.97 64.496
(3,5,7,9) (8,8,8,8) 416× 416 87.15 64.553
(3,3,3,3) / 416× 416 86.55 64.870

(3,2× 3,3× 3,3× 3) (1,4,16,32) 416× 416 86.22 65.008

Using parallel computing significantly increases the number of model parameters, so
we introduced clustered convolution to deal with the increasing number of parameters.

As can be seen from the results in the table, grouping size directly affects the per-
formance and complexity of the model. Hence, this paper determined the convolutional
kernel size and adjusted the group size to balance model performance and complexities.
Lastly, this paper used a convolutional kernel size of (3,5,7,9) and a convolved clustering of
(1,4,16,32).

Notes: 2× 3, 3× 3 means two cascades connected to 3× 3 convolutional kernels, and
three cascades connected to 3× 3 convolutional kernels.

To test the impact of the three modules proposed in this paper on object detection
results, we performed ablation experiments on the PASCAL VOC2007 dataset. The results
can be seen in Table 8. It is easy to see from the experimental results that adding the MFE
module allows the network to extract more detailed features, and mAP increases from
82.22% to 85.41% compared to the original object detection network Yolov4. On this basis,
mAP was increased from 82.22% to 85.41% by adding the channel attention mechanism,
and the model focused on each key characteristic. Secondly, by introducing the spatial
attention mechanism, the model could focus on key regions, and the mAP value increased
to 86.97%. Lastly, a skip connection mechanism was introduced to transfer the bottom
features from the shallow layer to the deep layer, compensating for a large amount of
detail lost in the deep one. The final model mAP value reached 87.15%, which achieved a
relatively good result.

Table 8. Experiments with M3Att embedded in different object detection networks.

mAP YoloV4 MFE Channel
Attention

Spatital
Attention

Skip
Connection

82.22
√

85.41
√ √

85.99
√ √ √

86.97
√ √ √ √

87.15
√ √ √ √ √

4.8. Practical Scenario Experiments

To test the robustness of the algorithm in real-world environments, we experimented
with the 2020 Zhanjiang Underwater Robotics Competition dataset, visualizing the com-
parison as shown in Figure 10. The proposed M3Att performed better than the current
mainstream attention mechanisms in object detection tasks in a real-world environment.
In particular, M3Att performed well in the small objects, with all objects detected with
high confidence. In some specific cases, M3Att detected unlabeled objects, as shown in
Figure 10a, demonstrating the robustness of our M3Att. To verify the model’s performance
in complex underwater environments, Figure 10b tested the performance of the M3Att in
fuzzy and occluded conditions, in which only M3Att detected the entire contents of all
annotated images and the unannotated scallops in the upper right corner of the image with
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high confidence. This is because M3Att uses a multibranching structure that combines the
advantages of channel attention and spatial attention to achieve additional complementary
properties that effectively highlight object features and suppress irrelevant information,
thus increasing the confidence of each object and further validating the model.

Figure 10. Comparison of the actual detection effect of different attention mechanisms.

5. Conclusions

In this paper, an effective and lightweight attention mechanism named M3Att was
proposed. It is plug-and-play and can be easily added to any object detection network to
improve network performance. The multiscale feature extraction module (MFE) can fully
extract multiscale information and enrich feature information by channel shuffling. At the
same time, a hybrid form of the channel and spatial attention is used to construct long-
range channel dependence, which is more helpful in obtaining complementary features.
Finally, we introduced a skip connection mechanism to connect the shallow information
with the profound information after multiple convolutions, avoiding the information loss
problem after numerous convolutions. Experimental results demonstrate that our M3Att
is successful. It was verified that our M3Att can achieve the best performance in object
detection compared with other attention mechanisms. In future work, we will continue to
explore the role of M3Att in the remaining computer vision tasks.

Author Contributions: Methodology, G.M.; writing—original draft preparation, G.L.; data curation,
G.L.; review and editing, H.Z. and B.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (61773415),
the National Key Research and Development Program of China (2019YFD0900805) and Science and
Technology Project of Fujian University of Technology (GY-Z220205).

Informed Consent Statement: Not applicable.

Data Availability Statement: PASCAL VOC2007 dataset (http://host.robots.ox.ac.uk:8080/pascal/
VOC/voc2007/, accessed on 1 September 2022.), PASCAL VOC2012 dataset (http://host.robots.ox.ac.
uk/pascal/VOC/voc2012/, accessed on 1 September 2022.), KITTI dataset (https://www.cvlibs.net/
datasets/kitti/, accessed on 1 September 2022.), 2020 Zhanjiang Underwater Robotics Competition
dataset. Restrictions apply to the availability of these data. The data were obtained from the Fujian
University of Technology and are available from the authors with the permission of Institute for
Machine Learning and Intelligence Sciences.

http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
https://www.cvlibs.net/datasets/kitti/
https://www.cvlibs.net/datasets/kitti/


Mathematics 2022, 10, 4150 16 of 17

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wu, X.; Sahoo, D.; Hoi, S.C. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [CrossRef]
2. Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv 2019, arXiv:1905.05055.
3. Huang, Z.; Li, W.; Xia, X.G.; Wu, X.; Cai, Z.; Tao, R. A novel nonlocal-aware pyramid and multiscale multitask refinement detector

for object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–20. [CrossRef]
4. Guo, M.; Xu, T.; Liu, J.; Liu, Z.; Jiang, P.; Mu, T.; Zhang, S.; Martin, R.; Cheng, M.; Hu, S. Attention mechanisms in computer

vision: A survey. arXiv 2021, arXiv:2111.07624.
5. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
6. Chaudhari, S.; Mithal, V.; Polatkan, G.; Ramanath, R. An attentive survey of attention models. ACM Trans. Intell. Syst. Technol.

(TIST) 2021, 12, 1–32. [CrossRef]
7. Park, J.; Woo, S.; Lee, J.Y.; Kweon, I.S. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514.
8. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
9. Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans.

Pattern Anal. Mach. Intell. 2019, 43, 652–662. [CrossRef]
10. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.
11. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
12. Everingham, M.; Eslami, S.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A

retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
13. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
14. Wang, F.; Tax, D.M. Survey on the attention based RNN model and its applications in computer vision. arXiv 2016,

arXiv:1601.06823.
15. Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.S. Sca-cnn: Spatial and channel-wise attention in convolutional

networks for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 5659–5667.

16. Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global second-order pooling convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–21 June 2019; pp. 3024–3033.

17. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020; pp. 11531–11539.

18. Qin, Z.; Zhang, P.; Wu, F.; Li, X. Fcanet: Frequency channel attention networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 783–792.

19. Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An empirical study of spatial attention mechanisms in deep networks. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 6688–6697.

20. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Vedaldi, A. Gather-excite: Exploiting feature context in convolutional neural networks. Adv.
Neural Inf. Process. Syst. 2018, 31 .

21. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 3156–3164.

22. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–21 June 2019; pp. 3146–3154.

23. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 13713–13722.

24. Zhang, Z.; Lan, C.; Zeng, W.; Jin, X.; Chen, Z. Relation-aware global attention for person re-identification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3186–3195.

25. Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid detection and counting of wheat ears in the field using YOLOv4 with attention module.
Agronomy 2021, 11, 1202. [CrossRef]

26. Kim, M.; Jeong, J.; Kim, S. ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image.
Remote Sens. 2021, 13, 4851. [CrossRef]

27. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June
2018; pp. 6848–6856.

28. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

http://doi.org/10.1016/j.neucom.2020.01.085
http://dx.doi.org/10.1109/TGRS.2021.3059450
http://dx.doi.org/10.1145/3465055
http://dx.doi.org/10.1109/TPAMI.2019.2938758
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.3390/agronomy11061202
http://dx.doi.org/10.3390/rs13234851


Mathematics 2022, 10, 4150 17 of 17

29. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

30. Zhang, H.; Zu, K.; Lu, J.; Zou, Y.; Meng, D. Epsanet: An efficient pyramid split attention block on convolutional neural network.
arXiv 2021, arXiv:2105.14447.

31. Guo, J.; Ma, X.; Sansom, A.; McGuire, M.; Kalaani, A.; Chen, Q.; Tang, S.; Yang, Q.; Fu, S. Spanet: Spatial pyramid attention
network for enhanced image recognition. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo
(ICME), London, UK, 6–10 July 2019; pp. 1–6.

32. Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to attend: Convolutional triplet attention module. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision(WACV), Waikoloa Beach, HI, USA, 5–9 January 2021;
pp. 3139–3148.

33. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
34. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
35. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
36. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2017, 39, 1137–1149. [CrossRef] [PubMed]
37. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via

gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29
October 2017; pp. 618–626.

http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

	Introduction
	Related Work
	Materials and Methods
	Multiscale Feature Extraction Module
	Channel Attention Module
	Spatial Attention Module
	M3Att Attention Module

	Experimental Results and Analysis
	Dataset
	Experimental Environment and Parameter Settings
	Evaluation of the Model Performance
	Analysis of the Generalizability of the Model
	Experiment Comparing Different Attention Mechanisms
	KITTI Dataset Experiment
	Ablation Studies
	Practical Scenario Experiments

	Conclusions
	References

