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Abstract: The progressive collapse behavior and energy release of columnar jointed basalts (CJBs)
can be greatly influenced by different joint distance ratios. By adopting the digital image correlation,
a series of heterogeneous CJB models are established. The continuous fracture process and acoustic
emissions (AEs) are captured numerically under varying lateral pressures. The load curves under
different joint distance ratios and model boundaries are analyzed. Meanwhile, the strength, defor-
mation modulus and AE rule are discussed. The data indicate that under plane strain, the troughs
of compression strength appear at the column dip angle β = 30◦, 150◦, 210◦ or 330◦; the equivalent
deformation modulus changes in an elliptical way with β increasing; the compression strength and
equivalent deformation modulus are higher than the case between plane stress and plane strain
under different joint distance ratios. When β = 30◦, the accumulation of AE energy corresponding
to the stress peak under plane strain are higher than the case between plane stress and plane strain
but becomes lower when β increases to 60◦, which implies the critical transformation of the AE
energy-related failure precursor affected by column dip angle. These achievements will contribute to
the design, construction and support of slopes and tunnels encountering CJBs.

Keywords: columnar jointed basalt; failure mechanism; acoustic emission; joint distance ratio;
numerical simulation

MSC: 74-10

1. Introduction

The columnar jointed basalts (CJBS) generally form because of the condensation
and contraction of magma and contain obvious columnar joints. The CJBs are popularly
distributed in many sites on this planet, such as Scotland, Siberia, China, Mexico, Australia,
the United States, Brazil, India, etc. [1–4]. Columnar joints have even been found on
Mars [5]. In the past decades, the columnar jointed rock masses (CJRMs) were encountered
in several hydropower stations located in southwest China, such as the Baihetan, Jinanqiao,
Wudongde, Xiluodu, and Tongjiezi hydropower stations. Two photographs [5,6] of CJRMs
are shown in Figure 1.

Some researchers have investigated the anisotropy, size effect and confining pres-
sure effect of CJBs (or CJRMs). In terms of numerical simulation, insightful achievements
have been obtained. However, few studies have been conducted regarding the mechan-
ical responses of CJBs with different joint distance ratios and model boundaries. The
homogenization-based model was developed by Meng et al. [7] for studying the effect of
discontinuous structures and the elastic parameters. Zheng et al. [1] calculated the influ-
ences of size effect and anisotropy using the discrete element method (DEM). Yan et al. [8]
modelled the deformation and failure of CJRMs using the finite difference method (FDM).
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Li et al. [3] discussed the transient-thermoelastic fractures affected by the highly time-
dependent thermal loads by applying the numerical manifold method (NMM). Niu et al. [9]
calculated the permeability property of CJRMs with various dip angles numerically, and a
case study was also carried out. However, the gradual failure process and energy evolution
of CJBs have not been understood in depth.
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land [6]; (b) the columnar joints discovered on Mars [5].

In terms of physical tests, some useful results have been achieved. With the aim of
understanding the hydraulic fracturing of CJRMs, the compression tests were performed
under triaxial stress state by Xiang et al. [10]. Through a series of compression experiments
under uniaxial stress state, Ke et al. [11] analyzed the anisotropy induced by transverse
joints. Shi et al. [12] presented an approach to obtain the strengths using the Mohr–Coulomb
and Hoek–Brown criteria under triaxial stresses. A group of laboratory tests were carried
out by Jin et al. [4] for understanding the anisotropic parameters of CJRMs. To analyze the
actual geological structures on site, the uniaxial testing was carried out by Ji et al. [13]. The
quadrangular, pentagonal and hexagonal prisms were also investigated by Que et al. [14]
in a laboratory. The anisotropic parameters were discussed by combining the structural
features of three kinds of models. In the field tests of CJBs (or CJRMs), many valuable
results have been obtained. However, the rock masses in nature are generally compli-
cated. The preparation of rock specimens would suffer unexpectable disturbance [2,15–19].
Meanwhile, the AE energy evolution during the fracture process for the CJBs are greatly
affected by joint distance ratio and model boundary and remains unclear. Moreover, when
there are many experimental scheme configurations and specimens, time-consuming and
uneconomical problems will be encountered.

On the one hand, the influence of column dip angles, joint distance ratios and model
boundaries on the mechanical properties of CJBs should be revealed systematically. On
the other hand, it will contribute to understand the collapse mechanism to reproduce the
progressive fracture process and AE energy evolution appropriately. In the engineering
projects, the CJBs could not only show significant discontinuity and anisotropy, but also
suffer lateral pressure. Hence, it has significant value to reveal the complex deforming and
bearing features, failure mechanisms and instability precursor of CJBs under lateral pressure.

In this study, to analyze the failure mechanism and AE release rule of CJBs containing
various joint distance ratios under different boundary conditions, the digital CJB figures
were used for creating the non-homogeneous models. Based on meso-mechanics and
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statistical damage mechanics, a series of numerical tests were conducted. The simulated
results were analyzed by comparing with the corresponding tests to verify the rationality
and reliability. Furthermore, the continuous failure process and damage failure pattern of
the CJB were reproduced. The influence of column dip angles, joint distance ratios and
model boundaries on the accumulation of AE energy were comprehensively analyzed to
provide the theoretical basis for the treatment measures.

2. Materials and Methods
2.1. The Combination of RFPA and DIC

In terms of the main advances of the rock failure process analysis (RFPA) approach, the
assumptions on where and how cracks will occur and propagate are not needed [20,21]. In
addition, its effectiveness in modelling the non-linear deforming and bearing of rocks has
been verified by many researchers [22,23]. Moreover, RFPA has been adopted in simulating
slope instability [24], size effect [25] and zonal disintegration characteristics [26] of rocks.
Thus, RFPA has been chosen in this study.

The digital image correlation (DIC) was adopted for building up the RFPA models.
Firstly, the vectorized coordinates of elements were obtained through importing and
processing the digital figures using the gray-threshold segmentation. Considering the
digital figures consist of many square pixels, each pixel corresponds to one finite element,
and the spatial coordinates of every pixel corresponds to the node coordinates of the related
element. Secondly, the joint or matrix of rocks can be determined by dividing the gray
value of pixels, and the related material properties will be assigned. According to the
above principle, the creation process of non-homogeneous numerical models is presented
in Figure 2a.
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The element constitution subject to uniaxial stress is depicted in Figure 2b. Through
the approach of extending uniaxial constitutive relation to triaxial stress states (Mazars and
Pijaudier-Cabot [27]), the constitutive relation shown in Figure 2a can be extended to the
triaxial stress states.

2.2. Damage and Failure of One Meso-Element

The rock nonuniformity can be taken into account if the parameter values of meso-
elements are assumed to obey the Weibull distribution:

f (u) =
m
u0

(
u
u0

)m−1
exp

(
− u

u0

)m
(1)

where u is a certain parameter of meso-elements, e.g., compressive strength; u0 represents
the related mean value of u. The notation m represents the heterogeneity index and reflects
the nonuniform degree. A higher m implies a higher non-uniformity.

If one element suffers tension along an axis, the elastic-brittle damage constitution
described by Equation (2) will be applied.

σ3 ≤ ft (2)

where ft represents the unique strength under uniaxial tensile. Note that the stress and
strain under compression are positive in this study.

Moreover, the Mohr-Coulomb strength criterion is used for judging the shear damage
of one meso-element as shown by Equation (3).

σ1 −
1 + sinϕ

1 − sinϕ
σ3 − fc ≥ 0 (3)

where σ1, σ3, ϕ and fc represents the major principal stress, minor principal stress, inter-
nal friction angle and uniaxial compressive strength, respectively. The damage-induced
degeneration of element parameter can be computed according to Wang et al. (2022) [28].

2.3. Modeling Effectiveness

The indoor experiment by Ke et al. [11] is adopted to verify the simulation-based
approach. Ke et al. [11] made the columns using cement, fine sand, water and water
reducer with the mass ratio of 1.0:0.5:0.35:0.002. A regular hexagonal prism containing
the section diameter = 10 mm and the length = 50 mm was selected for simulating the
actual column. The white cement slurry was used for bonding columns, which simulates
joint surface. The ratio of longitudinal to transverse of column was 5. The shift distance
of transverse joint was 25 mm. Seven kinds of column-dip angles (β) from 0◦ to 90◦

were considered. The rock mass specimens were regular 50 mm × 50 mm × 100 mm
quadrangular prisms. The compressive testing was carried out by applying the CSS-3940YJ
rock mechanics servo testing machine. The loading method with constant displacement
rate of 0.05 mm/min was used. A flat steel cushion block was placed at the rock ends.
Then, vertical pressure was applied until the failure of the specimen.

Note that the 50 mm × 100 mm models were used for verification under different
load directions subject to plane strain. The inner hexagonal prisms have a diameter of
10 mm. The digital figures were used for creating the numerical samples as displayed in
Table 1. The parameter values of the finite element models were determined according to
the literatures [8–13,16–19] and presented in Table 2. The displacement load with a ratio of
0.005 mm/step was used until the model failure.
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Table 1. The model geometry and load conditions used for verification.

Column Dip Angle (β) 15◦ 45◦ 60◦

Model
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2.4. Numerical Investigation

In this section, the column length and diameter are 0.5~3 m and 13~25 cm, respectively.
The specimens for numerical testing are square models and are 4 m in size, and the diameter
of columns inside specimens is 20 cm. The rock heterogeneity index is considered as 5. The
elastic modulus of joints is 15 GPa. The residual index of strengths after rock failure is taken
as 0.5. The dip angles of the column are 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦, respectively. The
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spacing of the secondary joints is 1.5 m. Simultaneously, the distance ratio of the secondary
joints changes from 0% to 50%. The lateral pressure is considered as 4 MPa. In terms of the
boundary conditions, two cases are taken into account including the plane strain and the
case between plane stress and plane strain.

Moreover, the meso-element size of the models remains the same. For instance, the
element number of the 4 m specimen is 1,081,600. The applied configuration for established
CJB specimens along the direction parallel to the column axis are presented as Figure 3a–g.
For Figure 3e, the normal displacement constraints are applied on the two faces. For
Figure 3f, the normal displacement constraint is applied only on one face, and the other
normal direction of the plane is free. For Figure 3a–g, the pre-set loading is applied onto
the top surface along the vertical direction until the model failure.
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(e) the model setup under plane strain; (f,g) the model setup for the case between plane stress and
plane strain.

Generally, the parameter values of joints will be lower than rock matrix [29]. The selec-
tion of parameters can affect the elastic moduli and compression strengths [30]. According
to the corresponding literatures [8–13,16–19], the mechanical parameter values of rock and
joint of CJBs are determined (see Table 2).
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3. Results
3.1. The Deforming and Bearing under Different Joint Distance Ratios
3.1.1. Under Plane Strain

According to Figure 4a, under the lateral pressure of 4 MPa, in terms of compressive
strength (CS), when the joint distance ratio is 0%, the compressive strength of specimen
shows a roughly U-shaped trend as β increases; when the joint distance ratio is 20%, 40%
and 50%, that changes roughly in a V-shaped trend as β increases. At β of 60◦ and 75◦,
compared with the specimen with a joint distance ratio of 0%, for the models with the joint
distance ratios of 20%, 40% and 50%, the CS is risen greatly, which is caused by the obvious
growth of the effective bearing area. Furthermore, combined with Figure 4c, it is clear that
for the CJBs with various joint distance ratios, the troughs of CS appear at β = 30◦, 150◦,
210◦ and 330◦; the peaks of CS appear at β = 0◦, 90◦, 180◦ and 270◦. Additionally, for the
CJBs with the joint distance ratios of 20%~50%, the CSs of specimens decrease sharply near
β = 0◦ and 180◦, which results from the rapid penetration failure of joints. However, they
change relatively gently near β = 90◦ and 270◦.
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Figure 4b shows that under plane strain, in the aspect of equivalent deformation
modulus (EDM), when the joint distance ratio is 0%~50%, the EDM of specimen reduces in
the beginning, but changes/fluctuates with β increases later. The highest value of EDM
appears when β = 0◦; the lower values of EDM exist at the range of β = 45◦~90◦. Moreover,
combined with Figure 4d, it is clear that for the CJBs with various joint distance ratios, the
EDMs change in elliptical way with β increases. The EDM of the models is less sensitive to
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the variation in joint distance ratio, which is mainly because the compaction and elastic
deformation are not sensitive to joint distance ratio.

Figure 5a,b displays the loading curves of the CJBs owning various joint distance
ratios when the lateral pressure = 4 MPa under plane strain. As presented in Figure 5a,
when the joint distance ratio = 0%, the loading curve of the CJBs with β = 60◦ show ductile
failure characteristic, while the loading curves of other CJBs show basically brittle failure
characteristics. In addition, no residual strength stage exists on the loading curves for
β = 15◦, 30◦ and 75◦, indicating that the failure and overall instability of specimen occur.
As shown in Figure 5b,d, the loading curves for various column dip angles are almost
with some characteristics of brittle failure. When the joint distance ratio is 20%, 40% and
50%, there is no residual strength stage in the loading curve when β = 15◦, while regarding
the other column dip angles, the residual strength stages exist in the loading curves. If
β = 30◦ and 75◦, compared with the CJBs with joint distance ratio 0%, for the CJBs with
joint distance ratios 20%~50%, the residual strength stability is improved.
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3.1.2. The Cases of Two Kinds of Model Boundaries

Figure 6 shows the CSs and EDMs of CJBs with different joint distance ratios in the
cases of two kinds of model boundaries. As depicted in Figure 6a, in terms of CS, for the
CJBs with β = 30◦ under the lateral pressure = 4 MPa, from the perspective of joint distance
ratio, if the boundary condition is the case between plane stress and plane strain, the CS of
specimen displays a decreasing and increasing fluctuation trend with the growth of joint
distance ratio, in which the ratio of the highest CS to the lowest CS is 1.023, indicating
the very small fluctuation range. If the boundary condition is plane strain, the model CS
reduces in the beginning, but rises as the joint distance ratio increases later. The ratio of the
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highest value to the lowest value of CS is 1.012, which shows that the variation range is
also very small. From the perspective of model boundary condition, the CS under Case II
is higher than Case I. If the model boundaries are changed in Case II, the increasing rates of
CSs of specimens with joint distance ratios of 0%, 20%, 40% and 50% are 13.41%, 14.56%,
13.22% and 15.23%, respectively.
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Figure 6. For the cases of two kinds of model boundaries and the CJBs with different joint distance
ratios: (a,c) the compressive strength for β = 30◦ and 60◦; (b,d) the equivalent deformation modulus
for β = 30◦ and 60◦ (Case I corresponding to the case between plane stress and plane strain and Case
II corresponding to the plane strain).

As presented in Figure 6b, for the CJBs with β = 30◦ when the lateral pressure = 4 MPa,
from the perspective of joint distance ratio, if the model boundaries are Case II, the EDM of
specimen displays a reducing and rising fluctuation trend with the increase in joint distance
ratio. If the model boundaries are Case I, the model EDM decreases in the beginning, but
increases with the growth of joint distance ratio. From the perspective of model boundary
condition, if the model boundaries vary from Case I to Case II, the increasing rates of EDMs
of specimens with joint distance ratios of 0%, 20%, 40% and 50% are 3.68%, 4.78%, 0.25%
and 5.35%, respectively, indicating that there is no obvious difference for the EDMs of
specimens under the two model boundaries.

Figure 6c shows that in terms of CS, for the CJBs with β = 60◦ when the lateral
pressure = 4 MPa, from the perspective of joint distance ratio, if the model boundaries
are Case between plane stress and plane strain, the model CS rises in the beginning, but
reduces as the joint distance ratio increases, in which the ratio of the highest value to the
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lowest value of CS is 1.233. If the model boundaries are in plane strain, as the joint distance
ratio rises, the model CS also increases firstly but decreases later. For this case, the ratio
of the highest value to the lowest value of CS is 1.320. From the perspective of model
boundary condition, the CS in Case II is higher than that in Case I. If the model boundaries
vary from Case I to Case II, the increasing rates of CSs of specimens with joint distance
ratios of 0%, 20%, 40% and 50% are 21.16%, 29.68%, 29.70% and 36.09%, respectively.

Figure 6d shows that for the CJBs with β = 60◦ when the lateral pressure = 4 MPa, if the
model boundaries are Case II, the EDM of specimen displays a decreasing and increasing
fluctuation trend with the growth of joint distance ratio. If the model boundaries are Case
I, the model EDM reduces with the increase in joint distance ratio. From the perspective
of model boundary condition, if the model boundaries vary from Case I to Case II, the
increasing rates of EDMs of specimens with joint distance ratios of 0%, 20%, 40% and 50%
are 9.32%, 13.46%, 11.17% and 11.78%, respectively.

Figure 7a,b displays the loading curves influenced by various joint distance ratios in
the cases of two kinds of model boundaries. Figure 7a shows that for the CJBs with β = 30◦

when the lateral pressure of 4 MPa, if the model boundaries are Case I, the loading curves
of specimens with various joint distance ratios will be closer. For Case II, the loading curves
of specimens with different joint distance ratio show relatively obvious difference in the
residual strength stage. Significantly, no residual strength stage exists on the loading curve
for the joint distance ratio 0%, indicating that the macro instability of the model occurs.
Regarding the perspective of model boundary condition, compared with Case I, the stress
peak and residual strength of the model boundary condition in the case II are higher. As
shown in Figure 7b, for the CJBs with β = 60◦ if the model boundaries are Case I, the loading
curves influenced by various joint distance ratios show certain ductile failure characteristics,
which is caused by the relatively strong confining pressure. For Case II, the loading curve
for joint distance ratio 0% is with ductile failure characteristic, while the stress-strain curves
for joint distance ratios 20%, 40% and 50% show brittle failure characteristics, which results
from the obvious influence of confining pressure on CJB anisotropy. From the perspective
of model boundary condition, compared with Case I, the stress peaks for Case II are higher.
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Figure 7. For the two kinds of model boundaries and the loading curves affected by various joint
distance ratios: (a) for β = 30◦; (b) for β = 60◦ (Case I corresponding to the case between plane stress
and plane strain and Case II corresponding to the plane strain).

3.2. Fracture Processes and Energy Evolutions under Different Joint Distance Ratios
3.2.1. Failure Modes under Different Column Dip Angles

Figure 8 displays the z-direction displacement contours of the CJBs with the joint dis-
tance ratios 0%, 50% and various βs under plane strain when the lateral pressure = 4 MPa.
Figure 8a,h shows that for the CJBs with β = 0◦ and the joint distance ratio 0%, the columnar
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joints in the upper zone of the mode are damaged, and there is a fluctuating strip fracture
zone near the top of the model. Meanwhile, the sedimentation inside the model is dis-
tributed along the strip fracture zone. When the joint distance ratio is 50%, the fracturing
of the columnar joints in the middle of the upper area of the model develops deeper and
deeper. As presented in Figure 8b,i, for the CJBs with β = 15◦ and the joint distance ratio
0%, the columnar joints at the upper area of the model slide and become cracked due to the
compression shear. Simultaneously, the sedimentation inside the model mainly develops
along the dip angle of the cracked columns. For the condition of the joint distance ratio
50%, the joints within the upper area of the model slide and become damaged. As depicted
in Figure 8c,j, for the CJBs with β = 30◦ and the joint distance ratio 0%, the columnar
joints within the model slide under compression and shear, and the sedimentation at the
right side of the upper part of the specimen is transmitted to deeper part. When the joint
distance ratio is 50%, the joint slip characteristics and sedimentation inside the model are
also basically same as the case of the joint distance ratio 0%. As shown in Figure 8d,k, for
the CJBs with β = 45◦ and the joint distance ratio 0%, a relatively straight oblique shear
zone appears within the model, which connects the upper left area as well as the lower
right area of the specimen. For the condition of the joint distance ratio 50%, the oblique
fracture zone inside the specimen is relatively curved, while the sedimentation still mainly
developed following the oblique fractured area.
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As presented in Figure 8e,l, for the CJBs with β = 60◦ and the joint distance ratio 0%,
the shear sliding occurs at the secondary joint set within the model. Additionally, the
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shear fracture zone exists between the secondary joints in the upper area of the model.
The sedimentation is basically distributed within the middle area and the right area of the
upper part of the model, along the secondary joint set and shear fracture zone. When the
joint distance ratio is 50%, the secondary joint sets at the upper middle part of the model
are cut through, and the oblique shear fracture zones appear close to the upper end of the
specimen. As depicted in Figure 8f,m, for the CJBs with β = 75◦ and the joint distance ratio
0%, the shear sliding at the secondary joint sets inside the specimen is relatively obvious.
Additionally, there are two oblique shear fracture zones between the secondary joints at the
upper zone of the model. The sedimentation is mainly distributed along the fracture zones
and secondary joint sets, and in the right zone of the model, the sedimentation develops
deeper and deeper. For the joint distance ratio = 50%, the shear sliding at the secondary
joint sets is less obvious, and there are the oblique shear fracture zones at the upper part of
the specimen. As shown in Figure 8g,n, for the CJBs with β = 90◦ and the joint distance ratio
0%, the secondary joint sets at the upper-middle area of the model are damaged, where
an M-shaped shear fracture zone appears. The sedimentation mainly develops along the
M-shaped shear fractured area. Namely, at the upper part of the model, the sedimentation
is transmitted to a deeper depth. When the joint distance ratio is 50%, the secondary joint
sets at the upper middle part of the model are also damaged. The M-shaped shear fracture
zone and sedimentation distribution characteristics at the upper middle part of the model
are also similar as the case of the joint distance ratio 0%.

3.2.2. Fracture Processes and Energy Evolutions under Different Column Dip Angles

(1) For the CJBs with β = 30◦ and the joint distance ratio 0%

Figure 9a displays the schematic diagram of the CJBs model with β = 30◦ and the
joint distance ratio 0%, under the lateral pressure = 4 MPa. The stress-strain curve and AE
energy are presented in Figure 9b,c. Meanwhile, the minor principal stress contours at the
Points A~F are depicted in Figure 9d–i, describing the phenomenon of compression shear,
sliding, and cracking of joints, crack initiation, propagation and rupture. The red zones on
the minor principal stress diagram reflects the high-stress concentrations.

Combined with Figure 9b,d–i, it can be indicated that at the Point, the corresponding
columnar joints and secondary joint sets inside the specimen show stress concentration. At
the Point B, the columnar joints at the upper area of the model slide and become cracked.
At the upper middle area of the model, high-stress concentration occurs along the edges of
some columns, initially forming strip-shaped stress concentrations. When the loading is
reduced to the Point C, the fractures generate and develop along the edges of some columns,
the stresses is concentrated at the crack tips, and a strip-shaped stress concentration is
formed inside the specimen. If the loading reaches the Point D, the fractures propagate
further, the concentration extent of the original strip stress decreases, and there are stress
concentrations along the edges of some columns at the right middle side of the specimen.
When the loading reaches the Point E, the cracks initiate at the secondary joint sets. If the
loading reaches the Point F, fractures intensify inside those strip fracture zones above the
secondary joint sets. Moreover, there are strip damage zones at the upper surface and
middle parts of the model. These columnar joints slide and become cracked in the middle
upper part of the specimen. The secondary joint sets in the upper zone and the lower part
of the model get damaged, and the secondary joint set at the middle of the model fails.
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Figure 9. (a) For the case between plane stress and plane strain, the schematic diagram of the CJB
model with β = 30◦ and the joint distance ratio 0%; (b,c) the loading curve and AE energy; (d–i) the
minor principal stress contours at the Points A~F.

Figure 9c indicates that the AE energy release of the model shows roughly with the
double-peak distribution. The 1st peak may be mainly caused by the damage-slip cracking
at the upper middle area of the model. Meanwhile, the 2nd AE energy peak is mainly
caused by the damage sliding at columnar joints at the middle area of the model and the
crack creation and develop along the secondary joints.

(2) For the CJBs with β = 30◦ and the joint distance ratio 50%

Figure 10a shows the schematic diagram of the CJBs model with β = 30◦ and the joint
distance ratio 50% when the lateral pressure = 4 MPa. Figure 10b,c displays the loading
curve and AE energy. Figure 10d–i shows the minor principal stress contours at the Points
A~F. Combined with Figure 10b,d–i, at the Point A, these joint sets and secondary joint sets
inside the model show high-stress concentration. If the loading reaches Point B, the trend
of compressive shear sliding along the columnar joint sets near the top of the specimen.
If the loading reaches the Point C, the joint sets in the upper zone of the sample slide and
become cracked, and several columns at the top of the model show stress concentrations.
If the loading continues to decrease to the Point D, along the secondary joint set in the
upper part of that specimen, cracks initiate and the stresses concentrate, forming a strip
stress concentration zone. Near the upper end of the model, the columns also show stress
concentration, forming another strip stress concentration zone. If the loading is reduced to
the Point E, the stress concentrations are transferred to the vicinity below the position of
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the secondary joint set. When the stress reaches Point F, in the upper zone of the sample
and near the lower position of these secondary joint set, cracks are created and propagate,
and the stresses are concentrated at the crack tips. Simultaneously, within the right middle
part of the specimen, those joints slide under compression and shear, and the high-stress
concentrations appear at the edge of the nearby column. Moreover, there are strip damage
and fracture zones in the upper middle area of the model. In this area, the columnar joints
are damaged, slide and become cracked. At the position of secondary joint set in the upper
area of the model, the damage occurs. As shown in Figure 10c, the AE release of the model
shows a single-peak distribution. The peak is as a result of the damaging, sliding and
cracking of the columnar joints in the upper area of the sample.
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Figure 10. (a) For the case between plane stress and plane strain, the schematic diagram of the CJBs
model with β = 30◦ and the joint distance ratio 50%; (b,c) the loading curve and AE energy; (d–i) the
minor principal stress contours at the Points A~F.

(3) For the CJBs with β = 75◦ and the joint distance ratio 50%

Figure 11a displays the schematic diagram of the CJBs model with β = 75◦ and the
joint distance ratio 50% under the lateral pressure = 4 MPa. The stress-strain curve and AE
release are presented (see Figure 11b,c). The minor principal stress contours at the Points
A~F are depicted in Figure 11d–i. Combined with Figure 11b,d–i, at the Point, the joints
within the model and the secondary joint set at the middle of the model shows high-stress
concentration. If the loading reaches the Point B, the secondary joints at the upper middle
area of the model are damaged. In the meantime, the columns near it display obvious
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stress concentration. If the loading drops to the Point C, crack initiation, propagation and
penetration occur near the secondary joint set at the upper middle part of the model. In
addition, there is an oblique shear fracture zone between the secondary joint sets. If the
loading continues to decrease to the Point D, near the middle of the model, crack initiation,
propagation and penetration at the secondary joints develop towards the lower area of the
model. Simultaneously, crack creation and stress concentration happen near the secondary
joints at the right side of the model. If the loading is reduced to the Point E, fractures along
the secondary joint set of the specimen are intensified. Moreover, in the right middle part
of the specimen, the shear fracture zones develop and the stresses at the tips of cracks
are concentrated. If the loading reaches the Point F, the crushing inside the specimen
will intensify.
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Figure 11. (a) For the case between plane stress and plane strain, the schematic diagram of the CJBs
model with β = 75◦ and the joint distance ratio 50%; (b,c) the loading curve and AE energy; (d–i) the
minor principal stress contours at the Points A~F.

Meanwhile, the joints within the model are damaged. The secondary joints at the
upper area of the model are damaged and cracked, especially at the middle of the upper
area of the model, where the damage and fracture penetrate. Close to the upper end of the
model and at the right middle part of the model, the damaged zones are developed.

As displayed in Figure 11c, it is clear that the AE energy of the model displays the
double-peak distribution. The first energy peak might be induced by the primary joint
damage and the cracking of secondary joint set in the upper middle area of the model. The
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second peak might be as a result of the fracture of the primary joints near the upper left
area of the model and the development of the shear fracture zone in the right middle part
of the model.

3.2.3. Fracture Processes and Energy Evolutions under Various Joint Distance Ratios and
Column Dip Angle of 60◦

(1) When the joint distance ratio = 0%

Figure 12a shows the schematic diagram of the CJBs model with β = 60◦ and the joint
distance ratio 0% under the lateral pressure = 4 MPa. Figure 12b,c displays the loading
curve and AE energy. Figure 12d–I shows the minor principal stress contours at the Points
A~F. Combined with Figure 12b,d–i, at the Point A, the secondary joint set within the
specimen shows high-stress concentrations, with the trend of compression shear sliding.
If the loading goes to the Point B, the secondary joint sets inside the specimen gradually
slide, and the high stress concentrations appear near the upper end of the specimen. If
the loading reaches the Point C, the cracks are created near the upper end of the specimen.
If the loading continues to decrease to the Point D, near the upper end of the model, the
cracks propagate, and the stresses at the crack tips are concentrated. If the loading is
reduced to the Point E, the cracks further develop in the upper area of the specimen, but
the stress concentration reduces. If the loading reaches the Point F, fractures intensify from
the secondary joints and fracture zones. At the middle of the right side of the specimen, the
cracks initiate, and the stresses are concentrated. Meanwhile, the secondary joint sets slide,
are damaged, compressed, and sheared. The damage fracture zones are developed near the
top and at the upper area of the specimen.

Figure 12c shows that the AE energy of the specimen is roughly with four-peak
distribution (or multi-peak distribution). The first energy peak might be as a result of the
compression shear sliding at the secondary joint sets inside the specimen. The second peak
might be mainly caused by the damage development of fractured zone near the top of the
specimen. The third peak might be mainly as a result of the development of the fracture
zone near the upper end of the model, the fracture zone in the upper zone of the model
and the damage near the secondary joint sets. The fourth peak might be induced by the
fracturing aggravation at the secondary joint sets and the initiation and propagation of
cracks in the right middle area of the specimen.

(2) When the joint distance ratio = 20%

Figure 13a displays the schematic diagram of the CJBs model with β = 60◦ and the
joint distance ratio 20% under the lateral pressure = 4 MPa. The loading curve and AE
energy are shown in Figure 13b,c. The minor principal stress contours at the Points A~F
are displayed in Figure 13d–i. Combined with Figure 13b,d–i, at the Point A, the secondary
joint sets within the specimen show high-stress concentration. If the loading reaches the
Point B, near the upper end of the specimen, the high-stress concentrations appear around
the secondary joint sets. If the loading decreases to the Point C, the secondary joint sets get
fractured at the upper area of the model. The stress concentration is obvious near the upper
end of the model. When the loading continues to drop to the Point D, the creation and
propagation of cracks occur within the original stress concentration areas. If the loading
is reduced to the Point E, cracks further develop in the upper left and upper right parts
of the model. When the loading reaches the Point F, the crushing in the upper zone of the
model will intensify. Meanwhile, damage along columnar joint sets inside the specimen
develops. The compressive shear fractures appear along the secondary joint sets. The
damage fracture zones at the upper part of the model are formed. Figure 13c shows that
the elastic energy of the specimen shows the single-peak distribution. The peak is induced
by the compression-shear failure of the secondary joint sets, the damage of the primary
joints and the columns in the upper part of the model.
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Figure 13. (a) Under plane strain, the schematic diagram of the CJBs model with β = 60◦ and the joint
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the Points A~F.

(3) When the joint distance ratio = 50%

Figure 14a shows the schematic diagram of the CJBs model with β = 60◦ and the joint
distance ratio 50% under the lateral pressure = 4 MPa. Figure 14b,c displays the loading
curve and AE energy. Figure 14d–i show the minor principal stress contours at the Points
A~F. Combined with Figure 14b,d–i, at the Point A, the secondary joint sets within the
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specimen are with a certain degree of stress concentration. If the loading reaches the Point B,
the high stress concentrations are gradually significant near the secondary joint sets. If the
loading is reduced to the Point C, the secondary joints slide, are compressed and sheared,
and the creation and propagation of cracks and the high-stress concentration appears. If
the loading decreases to the Point D, the compression shear and sliding at the secondary
joint sets further develop. If the loading further decreases to the Point E, the compression
shear and sliding fracture at the secondary joint sets develops towards the lower area of
the model, but the extent of high-stress concentration reduces. If the loading is reduced to
the Point F, the crushing intensifies near the top of the model and at the secondary joints.
Meanwhile, there are the damage fracture zones developing towards the upper end of the
model. The compression shear, damage and fracture appear at secondary joint sets. The
damage at columnar joints is developed.

As presented in Figure 14c, the elastic energy of the model has a single-peak distribu-
tion. The peak is mainly as a result of the compression-shear damage and fracture of the
secondary joint sets, as well as the failure of the columns near the upper end of the model.

(4) When the joint distance ratio = 50%

Figure 15a displays the schematic diagram of the CJBs model with β = 60◦ and the
joint distance ratio 50%, in the case between plane stress and plane strain, under the lateral
pressure = 4 MPa. The stress-strain curve and elastic energy are shown in Figure 15b,c. The
minor principal stress contours at the Points A~F are depicted in Figure 15d–i. Combined
with Figure 15b,d–i, at the Point A, the high-stress concentrations appear at the primary and
secondary joints inside the model. If the loading is reduced to the Point B, the secondary
joint sets get cracked in the upper zone of the model, and there will be obvious concentrated
stresses around the secondary joint sets at the upper middle area of the model. When the
loading decreases to the Point C, the cracks near the secondary joint sets initiate, propagate
and penetrate in the upper area of the model, and the concentrated stresses move to the
columns near the secondary joint sets. If the loading continues to decrease to the Point D,
at the right side of the upper part of the specimen, the creation and propagation of cracks
form along the columns around the secondary joints. If the loading reaches the Point F,
the damage of the columns will intensify in the top zone of the specimen. Meanwhile, the
damage of columnar joints inside the model develops. The secondary joints near the top
part of the model are damaged and broken. The damage fracture zones are formed at the
columns between the secondary joint sets. As displayed in Figure 15c, the AE energy of the
specimen shows roughly the double-peak distribution. The first peak might be caused by
the compression damage of primary joints, and the cracking of the secondary joint sets and
surrounding columns. The second peak is basically as a result of the crack initiation of the
columns at the upper left area of the model, and the crack propagation of the columns at
the right side of the model.
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minor principal stress contours at the Points A~F.

3.3. The AE Counts and Energy Accumulations under Different Joint Distance Ratios
3.3.1. For the Case of Plane Strain

From Figure 16a–c, it is clear that for the CJBs with β = 30◦ and the joint distance ratio
0%, the AE count and energy accumulation change slightly in the beginning but increase
sharply later. When the joint distance ratio is 20% and 50%, the variation trend of the AE
count and energy accumulation is slow change, then shows a steep rise, and then slow
growth. In terms of the accumulation magnitude of AE energy, the order from small to
large is the joint distance ratios 0%, 20% and 50%, respectively. When the joint distance
ratio is 0%, no residual strength stage exists on the loading curve, indicating that the overall
instability of the model occurs. Before the instability failure, the AE count and energy
accumulation are lower than those for the joint distance ratios 20% and 50%.
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Figure 16. The AE counts and energy accumulations of the CJBs with different joint distance ratios:
(a–c) for β = 30◦ and the joint distance ratios 0%, 20% and 50%, respectively; (d–f) for β = 60◦ and the
joint distance ratios 0%, 20% and 50%, respectively.

As presented in Figure 16d–f, regarding the variation in the AE counts and energy
accumulations, for the CJBs with β = 60◦ and the joint distance ratio 0%, the AE count and
energy accumulation change gently at first and then grow. When the joint distance ratio is
20% and 50%, the variation trend of the AE count and energy accumulation is a slow change,
then it increases, and then shows gentle variation. In terms of the accumulation magnitude
of AE energy, the order from small to large is the joint distance ratios 0%, 50% and 20%,
respectively. When the joint distance ratio is 20%, there is a higher degree of damage and
fragmentation for the specimen under loading. Thus, the AE energy accumulations are
higher than those for the joint distance ratios 0% and 50%.

3.3.2. For the Case between Plane Stress and Plane Strain

Figure 17 displays the AE counts and energy accumulations of the CJBs with various
joint distance ratios. As depicted in Figure 17a–c, regarding the variation in the AE counts
and energy accumulations, for the CJBs with β = 30◦ and the joint distance ratios 0%, 20%
and 50%, the AE counts and energy accumulations firstly change slowly, then increase
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sharply, and then grow gently. When the joint distance ratio is 50%, the residual strength
stage of the loading curve is in short duration, the overall instability of the specimen occurs,
so the gentle growth stages of the AE counts and energy accumulations are also short. In
terms of the accumulation magnitude of AE energy, the order from small to large is the
joint distance ratios 50%, 20% and 0%, respectively. For the joint distance ratio 0%, the
model is seriously cracked and broken, so the AE counts and energy accumulations are
higher than those for the joint distance ratios 50% and 20%.
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and 50%, respectively; (d–f) for β = 60◦ and the joint distance ratios 0%, 20% and 50%, respectively.

As shown in Figure 17d–f, regarding the variation in the AE counts and energy
accumulations, for the CJBs with β = 60◦ and the joint distance ratio 0%, they change slowly
in the beginning, but then rise steeply, and grow gently later. When the joint distance ratio
is 20% and 50%, the variation trend of the AE counts and energy accumulations is firstly
slow change, then steep increase and then gentle change. In terms of the accumulation
magnitude of AE energy, the order from small to large is the joint distance ratios 0%, 50%
and 20%, respectively. It can be inferred that for the CJBs with β = 60◦ and the joint distance
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ratio 20%, there is a higher degree of fragmentation of the model, so the AE counts and
energy accumulations are higher than those for the joint distance ratios 0% and 50%.

3.3.3. The AE Energy Accumulations under Compression

(1) For the case of plane strain

Figure 18 shows the accumulation of AE energy of the CJBs with various joint distance
ratios, in the case of plane strain. As presented in Figure 18a, the accumulated AE energy
corresponding to the stress peaks, occur in order of β = 30◦, 45◦ (60◦), 15◦, 75◦, 90◦ and
0◦, respectively. From the perspective of their magnitude from small to large, they are in
order of β = 75◦, 60◦, 15◦ (30◦), 0◦, 90◦ and 45◦, respectively. As depicted in Figure 18b, the
accumulated AE energy corresponding to the stress peaks occur in order of β = 30◦, 45◦, 15◦,
60◦, 75◦ and 0◦ (90◦), respectively. From the perspective of their magnitude from small to
large, they are in order of β = 15◦, 30◦, 45◦, 90◦, 75◦, 0◦ and 60◦, respectively. According to
Figure 18c, the accumulated AE energy corresponding to the stress peaks occur in order of
β = 30◦, 45◦, 15◦, 60◦, 75◦, 0◦ and 90◦, respectively. From the perspective of their magnitude
from small to large, they are in order of β = 15◦, 30◦, 90◦ (0◦), 75◦, 45◦ and 60◦, respectively.
As displayed in Figure 18d, the accumulated AE energy corresponding to the stress peaks
occur in order of β = 30◦, 45◦, 15◦, 60◦, 75◦, 90◦ and 0◦, respectively. From the perspective
of their magnitude from small to large, they are in order of β = 15◦, 90◦, 30◦, 75◦, 0◦, 45◦

and 60◦, respectively.
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(2) For the case of two kinds of model boundaries

Figure 19 displays the accumulated AE energy corresponding to the stress peaks of the
CJBs with various joint distance ratios, in the case of two kinds of model boundaries. Case
I is the case between plane stress and plane strain; Case II is the case of plane strain. As
depicted in Figure 19a, regarding the CJBs with β = 30◦ when the lateral pressure = 4 MPa
under Case I, the accumulated AE energy corresponding to the stress peaks fluctuates with
the increase in joint distance ratio, in which the ratio of the highest value to the lowest
is 1.284. However, for Case II, the accumulated AE energy corresponding to the stress
peaks firstly grows gently, and then changes slowly as the joint distance ratio increases, in
which the ratio of the highest value to the lowest is 1.034. Furthermore, the accumulated
AE energy corresponding to the stress peaks in Case II is higher than Case I. If the model
boundaries vary from Case I to Case II, for the joint distance ratios 0%, 20%, 40% and 50%,
the accumulated AE energy corresponding to the stress peaks grow by 53.18%, 46.53%,
89.92% and 48.35%, respectively.
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Figure 19. For the case of two kinds of model boundaries, for the CJBs with different joint distance
ratios: (a) the accumulated AE energy corresponding to the stress peaks, for β = 30◦; (b) the AE
energy accumulations corresponding to the peak stresses, for β = 60◦.

Figure 19b shows that when β = 60◦ and the lateral pressure = 4 MPa under Case
I, the AE energy accumulation corresponding to the stress peaks increases sharply but
reduces with the growth of joint distance ratio later, in which the ratio of the highest value
to the lowest is 2.905, indicating the large variation range. For Case II, the accumulated
AE energy corresponding to the stress peaks rises steeply and then grows slowly as the
joint distance ratio rises, in which the ratio of the highest value to the lowest is 4.587,
implying the great variation range. In addition, the accumulated AE energy corresponding
to the stress peaks in Case II is lower than those in Case I. If the model boundaries vary
from Case I to Case II, for the joint distance ratios 0%, 20%, 40% and 50%, the AE energy
accumulations corresponding to the peak stresses increase by −47.15%, −19.23%, −15.53%
and −2.98%, respectively.

4. Discussion
4.1. Influence of Joint Characteristics on CS and EDM

In the case of plane strain, under various joint distance ratios, the troughs of CS appear
at β = 30◦, 150◦, 210◦ and 330◦; the peaks of CS appear at β = 0◦, 90◦, 180◦ and 270◦.
Additionally, for the CJBs with the joint distance ratios of 20%~50%, the CSs of specimens
decrease sharply near β = 0◦ and 180◦, but they change relatively gently near β = 90◦ and
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270◦. Under various joint distance ratios, the EDMs change in elliptical way as the column
dip angle increases. The EDM of model is less sensitive to the variation in joint distance
ratio. Moreover, the CS and EDM in Case II are higher than those in Case I.

Zheng et al. [31] performed shear tests on jointed granite samples. Their results showed
that the shear strength peak grew with the normal stress or sawtooth angle increasing,
but the shear stress-strain curves were not displayed to analyze further. Wang et al. [32]
adopted the particle flow code (PFC) for studying the deforming and bearing properties
of rock masses with varying joint density and argued that the specimen with a high joint
density shows low strength. However, the jointed rock masses were with discrete fracture
networks, and it was inconvenient for understanding anisotropy of joined rock masses.
Fan et al. [33] adopted the three-dimensional PFC to reproduce the physico-mechanical
properties of multiple non-persistent joints subject to uniaxial loading, and analyzed the
changing of CSs as the dip-angle and length of joints increase. Moreover, with the increase
in joint length, the rock CS will be more and more sensitive to the change of the dip angle.
Nevertheless, the influence of lateral pressures on the CS and EDM of rock mass specimens
was not taken into account. Wu et al. [34] applied the numerical simulation method to
calculate the anisotropy of strength and deformation of jointed rock masses. However, the
distribution of joint dip angles, joint trace lengths and joint spacings are different from the
specimens in this paper.

4.2. Influence of Joint Characteristics on Fracture Mechanism

Taking the following case in this paper for example: the CJBs models with β = 60◦ and
the joint distance ratios 0% and 50% under plane strain. When the joint distance ratio is
0%, with the increase in loading, the secondary joint sets inside the specimen gradually
slide under compression and shear, and the high-stress concentrations occur close to the
upper end of the specimen. After that, the cracks initiate. As the loading grows, the cracks
further develop in the upper zone of the model, but the stress concentration reduces. As the
loading further increases, the fracture intensifies along the secondary joints and fractured
zones. At the middle of the right side of the specimen, the cracks initiate and the stresses
are concentrated.

When the joint distance ratio is 50%, with the growing of loading, the high-stress
concentrations are gradually significant near the secondary joint sets. As the loading con-
tinues to rise, at the upper area of the model, the secondary joint sets slide, are compressed
and sheared, the fractures are created and develop, and the concentrated stresses appear.
With the increase in loading, the compression shear and sliding at the secondary joint sets
further develop, and the fractures also generate and propagate near the upper end of the
model. As the loading further increases, the compression shear and sliding fracture at the
secondary joint sets develops towards the lower end of the model, but the extent of high-
stress concentration reduces. With the loading further growing, the crushing intensifies
towards the upper surface of the model and at the secondary joint sets.

Zhou et al. [35] used the two-dimensional PFC method to compute the physicomechan-
ical parameter values of specimens with single and double joints. However, the influence of
lateral pressures on the failure mechanisms of specimens were not taken into account. Wu
et al. [34] analyzed the cracking modes of jointed rocky masses subject to lateral pressure
by using the numerical simulation method. Nevertheless, the dip angles, trace lengths and
spacings of joints obey to the normal, lognormal and negative exponential distributions,
respectively. As a result, the fracture features were different from the specimens in this
study. Chen et al. [36] suggested that affected by varying lateral pressure, the loading curve
of granite specimens containing pre-existing micro-cracks has the feature of stepped brittle
drops. Fan et al. [33] discussed the fracture mechanisms and failure patterns of multiple
non-persistent joints under uniaxial loading by using the PFC3D method, and analyzed the
influence of the dip angles and lengths of joints on the fracture mechanisms. However, the
lateral pressures were not taken into account.
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4.3. Influence of Joint Characteristics on Acoustic Emission

Taking the following case in this paper for example: the CJBs models with β = 60◦ and
the joint distance ratios 0% and 50% under plane strain. When the joint distance ratio is 0%,
the AE energy released of the model shows roughly the distribution of four peaks. The first
energy peak might result from the fracture and compression shear sliding at the secondary
joint sets inside the specimen. The second energy peak might be caused by the damage
development of the fracture zone at the upper part of the specimen. The third energy peak
might result from the development of the fracture zone close to the upper end of the model,
the development of the fracture zone in the top zone of the model and the damage near
the secondary joint sets. The fourth energy peak might be caused by the crack aggravation
at the secondary joint sets and the creation and propagation of cracks in the middle right
zone of the model.

When the joint distance ratio is 50%, the released AE energy of the model shows the
single peak distribution. The AE energy peak might mainly result from the compressive
shear, damage and fracture of the secondary joint sets, as well as the damage of columns
near the upper end of the model.

The tests conducted by Meng et al. [37] show that with the increase in normal stress,
the initial slope of shear-stress vs. shear-strain curve of cement mortars increases, while
the AE activity gradually lags on the strain axis. However, the stress or damage diagrams
corresponding to the AE activities were not displayed to further investigate mechanical
behaviors of the specimens. The tests obtained by Guo et al. [38] show that the smaller
the joint continuity rate, the more lagging the AE activity for the rock bridge failure point
on the time axis. This conclusion is similar with the order of AE energy accumulations in
certain cases of this paper. For example, for the CJBs with β=60◦ or 75◦, when the joint
distance ratio grows from 0% to 50%, the AE energy accumulation at the peak stresses lags
along the strain axis. By the combination of the laboratory physical test and numerical
test, Zhang et al. [39] summarized the influences of normal stiffnesses and joint dip angles
on the fracture mechanisms and AE energy accumulations of specimens with en-echelon
joints. Nevertheless, there are certain differences for the AE energy accumulations due
to geometric difference between the en-echelon joints and columnar joints. The tests by
Wang et al. [40] show that the AE energy accumulation increases with the growth of joint
roughness, which provides insights for future related work of CJBs in this study.

5. Conclusions

Based on the meso-damage mechanics and the statistical damage theory, a group of
numerical nonuniform CJB samples with various dip angles of columns and distance ratios
of secondary joints were established. The continuous fracture and AE release processes
of CJBs were captured, and the AE-induced energy release rules were discussed. The
conclusions can be drawn as follows:

Under plane strain, the troughs of CS appear at the column dip angles β = 30◦, 150◦,
210◦ and 330◦; the peaks of CS appear at β = 0◦, 90◦, 180◦ and 270◦ under different joint
distance ratios. Meanwhile, for the CJBs with the joint distance ratios of 20%~50%, the CSs
of specimens decrease sharply near β = 0◦ and 180◦, but they change relatively gently near
β = 90◦ and 270◦. In terms of EDM, it changes in elliptical way with increasing column
dip angle under different joint distance ratios. The EDM of specimen is less sensitive to
the variation in joint distance ratio. Under plane strain, the CSs and EDMs are higher
than the corresponding values in the case between plane stress and plane strain. These
rules can provide the theoretical basis for determining in situ parameters, tunnel axis in
transportation engineering, excavation direction in mining engineering and so on.

In the case between plane stress and plane strain, when β = 30◦ and the joint distance
ratio = 0%, the columnar joints slide and are compressed; cracks occur near the upper
end of the model as the loading grows. Especially, the high stresses will concentrate
along the edges of the columns and result in the creation and propagation of cracks at the
upper top part of the specimen. As the loading increases, the shear failure happens at the
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middle part of the model because of high shear stresses. Simultaneously, many fractures
develop at the secondary joint sets and the crushing intensifies within the strip fracture
zone above the secondary sets. Under plane strain, when β = 60◦ and the joint distance
ratio = 50%, the stress concentrations are gradually obvious near the secondary joint sets
with the loading increasing. Then, these joints slide, are compressed and sheared. The
high stress releases due to the newly formed cracks and rebuilds up at the tips of cracks,
which leads the fracture of the secondary joints to developing towards the lower end of the
model. However, the extent of stress concentration gradually reduces. With the gradual
processes of stress concentration, stress release and stress transfer, the crushing intensifies
near the top of the specimen and at the secondary joints. These results will contribute to
the maintenance, support design and reinforcement of slopes and tunnels located at CJBs.

Under plane strain, when the joint distance ratio = 50%, the AE energy accumulations
corresponding to the stress peaks occur along the strain axis in order of β = 30◦, 45◦, 15◦,
60◦, 75◦, 90◦ and 0◦. In terms of the magnitude, they occur in the order from small to large
when β = 15◦, 90◦, 30◦, 75◦, 0◦, 45◦ and 60◦, successively. Moreover, when β = 30◦ under
the lateral pressure, the accumulated AE energy corresponding to the stress peaks under
plane strain is higher than those in the case between plane stress and plane strain. However,
when β increases to 60◦, the former ones become lower than the later ones, which implies
the critical transformation of the influence of column dip angles on the AE energy-related
fracture precursor. These achievements can help to promote the disaster prevention and
mitigation for slope sliding, slope toppling and tunnel collapse which may cause severe
damage by revealing the failure precursors of rock masses.
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Symbol and Abbreviation

Symbol
σ Stress
fc0 Uniaxial compressive strength
ft0 Uniaxial tensile strength
fcr Residual compressive strength
ftr Residual tensile strength
ε Strain
εc0 Strain at fc0
εt0 Strain at ft0
εtu Ultimate tensile strain
Abbreviation
CJRM Columnar jointed rock mass
CJB Columnar jointed basalt
CS Compressive strength
EDM Equivalent deformation modulus
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