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Abstract: In a chaotic system, deterministic, nonlinear, irregular, and initial-condition-sensitive
features are desired. Due to its chaotic nature, it is difficult to quantify a chaotic system’s parameters.
Parameter estimation is a major issue because it depends on the stability analysis of a chaotic system,
and communication systems that are based on chaos make it difficult to give accurate estimates or a
fast rate of convergence. Several nature-inspired metaheuristic algorithms have been used to estimate
chaotic system parameters; however, many are unable to balance exploration and exploitation.
The fruit fly optimization algorithm (FOA) is not only efficient in solving difficult optimization
problems, but also simpler and easier to construct than other currently available population-based
algorithms. In this study, the quantum fruit fly optimization algorithm (QFOA) was suggested
to find the optimum values for chaotic parameters that would help algorithms converge faster
and avoid the local optimum. The recommended technique used quantum theory probability and
uncertainty to overcome the classic FA’s premature convergence and local optimum trapping. QFOA
modifies the basic Newtonian-based search technique of FA by including a quantum behavior-based
searching mechanism used to pinpoint the position of the fruit fly swarm. The suggested model
has been assessed using a well-known Lorenz system with a specified set of parameter values and
benchmarked signals. The results showed a considerable improvement in the accuracy of parameter
estimates and better estimation power than state-of-the art parameter estimation approaches.

Keywords: chaotic system; fruit fly optimization algorithm; quantum-inspired computation;
parameter estimation

MSC: 68T20

1. Introduction

Chaos theory studies nonlinear dynamic systems. Chaos is the interaction between
regularity and probability-based unpredictability [1]. Weather and climate, biological
and ecological processes, the economy, social structures, and other natural phenomena
all exhibit chaotic regimes. The primary feature of chaos is its ability to generate a wide
range of complex patterns. For use as cryptographic secret keys, relevant mathematical
models may produce a vast amount of data. Confusion and diffusion are two key features
of cryptography, and chaos theory has the unique quality of having a direct connection to
both features. Furthermore, the deterministic but unexpected dynamics of chaotic systems
may be a powerful tool in the development of a superior cryptosystem [2,3].

The fundamental benefit of chaos is that unauthorized users see chaotic signals as
noise [2]. Chaotic-based encryption techniques are utilized for military, mobile, and private
data [3]. These applications demand real-time, rapid, secure, and reliable monitoring.
Most chaos-based secure communication systems use chaos synchronization [4]. Chaos
synchronization is vital for achieving security after information has been transferred [5].
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Therefore, many cryptographic algorithms have adopted popular chaotic models that
depict chaos by employing mathematical models, such as a logistic map.

Chaos-based secure communication has issues. Due to the limitations of chaos theory
and techniques for creating chaos, attackers may sometimes determine the chaotic system
employed in encryption through state reconstruction. Second, transmission and sampling
delays make chaotic synchronization difficult. Due to the limits of digital computer ac-
curacy, computer chaotic maps are always periodic. Therefore, chaos-based public-key
cryptography has collisions [6]. Finally, picking the input parameters limits chaos theory.
The techniques used to determine these characteristics rely on the data dynamics and the
desired analysis, which is often complicated and inaccurate. Due to a chaotic system’s
complicated nature, many practical characteristics are unknown and difficult to quantify [7].
Parameter estimation is a major issue.

Two parameter estimation methods exist. One is the synchronization method [3,8],
which proposes updating parameter estimation based on chaotic system stability. Its
methodologies and sensitivities rely on the considered system; hence, updating may be chal-
lenging due to the complexity of the chaotic system. Another method is through metaheuris-
tic algorithms. Metaheuristic algorithms are intelligent optimization algorithms [9,10].
It translates parameter estimation into a multidimensional optimization problem using
sample data from the original system. It is easier to implement than synchronization.
Metaheuristic algorithms are popular for estimating chaotic system parameters [11,12].
Metaheuristic techniques require starting system settings. In many circumstances, the
original values cannot be retrieved, making reconstruction and management of the chaotic
system difficult. Most of these approaches are also used to estimate chaotic system parame-
ters. Few apply to complex chaotic systems [13].

The fruit fly optimization algorithm (FOA) is simple and easy to comprehend com-
pared with other sophisticated algorithms. FOA only requires adjusting the population
size and maximum generation number. Traditional intelligent algorithms need at least
three parameters. The influence of numerous factors on algorithm performance is hard to
examine; hence, they are generally determined via several tests. An incorrect parameter
will impair algorithm performance and complexity [14]. However, there is still a lot of
potential for development of FOA variations to obtain greater performance, particularly
for complicated practical issues related to convergence speed or avoiding being trapped
into the local optimum.

When it comes to population-based optimization methods, variability in the popu-
lation and unpredictability in the search process are two factors that often play a pivotal
role. By using quantum mechanics instead of Newtonian dynamics, the quantum-behaved
particle swarm optimization (QPSO) increases the particles’ capacity to escape the local
optimum. Classical quantum mechanics is the theoretical underpinnings of quantum the-
ory, which aims to appropriate some of the mysteriousness of quantum behavior processes.
Integrating quantum theory into the original FA, the quantum firefly algorithm (QFA)
is able to combat the loss of variety [15]. Quantum mechanics may be used to explain
how fruit flies navigate the environment in search of food; their actions are characterized
by a wave function of uncertainty. A quantum-behaved approach can avoid premature
convergence and help escape from the local optimum.

1.1. Problem Statement and Motivation

Chaotic systems are very sensitive to initial parameter choices. Long-term system
behavior prediction is difficult. Synchronization and chaos control in nonlinear systems
depend on exact parameter values in chaotic systems; if one of these values is uncertain,
the system will not perform as intended. Some parameters are unknown or difficult to
quantify due to the complexity of chaotic systems (such as secure communication). If
we wish to control or synchronize chaotic systems, we must estimate unknown system
parameters. Too many factors may cause the parameter estimation algorithm for 3D chaotic
systems to become more complex, which in turn increases the amount of effort required
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to calculate the results. This is why most algorithms struggle to find the global optimum.
As a result of its effectiveness, FA has been used to tackle a wide range of optimization
issues, leading to significant progress in a short period of time. The motivation is to take
insights from quantum theory to improve upon the FA for estimating the parameters of a
3D chaotic system.

1.2. Contribution and Methodology

The work presented in this paper is an extension of the work introduced in Ref. [16],
where quantum mechanics was used in the fruit fly optimization algorithm to make it
easier for particles to get out of the local optimum, so that the chaotic system parameters
could be estimated. In this paper, the QFOA was adopted to solve the parameter estimation
problem of the Lorenz chaotic system to achieve the synchronization with the aim of
transmitting data correctly. Fitness function based on the mean square error was utilized to
find the minimum error between the original and estimated ones in different directions.
To achieve high performance in terms of time and accuracy, the suggested model selected
only some samples from the received signal to check the synchronization early. QFOA
variables were tuned to estimate the unknown chaotic system parameters. Then, these
estimated parameters were used later, inside the well-known fourth-order Runge–Kutta
algorithm, to build the estimated original signal (a chaotic signal with a known structure)
to yield synchronization.

The rest of this paper is organized as follows: Section 2 provides a background
and literature review of some studies related to estimating the parameters of the chaotic
system; Section 3 presents the proposed methodology based on the analysis of the previous
techniques; Section 4 reports a complete evaluation of the proposed methodology, along
with the results and the discussion; and the final section contains the conclusion based on
the previous sections and future directions for research.

2. Background and Related Work

This section offers some important background related to the proposed model and
includes a literature review on parameters estimation of the chaotic system as one of
the most important techniques to achieve chaotic synchronization concerns on wireless
communication networks.

2.1. Preliminaries
2.1.1. Chaos Theory

Chaos theory is an alternative description and explanation of the behavior of nonlinear
dynamical systems [17]. In mathematical language, a dynamical system is classified as a
chaotic system [18–21] if it has the following properties:

• Sensitive to initial conditions—each point in a system is arbitrarily near other points
with drastically different behavior. Qualitatively, two paths with a starting separation
δX0 diverge.

|δX(t)| ≈ eλt|δX0| (1)

λ is the Lyapunov exponent. One positive Lyapunov exponent indicates chaotic
behavior, whereas more than one indicates hyperchaotic behavior.

• Topological mixing—implies system evolution, so that every area or open set of
its phase space will overlap. This assumption has profound implications for one-
dimensional systems.

• Periodic orbit density—each space point is arbitrarily near periodic orbits and is
regular. Not meeting this requirement may prevent topological mixing systems from
becoming chaotic. In chaos theory, the butterfly effect is the sensitivity of a system to
starting conditions. Small changes in a dynamical system’s starting state may have
huge long-term effects. Time makes such systems unpredictable.
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2.1.2. Lyapunov Exponents

The Lyapunov exponents help investigate chaotic or hyperchaotic dynamical systems.
Lyapunov exponents categorize dynamical systems so that we can see their behavior. A
dynamical system is chaotic if it has one positive Lyapunov exponent, and hyperchaotic if
it has more [22–24]. Consider two locations in space, X0 and X0 + ∆X0, which form orbits
using an equation or set of equations. Sensitive dependency may only occur in particular
parts of a system; hence, this separation depends on the beginning value, ∆x(X0,t). For
chaotic points, ∆x(X0,t) acts unpredictably. The mean exponential rate of divergence of
two near orbits is defined as [25].

λ = lim
t→ ∞
|∆X0| → 0

1
t

ln
∣∣∣∣∆x(X0,t)

∆X0

∣∣∣∣ (2)

The Lyapunov exponent, λ, is used to differentiate orbits. If λ < 0, the orbit attracts a
stable fixed point or periodic orbit. The more negative the exponent, the better the stability.
If λ = 0, the system is steady state. A conservative system has this exponent and are
Lyapunov stable. In this case, orbits would stay apart. For λ > 0, the orbit is chaotic. Nearby
points diverge to any arbitrary separation.

To define sphere trajectories, we require linearized systems or variational equations.
→
x =

→
F (
→
x ), where

→
x = (x1, x2, . . . . . . , xn) and

→
F = ( f1, f2, . . . . . . , fn). Any ordinary

numerical differential equation solution may create ∅(
→
x0). Formally, partial derivatives

explain how these perturbations respond. Consider the Lorenz system [26–28]: .
y

.
x = θ1(y− x)
= θ2x− y− xz
.
z = −θ3z + xy

(3)

θ1, θ2, and θ3 are Lorenz parameters. To set up the linearized system for the above equations,
the right-hand Jacobian is needed.

J =


∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

 (4)

J =

 −θ1 θ1 0
θ2 − Z −1 −x

y x −θ3

 (5)

J =

δx1 δy1 δz1
δx2 δy2 δz2
δx3 δy3 δz3

 (6)

The ith equation’s x variation component is δxi. Column sums are the x, y, and z
coordinates of the evolving variant. The rows represent the vector coordinates of the
original x, y, and z variations. Linear equations:

.
δx1

.
δy1

.
δz1.

δx2
.
δy2

.
δz2.

δx3
.
δy3

.
δz3

 =


∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z


δx1 δy1 δz1

δx2 δy2 δz2
δx3 δy3 δz3

 (7)
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.
δx1

.
δy1

.
δz1.

δx2
.
δy2

.
δz2.

δx3
.
δy3

.
δz3

 =

 −θ1 θ1 0
θ2 − Z −1 −x

y x −θ3

δx1 δy1 δz1
δx2 δy2 δz2
δx3 δy3 δz3

 (8)

2.1.3. Chaos Synchronization

Chaos synchronization occurs when two (or more) chaotic systems (identical or non-
identical) adapt a characteristic of their motion to the same behavior, owed to force or
coupling. This includes trajectories and phase locking. Complete, projective, and antiphase
synchronization have been explored [29]. These three synchronization types are usually of
interest for master-slave configurations, i.e., two connected systems. However, for a more
general case of networks, the less regular synchronization regimes such as multi-clustering
and synchronization of groups of nodes are of relevance. See [30,31] for more details.

Complete synchronization means having equivalent state variables over time. Gen-
eralized synchronization for master-slave systems implies a functional relation between
connected chaotic oscillators, x2(t) = F[x1(t)].:

1. Complete Synchronization

Considering the following master and slave systems:

.
x = θ(x), (9)

.
y = ψ(y) + u(x, y), (10)

State vectors x, y ∈ R is the vector controller for f, g: Rn → Rn. The system error
dynamics are:

e(t) = y(x)− x(t), (11)

The systems are said to be in complete synchronization if:

lim
t→∞
‖e(t)‖ = 0 (12)

2. Anti-Phase Synchronization

In this type, given the same master-slave systems, the error dynamics for the systems
are defined as:

e(t) = y(x) + x(t) (13)

The systems are said to be in anti-synchronization if Equation (12) is satisfied.

3. Projective Synchronization

In this type, given the same master-slave systems, the error dynamics for the systems
are defined as:

e(t) = y(x)− αx(t) (14)

where α 6= 0 is the constant, called a scaling factor. The systems are said to be in pro-
jective synchronization if Equation (12) is satisfied. By setting appropriate values for α,
synchronized systems may be scaled to desired levels and proportionally grow. Complete
synchronization and anti-synchronization are specific examples of projective synchroniza-
tion where α = 1 and α = −1. Greater mathematical complexity and chaos characterize the
Lorenz map because of its higher dimension. As one-dimensional chaotic maps need fewer
computing processes, they are better suited for applications that need to run with minimal
latency. More basic chaotic maps, however, have serious security flaws. This shortcoming
arises because of the restricted chaotic range, reduced chaotic complexity, and accelerated
rate of degradation of dynamic behavior [32,33].

Several approaches for chaotic synchronization have been presented. Active nonlinear
control and adaptive mode control have been widely employed for synchronization in
recent literature [29]. Based on the Lyapunov stability theory, active nonlinear control
has gained popularity in recent years. Adaptive control assumes that there is a controller
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with a fixed structure and complexity for each potential plant parameter value, which
can achieve the required performance with suitable controller parameter values. All
these strategies are not applicable if the parameters of the chaotic system are unknown.
Chaos control and synchronization focus on estimating the unknown parameters of chaotic
dynamical systems. Parameter identification may be transformed into a multi-dimensional
optimization problem using an objective function [34–36].

2.1.4. Chaotic Maps

Chaotic maps are differential equations that describe chaotic discrete dynamics [18].
Chaos can only be detected in deterministic, continuous systems with a three-dimensional
phase space or more. Low-dimensional chaotic systems are resource-efficient. The logistic
map is a typical low-dimensional system [37]. Chaos is degenerative in these systems. It
is hard to give the output sequence a long period. High-dimensional chaotic systems are
more nonlinear. However, they have the drawbacks of excessive resource consumption
and low-speed performance. Therefore, a large-period, high-dimensional, digital chaotic
system with high speed and minimal resources is needed. Chen, Rossler, and Henon are
3D chaotic systems utilized in wireless communication [38].

1. Chen Chaotic System

Chen identified a classical chaotic attractor in a basic 3D system [38]: .
y

.
x = a(y− x)

= (c− a)x− xz− cy
.
z = xy + bz

(15)

x, y, and z are state variables, whereas a, b, and c are parameters. Chen chaotic-based
encryption relies on secret keys. An invader cannot guess the wireless key. As Chen
chaotic systems are sensitive to beginning circumstances and system characteristics, two
near-initial conditions lead to diverse paths, as shown in Figure 1a.
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2. Rossler Chaotic System

Rossler is a basic chaotic dynamical system with one non-linear term with standard
system equations [39]: 

.
x = a(y− x)

.
y = x + ay

.
z = b + xz− cz

(16)

x, y, and z are state variables; a and b are fixed; and c is the control parameter. Rossler
attractor parameters are a = 0.2, b = 0.2, and c = 5.7. Figure 1b shows the Rossler chaotic
attractor. This system is the minimum for continuous chaos for at least three reasons: (1) Its
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phase space has minimal dimensions, (2) Nonlinearity is minimal because there is a single
quadratic term, and (3) It generates a chaotic attractor with a single lobe, unlike the Lorenz
attractor, which has two.

3. Henon Chaotic System

The Henon chaotic map is a chaotic discrete-time dynamical system. The map simpli-
fies the Lorenz model’s Poincare portion. The plane will either approach the Henon odd
attractor or diverge to infinity. 

.
x = a−

(
y2 + bz

)
.
y = x
.
z = y

, (17)

The Henon chaotic map parameters are a = 1.4 and b = 0.3. The conventional Henon
map is chaotic (Figure 1c).

2.1.5. Quantum Fruit Fly Optimization Algorithm

Optimizing means picking the best element (based on some criteria) from a group of
options or finding the least or maximum output for an experiment [34]. Heuristic methods
are intelligent search strategies that speed up the process of obtaining a satisfying or
near-optimal solution in bio-inspired procedures. A heuristic approach is simpler than an
analytical one. However, precision is lost. Metaheuristics are iterative processes that help
identify near-optimal solutions. Metaheuristics combine heuristic approaches to improve
their performance [10,40]. Recent metaheuristic algorithms include the FOA [41]. FOA is
inspired by fruit fly foraging. FOA has fewer adjusting parameters, less computational
quantity, and offers great global search and convergence abilities. FOA is two-phased. The
first step is smelling. In this phase, flies travel toward food by smelling it. Second phase
begins when they are closer to the food supply: the vision stage. The fruit flies utilize their
eyesight to come closer to the food. This phase repeats until the fruit fly eats the food. The
steps of FOA include [42,43]:

(1) The random initial position of a fruit fly. Init X_axis; Init Y_axis.
(2) A fruit fly’s sense of smell searches randomly for food.{

Xi = Xaxis + Random Value R1
Yi = Yaxis + Random Value R2

(18)

(3) As the food’s location is unknown, the distance (Dist) to the origin is inferred before
calculating the decision value of smell concentration (S).{

Disti =
√

X2
i + Y2

i
Si =

1
Disti

(19)

(4) The smell concentration decision value (S) is inserted in the Fitness function to calcu-
late the fruit fly’s Smelli.

Smelli = Function(Si) (20)

(5) Determine the fruit fly swarm’s strongest smell (seek for the maximum value)

[bestSmell bestIndex] = max(Smell) (21)

(6) Using the best smell concentration and x, y coordinates, the fruit fly swarm flies to
the position. 

Smellbest = bestSmell
X_axis = X(bestindex)
Y_axis = Y(bestindex)

(22)
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(7) If the smell concentration is better than the previous iteration of smell concentration,
execute Step 6.

Quantum theory assigns the fruit fly swarm to move in quantum space. The delta
potential well model increases the uncertainty that fruit flies recognize and migrate to food.
All quantum objects have wave-like features and may be in several locations at once; hence,
they are characterized in quantum theory by the wave function (x, t), rather than by their
position x and velocity v. A location’s likelihood of hosting the item in quantum space
is determined by the strength of the wave function at that location, as shown below in
module form [15].

|ψ(x, t)|2dxdydz = Qdxdydz (23)

Qdxdydz is the object’s probability of appearing at (x, y, z) at time t. Thus, |ψ(x, t)|2 is the
probability density function meeting the equation:∫ +∞

−∞
|ψ|2dxdydz =

∫ +∞

−∞
Qdxdydz = 1 (24)

Schrödinger’s equation describes object motion in quantum physics.

i} ∂

∂t
ψ(X, t) = Ĥψ(X, t) (25)

Ĥ = − }
2m
∇2 + V(t) (26)

} is the Planck Constant, Ĥ is the Hamiltonian operator, m is the object mass, and V(t)
denotes the potential field of the object. Fruit flies search for food in the delta potential well,
where they move in quantum space. Quantum behavior replaces fruit fly foraging and
random search in quantum space. Both fruit fly smell and vision become more uncertain,
increasing population diversity. One-dimensional space was used for simplicity. If food
source location is x, its potential energy in the one-dimensional delta potential well is:

V(x) = −γδ(x− ρaxis) = −γδ(y) (27)

where the location of the fruit fly swarm, ρaxis, is in the center of the delta potential
well. According to Schrödinger’s equation, the following normalized wave function can
be obtained:

ψ(y) =
1√
L

e−|y|/L (28)

L is the delta potential well length. Thus, the probability density function is:

Q(y) = |ψ(y)|2 =
1
L

e−|y|/L (29)

This equals

y = ± L
2

ln
1
u

(30)

u is a random number (0, 1). Thus, we can determine the fruit fly’s food source location:

x = ρaxis ±
L
2

ln
1
u

(31)

The model assumes that a 1D delta potential well is on each dimension at the swarm
center attractor point, and osphresis-based search has quantum properties. The fruit fly’s
quantum-behaved foraging is shown by the wave function, not randomly. The employed
QFOA model included swarm location initialization, osphresis-based search, and vision-
based search. The employed QFOA model used quantum-behaved searching instead of
random osphresis-based searching. In the osphresis-based search process, Mosp, new food
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source locations (Xaxis, Yaxis) were generated in the delta potential well. FOA’s quantum-
behaved searching mechanism is:Xi = Xaxis ±

Lx,i
2 ln 1

rx

Yi = Yaxis ±
Ly,i
2 ln 1

ry

(32)

where i = 1, 2, . . . , Mosp, rx and ry are random [0, 1] values. Lx,i and Ly,i are delta potential
well characteristic lengths of the corresponding dimension, determined by the fruit fly’s
last search location, based on their olfactory senses.{

Lx,i = 2b|Xaxis − Xi|
Ly,i = 2b|Yaxis −Yi|

(33)

i is the iteration number and b controls the quantum searching range.

b = b1 logsig
(

10 ·
(

0.5− g
Gmax

))
+ b2 (34)

b1 and b2 restrict the value range to b ∈ [b2, b1 + b2].

2.2. Related Work

Several works on estimating chaotic system parameters have been recently
published [13,44,45]. Real-world estimation is difficult for parameters of a complex 3D
chaotic system. Most gradient-based methods are sensitive to initial conditions, trapping
them in local minima. Estimating 3D chaotic parameters using soft computing techniques
at a suitable cost function, is one solution, such as global optimization algorithms. Several
cases of chaotic system parameter estimation using optimization algorithms have been
reported [44,46,47]. The following section summarizes these algorithms.

Li et al. [35] combined the artificial bee colony algorithm (ABC) and differential
evolution (DE) to estimate chaotic system parameters. Gao et al. [48] proposed chaos
firefly optimization (CFA) for identifying Lorenz chaotic system parameters. Using chaotic
search to update the standard Firefly algorithm improved optimization accuracy and speed.
Recent pioneering work has combined the cuckoo search (CS) algorithm and orthogonal
learning to estimate Lorenz and Chen chaotic system parameters [49]. He et al. also
used particle swarm optimization (PSO) to estimate Lorenz system parameters [50]. This
technique does not sufficiently explore the solution space. Small populations produce poor
results. Li et al. [51] introduced the chaotic ant swarm (CAS) algorithm to determine chaotic
system parameters.

Gholipour et al. [52] estimated chaotic system parameters with the artificial bee colony
algorithm. Wei and Yu [53] presented a hybrid cuckoo search (HCS) algorithm inspired
by differential evolution. The presented HCS offers two novel mutation strategies to
fully exploit the neighborhood. Three chaotic systems with and without time delays
were simulated and compared to other optimization methods to test HCS. Experimental
results showed HCS’s superiority in chaotic system parameter estimation due to its high
calculation accuracy, fast convergence speed, and strong robustness. In [54], the authors
introduced a two-stage estimation technique that combined the guaranteed approach and
swarm intelligence.

Zhuang et al. [55] presented a new hybrid Jaya–Powell method for estimating the
parameters of a Lorenz chaotic system. The proposed Jaya–Powell algorithm combines
the Jaya algorithm, which seeks the relatively global optimum, with the Powell algorithm,
which seeks the relatively local optimum, to provide a more precise and efficient estimate.
This algorithm’s searching technique makes it easier to strike a middle ground between
exploration and exploitation throughout the optimization process. The suggested Jaya–
Powell algorithm does not need the careful adjustment of appropriate parameters as it
does not rely on any algorithm-specific parameters. Compared with seven benchmark
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methods, the proposed hybrid Jaya–Powell algorithm provided more precise estimates and
converged more quickly.

The work presented in [56] explored how to use several metaheuristic algorithms for
the recognition of parameters in a fractional-order financial chaotic system. The algorithms
that have been put into place are the ant colony optimizer, grey wolf optimizer, whale
optimization algorithm, and artificial bee colony optimizer. As an objective function, mean
square error was used to estimate the system’s parameters. Zhang et al. [57] offered a novel
method of parameter estimation that made use of numerical differentiation to streamline the
preparation of observational data. Given the noisy observations on a subset of dependent
variables, numerical differentiation may be used to approximately determine the values
of the dependent variables and their derivatives. The parameter estimation issue may be
simplified by substituting these approximations into the original system. The precision and
efficiency of their technology are shown by numerical examples.

Encouraged by recent developments in data assimilation, Carlson et al. [58] built a
dynamic learning technique to estimate missing parameters of a chaotic system using just a
subset of available data. The authors convincingly proved, under plausible assumptions
that this approach converged to the right parameters when the system under issue was the
standard three-dimensional Lorenz system. They computationally showed the effectiveness
of this technique on the Lorenz system by recovering any correct subset of the three non-
dimensional parameters of the system, provided that an appropriate subset of the state
was observable. Over the last two decades, studies on how to synchronize a Lorenz
chaotic system have been more prominent. Model reference adaptive control (MRAC)
synchronization scheme design has been the primary focus of the majority of the research.
For this problem, C. Peng, and Y. Li [59] suggested two system identification strategies.
The observer–Kalman filter identification method was the first method used. The second
kind of discretization was the bilinear transform. The new approach significantly improved
the accuracy of the discovered parameters, which were therefore already very near to
actual values.

Rizk-Allah et al. [60] presented a unique approach to parameter estimation for the
chaotic Lorenz system, using a modified form of particle swarm optimization (PSO). The
suggested technique, a memory-based particle swarm optimization (MbPSO) algorithm,
modeled the parameter estimation of the Lorenz system as a multidimensional issue. To
change the population’s orientation and improve search efficiency, MbPSO added two
additional variables to the classic PSO. The results showed that the suggested algorithm
performed much better than the original PSO, when particle memories were linked to
those of other particles. The primary goal of the study [61] was to apply a deep learning
technique to the problem of estimating the parameters of chaotic systems, such as the
Lorenz system. In this research, the authors used the k-means technique to build out the
workflow of a deep neural network (DNN)-based approach. The DNN approach works
well for difficult, nonlinear problems. Using the proposed approach, 98% of correct training
data and 73% of test data were predicted.

The parameter identification for the discrete memristive chaotic map was the primary
topic of the research presented by Peng et al. [62], in which a novel intelligent optimization
technique called the adaptive differential evolution algorithm was suggested. To handle
the hyperchaotic and attractors that coexist in the investigated discrete memristive chaotic
maps, the identification objective function had two unique components: time sequences
and return maps. It was shown via numerical simulations that the suggested approach
outperformed the other six existing algorithms and maintained the ability to correctly
identify the original system’s properties, even when subjected to noise interference.

Although chaotic system parameter estimation has been studied for decades, it can
still be improved. According to the review, past studies focused on: (1) Estimating a
single chaotic system parameter and (2) Not addressing the best optimization technique
for exploration and exploitation in a unified framework. Most bio-inspired optimization
techniques for chaotic system parameter estimation combine two or more algorithms to
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improve exploration and exploitation. To the best of our knowledge, little attention has
been paid to developing a bio-inspired parameter estimation technique for a chaotic system
with few training samples.

3. Materials and Methods

Let
.
X = F(X, X0, θ0) be a continuous nonlinear chaotic system, where X = (x1, x2, . . . , xN)

′

∈ Rn is the chaotic system’s state vector,
.
X is X’s derivative, the resulting solution is param-

eterized by the initial value X0, and θ0 = (θ1,0, θ2,0, . . . , θd,0)
′ are the original parameters. If

the system’s structure is known, the estimated system may be expressed as
.
X̃ = F(X̃, X0, θ̃),

where X̃ = (x̃1, x̃2, . . . , x̃N)
′ ∈ Rn is the state vector and θ̃ =

(
θ̃1, θ̃2, . . . , θ̃d

)′
is a collection

of estimated parameters. Based on X, the fitness function is [49,51]:

f
(

θ̃n
i

)
= ∑W

i=0

[
(x1(t)− x̃n

i,t(t))
2 + . . . + (XN(t)− x̃n

i,N(t))
2
]
, (35)

where t = 0, 1, . . . . . . W and i is the ith state vector. Estimating chaotic system parameters
aim to reduce fitness function by minimizing θ̃n

i . Dynamic instability makes chaotic systems
difficult to estimate. Due to the problem’s many variables and various local search optima,
typical optimization in the local optima is difficult [63,64].

A chaos communication system comprises of transmitter, receiver, and channel (noise)
performance. In the transmitter, the modulation methods utilized to combine the message
signal and chaotic carrier are crucial for system security. As a signal must be sent to the
receiver, there is a possibility that intruders may receive the signal. Even if intruders do
not know the structure or parameters of a chaotic system, they may use signal processing
or sophisticated algorithms to extract the message from the transmitter signal. In chaotic
masking, the signal is directly added to the chaotic signal; thus, the fluctuation may be
recognized by non-linear dynamic forecasting techniques or power spectrum analysis, if
the message amplitude/frequency is high enough. Mixing the message should remove
any pattern or information from the sent signal. The carrier chaotic signal will be distorted
by channel noise before reaching the receiver. Message recovery requires chaotic synchro-
nization at the receiver. Demodulation is an issue in chaotic communication systems. The
recommended solution uses a few signal samples instead of large samples that need more
calculation. The communication channel is assumed to be free noise, as the emphasis is on
estimating the chaotic system’s unknown parameters, not channel attacks.

As discussed later, in a quantum model of FOA, each fruit fly represents a particle
that has a state depicted by a wave function, instead of position and velocity. The dynamic
behavior of the fruit fly is different from that of the fruit fly in standard FOA algorithms;
that is, the accurate values of x and v cannot be simultaneously calculated. Its searching per-
formance is better than the original particle swarm optimization algorithm. The quantum
particle swarm optimization algorithm is a global convergence guarantee algorithm. The
capabilities of a QFOA algorithm to enhance convergence speed and low optimization ac-
curacy were achieved through: (1) A mutation operator to increase the diversity of particles
in a population (the delta potential well concept to speed up the convergence speed); (2) An
operator based on evolutionary generations to update a contraction expansion coefficient
(objective or fitness function for global optimization); (3) An elitist strategy to remain the
strong particles.

3.1. At the Transmitter Side

The original signal was hidden using a known 3D Lorenz chaotic signal. Lorenz used
θ1 = 10, θ2 = 28, and θ3 = 8/3. This system shows chaotic behavior [65]. Three phases
applied chaotic masking. First, we used the fourth-order Runge–Kutta (RK4) to solve the
3D Lorenz chaotic system equation to create the chaotic signal. RK4 examines iterative
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steps in four places [66,67]. Runge–Kutta was run three times for each point in phase space
with h = 0.01 [49–52].

→
k2 = h

→
f
(
→
x c +

1
2

→
k1

)
, (36)

→
k3 = h

→
f
(
→
x c +

1
2

→
k2

)
, (37)

→
k4 = h

→
f
(
→
x c +

1
2

→
k3

)
, (38)

→
x c(t0 + h) =

→
x c(t0) + (

→
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→
k2 + 2

→
k3 +

→
k4), (39)

→
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→
f
(→

x c

)
, (40)
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(
→
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→
2k2 + 2

→
k3 +

→
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The second stage involved sampling the original input to create a discrete signal or
accumulating an analogue or continuous signal [47]. Sampling is described by the following
arithmetic statement, where δ(t) represents the impulse train of period Ts [68]:

Sampled Signal xs(t) = x(t) · δ(t) (47)

δ(t) = a0 + ∑∞
n=1(an cos(nwst) + bn sin(nwst)) (48)

a0 =
1
Ts

∫ T
2

−T
2

δ(t)dt =
1
Ts

δ(0) =
1
Ts

(49)

an =
2
Ts

∫ T
2

−T
2

δ(t) cos(nws)dt =
2
Ts

δ(0) =
1
Ts

cos(nws0) =
2
Ts

(50)

bn =
2
Ts

∫ T
2

−T
2

δ(t) sin(nws)dt =
2
Ts

δ(0) =
1
Ts

sin(nws0) = 0 (51)

δ(t) =
1
Ts

∑∞
n=1

2
Ts

δ(t) cos(nwst) + 0) (52)

xs(t) = x(t)[
1
Ts

+ ∑∞
n=1

(
2
Ts

cos(nst)
)
+ 0)]=

1
Ts

[x(t) + 2 ∑∞
n=1(cos(nwst))x(t)] (53)
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xs(t) =
1
Ts

[x(t) + 2 cos(nwst).x(t) + 2 cos(n2wst).x(t) + 2 cos(n3wst).x(t) + . . .] (54)

After sampling the original signal, downsampling reduced the signal’s sampling rate
by M. When a signal is downsampled, only every Mth sample is taken and all others
are discarded. Downsampling balances a dataset by matching the majority class (3D
original signal) with minority class samples (3D chaotic signal). In the third stage, the
downsampled original signal

→
x d(t) was added, or masked, to the chaotic oscillator output

at the transmitter before transmission. The transmitter is represented as follows:

→
c (t) = K(

→
x c(t)), (55)

→
c (t) is the chaotic system’s output after applying RK4.

→
x m is formed by adding

→
c (t) to

→
x d(t)

→
xm(t) =

→
c (t) +

→
xd(t) (56)

→
x m =

xm
ym
zm

,
→
x m =

xd
yd
zd

 (57)

Before transmitting the signal via the channel, upsampling and interpolation were
used to rebuild it. The upsampling procedure increases the sampling rate by an integer
factor M (interpolation factor) by adding M-1 evenly spaced zeroes between each pair of
samples. Mathematically, upsampling is provided by the following equations, where l = 0,
±1, ±2, . . . . The impulse train [n] represents the sampling function.

xU [n] =
{

xm
[ n

M
]
. n = 0,±M,±2M, . . .

0 otherwise
(58)

xU [n] = xm[n]p[n] = ∑+∞
J=−∞ xm[l]δ[n− lM] (59)

p[n] = ∑+∞
τ=−8 δ[n− lM] (60)

After upsampling, interpolation was used to create new data points within a specified
range. If the sampling instants are near enough, the signal can be accurately recreated by
low-pass filter interpolation. Low-pass filtering xU [n] reconstructs xm[n]. The interpolated
signal xT [n] is calculated as [69]:

xT [N] = xU [n] ∗ h[n] (61)

h[n] denotes the impulse response of the low-pass filter:

h[n] =
MΩC

2π
sinc

(
nΩC

π

)
(62)

ΩC is the cutoff frequency of the discrete time filter. So, the equivalent interpolation formula
can be written as:

xT [n] = ∑+∞
J=−∞ xm[lM]hT [n− lM] (63)

xT [n− lM] =
MΩC

2π
sinc

[
ΩC
π

(n− lM)

]
(64)

h[n] is the impulse response of the interpolating filter. The interpolation using the sinc
function is commonly referred to as band limited interpolation.

3.2. On the Receiver Side

On the receiver side, the received signal (masked original signal) was downsampled.
To use chaotic communications, two identical chaotic oscillators were needed in the trans-
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mitter (or master) and receiver (or slave). Unknown receiver-side parameters (θ̃1, θ̃2, θ̃3)
needed to be approximated. The quantum fruit fly optimization algorithm (QFOA) es-
timates the 3D Lorenz chaotic system’s unknown parameters. The fundamental QFOA
includes a setup step and a cycle of smelling, evaluating, and flocking [15,43,70]. The
QFOA control parameters were set, including the maximum number of generations and
population size, and the fruit fly swarm’s location was randomized. As the original FOA
can only solve continuous optimization issues, it was adapted to tackle synchronization in
chaos-based communication networks. Each fly picked randomly from the search space
group, including θ̃1, θ̃2, and θ̃3. As stated in [71], the search space for unknown chaotic
system parameters is [9 11], [20 30], and [2 3]. Given these initial answers, QFOA repeated
the following steps [72]:

- These solutions were input to a predefined chaotic receiver system. The RK4 was used
in the 3D Lorenz equations to create chaotic signals (one for each fruit fly).

- Each fly determined food concentration using the mean square error between the
predicted chaotic signal and the downsampled received signal (smelling process).

- Each fly shared its position with others. The flies compared their solutions to choose
the best one.

- Flies migrated to the solution with the lowest fitness value, which became the new
best solution (vision process).

This stage outputs the 3D Lorenz chaotic system’s ideal parameters. The second stage
of synchronization used these characteristics as inputs. RK4 was used again to create
the estimated 3D chaotic signal. The third stage received this estimated signal and the
downsampled received signal. We then subtracted the two signals to get the sampled
signal. The original signal was reconstructed using upsampling and interpolation. Perfect
synchronization is key to reconstructing the original signal. Table 1 provides the link
between QFOA parameters and the parameters estimation problem of the chaotic system.

Table 1. The link between QFOA parameters and the parameters estimation problem of the chaotic system.

QFOA Parameters Chaotic Synchronization Problem

Number of iterations The search process’s best solution iteration count.
Number of swarms m m = 25.

Initial location The initial solution is randomly selected from each parameter’s search space.
Smell concentration Mean square error (Objective or fitness function).

Vision Smell concentration-based parameter selection.

4. Results

This section analyses the model’s efficiency. Experiments were performed to test
the model’s reliability in estimating chaotic system parameters. The suggested approach
optimized synchronization with the Lorenz chaotic system and speech signal. The 20 to
30 dB weaker speech signal was combined with the chaotic mask signal to create a broadcast
signal. Table 2 shows the experiment’s algorithm settings. The recommended model was
implemented in MATLAB R2017b (9.3.0.713579) 64-bit. The model was constructed using a
laptop with an Intel (R), Core (TM) i5-8250U CPU@ 1.60 GHZ @ 1.80 GHz, 8 GB, and 64-bit
operating system, with a x64 processor.

In the proposed chaotic parameters estimate model, various statistical parameters
were employed to evaluate model performance. These evaluations included [45] the mean
(average) of best fitness values and standard deviations. For a robust model, these means
(mean of best fitness) needed to be as low as possible, where optimum fitness quantifies
the difference between estimated and sent signals. Standard deviations (Std.) shows how
measurements for a group are spread apart from the average (mean) or anticipated value. A
low standard deviation suggests that most data points are near to the mean (more reliable).
A large standard deviation suggests the data points are widely scattered (less reliable).
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Table 2. The parameters of the optimization algorithms (Reference parameters collected from
previous studies).

Algorithm Parameters Values

Fruit fly (FOA) Number of swarms
Maximum number of iterations

25
50

Cuckoo search (CS)
Number of swarms
Probability rate
Maximum number of iterations

25
0.20
50

Practical swarm (PSO)

Number of swarms
Inertia weight
Acceleration coefficient
Maximum number of iterations

25
0.8
1.5
50

Genetic algorithm (GA)

Number of swarms
Crossover rate
Mutation rate
Maximum number of iterations

25
0.7
0.3
50

Firefly algorithm (FA)

Number of swarm
Initial brightness of each fly
Absorption coefficient of light
Step size (α)
Maximum number of iterations

25
1
1
1

50

4.1. Experiment 1: Comparison with Existing Methods

The first batch of tests compared the proposed model to comparable techniques [44]
that used the GA, PSO, and CS to find the 3D Lorenz chaotic system characteristics solely
using chaotic signals. Default swarm parameters were utilized. Table 3 shows that the sug-
gested model is superior to the prior techniques. QFOA’s calculated parameters matched
the original parameters’ real values. According to [49], the 3D Lorenz chaotic system’s
initial parameters are θ1 = 10, θ2 = 28, and θ3 = 8/3, allowing complete synchronization
between the master and slave chaotic systems. The estimated parameters matched the
CS-based model, but the QFOA outperformed in terms of the optimal function’s mean
and standard deviation. Most data points were close to the mean with a low standard
deviation (more reliable). QFOA was more effective and resilient than other chaotic system
parameter estimation strategies. The model and system responses were synchronized. This
gain was due to the proposed model’s higher coverage and exploration of the searching
space, which improved parameter estimate accuracy and led to the discovery of optimum
chaotic parameter values compared with existing techniques.

Table 3. Comparison of statistical results for the Lorenz system, in case of only using chaotic signal.

Models
Means of
the Best
Fitness

Std. Dev. of
the Best
Fitness

θ1 θ2 θ3

QFOA 9.53 × 10−9 5.83 × 10−9 10.00 28.00 2.6666
CS 1.71 × 10−4 1.69 × 10−4 10.00 28.00 2.6664

PSO 0.118 0.269 9.998 27.99 2.6665
GA 1.332 2.784 10.027 28.01 2.6691

4.2. Experiment 2: Effect of QFOA Iteration

The second set of experiments investigated the effect of the QFOA number of iterations
on the proposed model to identify the correct parameters of the 3D Lorenz chaotic system
using only chaotic signals and masking voice signals with the chaotic signals. QFOA was
performed 30 times every iteration, with 50 iterations total and W = 30 for data sampling.
Default swarms were utilized. After 20 iteration, the parameters θ1, θ2, and θ3 converge to
the actual values. QFOA reached stable values in 25 iterations. As the fitness function value
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declines rapidly to zero, indicating that QFOA may converge quickly to the global optimum.
These few iterations did not require complex calculations. By adjusting the location of the
QFOA swarms by modifying the number of iterations, the algorithm could reach an ideal
balance between exploitation and exploration. At the same time, elitism in population
iteration may have sped up the convergence and assured continual optimization. This
highlights the remarkable efficiency of QFOA in accomplishing global optimization.

4.3. Experiment 3: Effect of Number of Swarms

The third set of experiments was implemented to find a suitable number of QFOA
swarms that helped to reduce computational effort without sacrificing estimation precision.
For the three-dimensional Lorenz system, the proposed model was run by setting the
QFOA swarm numbers as 10, 30, and 100, respectively. In general, tiny populations provide
poor outcomes. As the population grows, outcomes improve, but more fitness tests are
needed. Beyond a certain point, outcomes are not significantly influenced. When there are
too few swarms, the solution space is not sufficiently searched, resulting in unsatisfactory
outcomes. Considering search quality and computational effort, a population size between
30 and 60 is suggested. A larger population size is suggested for estimating additional
parameters. Size 25 performed well. Considering processing costs and estimating accuracy,
a large population size is unnecessary.

4.4. Experiment 4: Influence of the Data Sampling W

The fourth series of experiments tested how data sampling affected model accuracy.
To reduce the amount of parameter setting combinations, the model changed one parameter
W at a time, while leaving other parameters (number of swarms, number of iterations, etc.)
at default values. The impact of modifying these variables was also considered. General
factors for selecting W were minimum fitness mean and highest estimate accuracy. All
scenarios were run 30 times for comparison. Table 4 lists the estimation results and the
means of the best fitness values for different data sampling W. As shown, the estimation
accuracy declined as W increased. Moving from 30 samples to 100 decreased the mean of
fitness values by 36%, whereas moving from 100 samples to 200 decreased the mean of
fitness values by 45%. These three groups of input data may have provided a satisfactory
estimate, but the 30 samples of data had the least variation. Different inputs impacted
the first iteration, but for all instances, it took roughly 25 iterations for the algorithm
to converge to zero, indicating these three conditions could all acquire quite accurate
anticipated outcomes. As expected, chaotic parameter estimate accuracy falls as W rises.
The crucial sensitivity of the nonlinear system to starting circumstances and parameters
made the fitness function more difficult as W increased. To decrease estimate bias in target
nonlinear systems, it is vital to sample enough data.

Table 4. Statistical results for the extended Lorenz chaotic system with varied data sampling.

Number of
Samples

Means of
the Best
Fitness

θ1 θ2 θ3

W = 30 9.45 × 10−9 10.00 28.000 2.6667
W = 100 1.49 × 10−8 10.00 27.998 2.6666
W = 200 2.18 × 10−8 9.99 27.997 2.6666

4.5. Experiment 5: Comparison with another Quantum Metaheuristic Algorithm

The fifth series of tests compared the proposed model with a comparable strategy that
used the quantum firefly (QFA) algorithm to determine the ideal chaotic parameters of
the 3D Lorenz chaotic system exclusively using chaotic signal and masking speech sounds
with chaotic signal. Both techniques were performed 30 times to compare fitness means
and standard deviations. Default swarms were utilized. Table 5 shows that the estimated
chaotic parameters while masking speech signals with chaotic signals are similar to the
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QFA-based model. The mean fitness values and standard deviations of QFOA were 37 and
66% lower than in QFA.

Table 5. Statistical results for the Lorenz system.

Model
Means of
the Best
Fitness

Std. Dev. of
the Best
Fitness

θ1 θ2 θ3

Masking QFOA 1.04 × 10−8 6.27 × 10−9 10.00 28.00 2.6667
voice signal
with chaotic

signal
QFA 1.61 × 10−8 1.85 × 10−8 10.00 27.99 2.6666

Chaotic only QFOA 9.53 × 10−9 5.79 × 10−9 10.00 28.00 2.6667
QFA 1.42 × 10−8 1.18 × 10−8 10.00 28.00 2.6667

In general, the quantum-inspired firefly algorithm (QFA) ensured the diversification of
firefly-based generated solution sets, using the superstitions quantum states of the quantum
computing concept. However, it suffered from premature convergence and stagnation;
this was mainly dependent on the ability of the employed potential field to handle move-
ment uncertainty. The suggested QFOA algorithm, inspired by the delta potential field,
presented the most balanced computational performance in terms of exploitation (accuracy
and precision) and exploration (convergence speed, and acceleration). The advantage of
such models, on the one hand, is that they are “exactly solvable”, e.g., the spectrum and
eigenvectors are explicitly known; on the other hand, many interesting physical features are
retained, despite the simplification involved in approximating short-range with zero-range.
Thus, QFOA was more effective and resilient than QFA in estimating chaotic parameters.

4.6. Experiment 6: Estimation Accuracy with Different Chaotic Systems

The sixth group of experiments was conducted to determine the efficiency of the
proposed model regarding the different chaotic systems, including the 3D Chen and 3D
Rossler chaotic systems in cases of only using the chaotic signal. The algorithm was run
30 times and the default parameters of QFOA were used. Table 6 shows that the estimated
parameters derived by QFOA were close to the original parameters for chaotic systems.
As stated in [44], the original parameters of 3D Chen chaotic system were θ1 = 35, θ2 = 3,
and θ3 = 28; whereas, as stated in [73], the original parameters of 3D Rossler chaotic system
were θ1 = 0.2, θ2 = 0.4, and θ3 = 5.7, through which perfect synchronization could be
obtained between the master and slave chaotic systems. In the search process, fruit flies
modified their places based on individual and swarm experiences. This expanded the
solution search space and prevented premature convergence. This also improved the
algorithm’s convergence speed. Generalized synchronization was possible with certain
parameters [74].

Table 6. Estimation accuracy for different chaotic system using default QFOA parameters.

Chaotic
Systems θ1 θ2 θ3

Lorenz 10.000 28.0000 2.6667
Chen 35.000 2.9999 27.999

Rossler 0.2000 0.3999 5.6999

Computer simulations of the three 3D chaotic systems and comparisons with other
metaheuristic approaches proved the suggested method’s efficiency. The impact of data
sampling, iterations, and swarms on estimating accuracy was also studied. Theoretical
study and computer simulation led to the following conclusions: (1) A shorter data sample
length improves estimate accuracy because a longer sample length complicates the objective
function. (2) The highest number of iterations improves estimating accuracy by moving
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the swarms. Thus, exploitation and exploration balance each other. (3) Many swarms
will investigate enough space for study, improving estimate accuracy. These swarms are
computationally intensive. To decrease estimate bias in chaotic systems, use the right data
sampling, iterations, and swarms.

For our simulations, we used some of the most famous chaotic systems as examples.
The number of parameters for these chaotic systems was not large, and the system was
not complex. At present, the most studied chaotic neural network systems have many
parameters, and the weight of these systems affects the complexity of the network. However,
the suggested simpler model may be adapted to deal with chaotic neural network systems
and other complicated chaotic systems. In our case, instead of searching for only three
chaotic parameters, which represented the final solution picked from the search space
based on a quantum-inspired particle’s movement, more parameters could be correctly
estimated by increasing the number of fruit flies. Therefore, there is a trade-off between
computational cost and required best fitness evaluation function that must be balanced.

4.7. Industrial Application Case: Financial Chaotic System

Due to the nonlinear nature of the financial markets, chaos models using nonlinear
dynamics have been a popular topic in recent years. Uncertainty in the market environment
has a particularly negative impact on the financial system. Therefore, describing the
financial chaos model with random elements is more practical. Due to deterministic
instability, financial chaos, such as the extreme turbulence of the financial market and the
financial crisis, occurs during the functioning of the financial system, which has significant
detrimental effects on economic development and social stability. Controlling the financial
system from a chaotic to a periodic state is as simple as modifying the controller settings.
As a first step, we theoretically obtained a range of values for the controller parameters by
analyzing the financial system’s dynamic equations and controllers. Later, we investigated
the effects of these parameters on the system.

5. Conclusions

Chaotic synchronization is key for chaotic signals in a communication system. On the
receiver end, the chaotic system’s parameters are unknown; thus, the task is to determine
the ideal values to retrieve the message signal. Using the fruit fly optimization technique,
this article improved chaotic synchronization in chaos-based wireless networks. In this
study, parameter estimation for a three-dimensional Lorenz chaotic system was set up
as a multi-dimensional optimization problem and solved using the quantum fruit fly
optimization method. Quantum theory was employed by the FOA model and replaced
the osphresis-based search of FOA with a quantum behavior-based searching mechanism.
The quantum fruit fly optimization technique improved parameter estimation accuracy by
carefully exploiting the search space and converging, which suggested that the algorithm
could estimate optimum parameter values. Furthermore, it enhanced the exploration
of optimal solutions by sharing information regarding parameter values. The difference
between the proposed model and existing metaheuristic algorithms was the use of fruit fly
optimization to produce better quality solutions and convergence speed, i.e., establishing
an optimal trade-off between exploration and exploitation. This model may be extended to
other chaotic systems.

The results and discussion of this study led to the following conclusions (important
results): (1) Numerical simulations indicate the proposed approach can accurately predict
chaotic system parameters. The suggested model is faster and more accurate than current
techniques. This outcome is due to balancing exploitation and exploration in the search
space. (2) Even with the original signal added to the chaotic signal, the current algorithm
can still identify it well, especially for the Lorenz system. (3) As with final estimated results,
30 samples of data has the highest accuracy and least variation, proving that the amount of
input data affects algorithm stability.
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For future work, the proposed model should be applied to different chaotic systems,
such as in high-dimensional, hyper chaotic systems, and time-delay chaotic systems. Imple-
mentation and testing in a real testbed are important in the field of wireless communication.
Real deployment tests can bring up issues that did not come up in simulation. To work
well in real implementations, changes to the proposed model may be required.
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