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Abstract: Freeway networks, despite being built to handle the transportation needs of large
traffic volumes, have suffered in recent years from an increase in demand that is rarely resolvable
through infrastructure improvements. Therefore, the implementation of particular control methods
constitutes, in many instances, the only viable solution for enhancing the performance of freeway
traffic systems. The topic is fraught with ambiguity, and there is no tool for understanding the entire
system mathematically; hence, a fuzzy suggested algorithm seems not just appropriate but essential.
In this study, a fuzzy cognitive map-based model and a fuzzy rule-based system are proposed as
tools to analyze freeway traffic data with the objective of traffic flow modeling at a macroscopic level
in order to address congestion-related issues as the primary goal of the traffic control strategies. In
addition to presenting a framework of fuzzy system-based controllers in freeway traffic, the results
of this study demonstrated that a fuzzy inference system and fuzzy cognitive maps are capable of
congestion level prediction, traffic flow simulation, and scenario analysis, thereby enhancing the
performance of the traffic control strategies involving the implementation of ramp management
policies, controlling vehicle movement within the freeway by mainstream control, and routing control.

Keywords: fuzzy system; inference system; fuzzy cognitive map; congestion prediction; control
strategy; freeway networks

MSC: 03B52

1. Introduction

Over the course of the last few decades, there has been a steady increase in the amount
of vehicular traffic, which has led to a number of adverse consequences for both society
and the environment [1]. As a direct result of the ramifications of these factors, there has
been an increased requirement for the development of surveillance and control strategies
for freeway traffic networks [2]. These networks, despite being constructed to fulfill the
mobility requirements of heavy traffic flows, have been negatively affected in recent years
by the rising demand, which is rarely solvable through the implementation of appropriate
infrastructure improvements [3]. As a consequence, the implementation of particular traffic
management measures constitutes, in many scenarios, the only feasible solution to the
problem of how to enhance the operation of freeway vehicular networks, largely linked to
physical and economic constraints [4,5].

Taking all of this into account, the continued development of planning and manage-
ment tools for traffic systems is of the utmost importance, since it is the only method
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to enhance the effectiveness of the existing freeway network without making significant
improvements to the underlying infrastructure [6]. As a result of a significant component
of the freeway network being incapable of meeting the present mobility needs, which
is having an effect on drivers in the form of increased congestion, exacerbated air pollu-
tion, and diminishing safety, many studies have been carried out in order to develop the
methodologies of planning and control for freeway traffic networks. Former scholars were
primarily focused on finding ways to alleviate congestion-associated problems, but the
present global frameworks for eco-innovation in transportation systems need the imple-
mentation of far improved strategies [7]. Because of this, common methods to control traffic
need to be rethought in order to provide a more justifiable perspective. This is necessary
because, once this is done, control purposes will include not only the optimum utilization
of freeway network capacity but also the minimization of emission, fuel consumption,
and accidents [6].

In addition, the complexity of the traffic control problem derives from the natural
dynamic character, nonlinearity, and volatility of the traffic network system. Generally,
when the demand flow surpasses the capacity of a particular segment of freeway, conges-
tion occurs. It is commonly accepted that such a complex problem cannot be described
precisely using a mathematical method, such as statistical regression, which is incapable of
addressing the complexities of freeway traffic dynamics and the interconnections among
components. Moreover, engaged variables are primarily associated with uncertain fea-
tures since they are directly influenced by human behavior and decisions; hence, these
variables and the amount of uncertainty in their quantities must be accounted for within
the framework of the system’s computation [8]. This is mostly related to the problem’s
extreme complexity and the vast number of characteristics that can influence the control
actions. For this reason, various distinct strategies have been employed lately, ranging
among the following: using macroscopic traffic simulation and variable speed limit control
to manage traffic flow in the main stream of the freeway by a generic fuzzy system-based
approach [9,10], back propagation neural network and single neuron-based freeway traffic
density control [11–14], including even certain combinations of fuzzy neural network con-
trol methods [15]. Although substantial progress has been made in this area of research with
regard to congestion-related unique challenges, these techniques still require specialized
knowledge to extract parameters with causal relationships and rules, as well as a vast
amount of training data.

Accordingly, as a continuation of the research presented at the IPMU 2022 confer-
ence [16], this work is extended to a novel framework in which the flow of traffic at a
macroscopic scale is measured to approximate computation of freeway traffic data. This
computation is performed by using a combination method of Fuzzy Cognitive Maps (FCM)
to simulate traffic flow and various scenarios analysis (e.g., lane-drop scenario) as well as
the Fuzzy Inference System (FIS) to address congestion-related issues as the core of the
traffic control improvement strategy. This study aims to contribute to the establishment
of a responsive traffic control and management system in addition to offering a generic
framework for fuzzy system-based controllers in freeway traffic. Modeling and processing
imprecise traffic data at the macroscopic level and minimizing the negative economic, social,
and environmental effects of congestion in freeway networks are the primary contributions
of the suggested system. MATLAB Fuzzy Logic Toolbox R2022a and the FCMpy library [17]
simulate and validate the resulting FIS and FCM models, respectively.

This study is presented in five sections. The second section discusses traffic control
methods. In Section 3, following presenting the case study, a FIS developed for congestion
scale calculation and an FCM designed for flow computation are presented. In Section 4, the
products of both fuzzy system-based methodologies are examined, and finally in Section 5,
possible future directions are stated.
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2. Traffic Control Strategies

Effective mobility involves a wide range of challenges, including environmental
conservation and social and economic development. Since freeways are still the main
popular way to move people and goods, they are essential to the expansion of the economy
and the maintenance of social harmony. In response, various methods for efficient traffic
control in freeway systems have been developed. A common and accepted choice is road-
based traffic control. It is accomplished by macrolevel controls on traffic flow, through
which the use of a number of regulating mechanisms (Figure 1) can be used to manage
the flow of traffic. These mechanisms include ramp management, i.e., ramp metering
in conjunction with traffic lights at onramps; mainstream control, e.g., variable speed
limits, keep-lane directives, lane control, and congestion warnings; and route guiding,
i.e., typically specific signs are posted at crossroads [18].
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In light of the complexity of the problem, scholars have been looking at transportation-
related challenges for a number of years [19]. In response to these challenges, the traditional
freeway traffic control systems’ primary focus has shifted to the reduction of traffic con-
gestion as its primary goal. As was mentioned, with the dramatic expansion of goods
transportation in bulk as well as passengers, mobility systems have facilitated the growth
of society and the economy. Meanwhile, this expansion caused congestion to rise, through
which the quality of the current mobility service has declined. Such a phenomenon can
take many different forms, from just creating bottlenecks and lengthening travel times to
seriously degrading the system and halting vehicle traffic. Furthermore, as demonstrated
by the experiments carried out in [20], frequent exposure to congestion raises user irri-
tability since users perceive the extra time needed to get to their destination as wasted
time that may be spent on other activities. Finding the right traffic control measures is
one way to hasten the process of mitigating congestion and creating a functional mobility
system [21]. An effective modeling strategy for defining traffic flow behaviors must be
created in order to establish these control measures. In order to mathematically reflect the
dynamic behavior of real-world traffic systems, traffic flow models are adopted. Traffic flow
models are being used to determine planning actions, analyze the impact of infrastructure
upgrades or alterations to existing freeway configurations, and build, visualize, and assess
certain operational procedures in addition to evaluating and predicting the system. A wide
range of traffic flow models with various qualities and functionality have been constructed,
starting with work by [22] in the 1950s. Traffic models have been categorized using a
range of methodologies [23]. According to their degree of attributes, macroscopic, micro-
scopic, and mesoscopic models are the most prominent standardized approaches for traffic
flow modeling. The key categorization characteristics for these approaches are depicted
in Figure 2.
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The macroscopic approach is the most prevalent and established level of traffic regula-
tion. The continuous or discrete nature of the characteristics expressing time and space is
used to effectively categorize macroscopic forms. Given their low processing complexity
and adaptability for real-time control systems in extended networks, macroscopic dis-
crete approaches are the preferred method for freeway traffic control. In this work, the
method concentrates on discrete macroscopic properties to compute hourly vehicle dy-
namic patterns. Additionally, discrete parameters are employed rather than continuous
values (temporally and spatially), in which freeways are represented as a set of sections
with fixed lengths and time is equally divided into separate spans, accordingly [24]. As a
result, modeling these features mainly depends on conventional mathematical approaches,
which are frequently unable to capture the complexity of road traffic patterns and com-
plicated relationships between pertinent components. Furthermore, due to the constant
vibrant responses of drivers imposing these components, they are strongly influenced by
ambiguous and uncertain attributes. Accordingly, conventional mathematical approaches
are unable to model all features of the components and their varied degrees of vagueness
within the system. Therefore, fuzzy system-based techniques are not just sufficient but also
essential to be taken into account in the associated way of reasoning.

3. Fuzzy System-Based Controllers in Transportation

As an integral aspect of computational intelligence, fuzzy systems approximate exact
computation through the application of methodologies and procedures that mimic human
observation, reasoning, and decision-making. Fuzzy systems provide the framework
for integrating objective and subjective variables to optimally process quantitative and
linguistic information. These methods have found widespread application in transportation
engineering. Speed advisory boards in [25] utilize data from measurements and the
insight of experts to set speed limits on freeways. Further studies discuss existing and
upcoming challenges in traffic network control and management by assessing some popular
computational intelligence models and evaluating their implementation for traffic signal
control [26]. An optimized monetary system for seaport services is presented in [27] using
a fuzzy system-based approach. To make lane-changing operations in construction zones
more realistic, researchers in [28] created a fuzzy system-based framework that takes
drivers’ characteristics into consideration and imitates them.

While fuzzy systems approaches have been utilized for a number of traffic-related
issues, their potential for controlling traffic to maximize efficiency on highway networks
has been underestimated. Effective mobility, on the other hand, is a relatively new topic
of study that is receiving a growing degree of interest from the scientific community of
traffic control specialists. Next, a Fuzzy Inference System (FIS) and a Fuzzy Cognitive Map
(FCM), both of which were conceptualized and built in [29,30], are used in combination
(see Figure 3) for traffic control with the goal of enhancing mobility in large-scale freeway
networks. With the suggested fuzzy system-based controllers, a general framework for
supervised vehicular traffic is provided in Figure 3. As the application of the proposed
framework, vehicle level data can be clustered and computed by FIS in linguistic terms
to predict the Level of Congestion (LOC) as the output variable of the system, and then
the level of intervention based on the LOC may be assigned. Subsequently, an assumption
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that can be made here is that fuzzy rule-based inference and FCM may be considered to
manage local (e.g., ramp metering, main stream control) and global (coordinated ramp
control, route guidance) control actions, respectively.
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3.1. The Case Study

The suggested FIS and FCM models were created using datasets from Hungarian
motorway networks, whose users experience diverse and complex congestion behaviors;
primarily as a result of two main sources: Hungary’s prominent position in the transit
system and the 25 percent growth in the number of certified automobiles between 2010
and 2018 [31,32]. These problems produce intricate behavior in the flow of traffic on the
roads, involving variations in both spatial and temporal scales. The E-toll system is the
source of the used data in this study, which consists of freeway segment tollway data with
the following variables: the highway’s name, the segment’s name (identifier), the number
of e-tolls collected in each segment (links) and its length as well as the number of lanes.
These linkages are comprised of a total of 2446 unique segments, wherein each measured
between 100 and 18,000 m in length. In building the FIS algorithm and clustering ranges for
input and output parameters, the full dataset and freeway segments are assessed. However,
in order to maintain the efficacy and reliability of the constructed FCM, 58 segments
were selected to represent the whole set of highway segments between Budapest and the
Austrian border.

Most traffic models on roads attempt to paint a comprehensive picture of how traffic
variables change across time and space, and this recognition of the importance of geographic
context for the dataset under study is reflected in the models’ construction. Therefore, as a
great advantage, the location-specific patterns of road traffic can be reflected in this dataset
as well. Figure 4 depicts an example of a link between three different segments labeled
A, B, and C. Since the presented dataset is a time series, it can be used to foretell how
traffic would behave on downstream road segments given the current conditions in the
upstream ones.
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Figure 5 shows the causal linkages and correlations between the segments on a log-
arithmic scale, where the overall performance of road traffic may be observed over time,
indicating how flow in an upstream segment may influence traffic flow in a downstream
one. The computed correlation of road traffic flow between segments exposes that A and B
correlate (0.03), A and C correlate (0.90), and B and C correlate (0.10). Various inferences
and correlation analysis may be done using these values to determine the behavior patterns
and intensity of freeway traffic flow.
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3.2. The Fuzzy Inference System

The original fuzzy set theory [33] developed by Zadeh has been utilized to handle a
variety of industrial and scientific issues in numerous technology and science fields. The
qualities of fuzzy sets and the possibility of their expression in linguistic terms give a
computational approach for characterizing and addressing problems involving imprecision
and ambiguity. This study accordingly offers a fuzzy inference approach to identify traffic
congestion founded on the Mamdani method [34] deployed in MATLAB’s Fuzzy Logic
Toolbox R2022a. The created model is focused on evaluating and predicting the degree of
highway network congestion. In Figure 6, the configuration of the model fuzzy inference
system in MATLAB with relevant variables is depicted.
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The first phase in creating a fuzzy inference system is determining the attributes that
will be used to determine the input and output values of the system. The system uses the
length of the segment, number of lanes, and flow as input elements to compute the level of
congestion as the system’s output. The projected Mamdani fuzzy inference technique is
broken down into four main stages of development:

1. Identifying the acceptable numerical interval for involved linguistic parameters
(Tables 1 and 2). The input parameters are as follows:

• Flow, rate expressed in terms of vehicles per minute,

q =
n
T

=
n

∑n
i=0 i

(1)

where q is the quantity of vehicles on average (n) passing a certain point in
time (T).

• Length of each segment of freeway in kilometers.
• Lane, the number of lanes of the given segment.

2. Given that they capture and express the characteristics of the fuzzy set employed in
the case study, triangular and trapezoidal membership functions are utilized to assess
how directly the input and output parameters match. Equations (2) and (3) explain
triangular and trapezoidal membership functions, respectively:

µΛ(x) =


0, x < αmin
x−αmin
β−αmin

, x ∈ (αmin, β)
αmax−x
αmαx−β , x ∈ (β, αmax)

0, x > αmax

(2)

µΛ(x) =


0, x ≤ αmin
x−αmin

β1−αmin
, x ∈ (αmin, β1)

αmax−x
αmαx−β2

, x ∈ (β2, αmax)

0, x ≥ αmax

(3)
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3. Input–output links are constrained by if-then fuzzy rules. A total of 75 rules were
implemented, mainly founded on the percentile distribution of the data, and expert
evaluation. These rules were applied via the MATLAB Fuzzy Rule Editor in order to
create the inference and nonlinear surface model.

4. Centroid of Area (COA) was utilized as the defuzzification operator to determine
the corresponding action (i.e., in this study congestion level) to be conducted. The
following denotes COA:

ZCOA =

∫
Z µA(z)zdz∫
Z µA(z)dz

(4)

where z is the fuzzy system output and aggregated output membership function is
given as µA(z).

Table 1. Input variables clustering ranges.

Input Variables Numerical Ranges Linguistic Term Effect on Traffic Congestion

Flow

1< F ≤ 300 vehicles Very low Very small impact
200 ≤ F ≤600 vehicles Low Small impact

500 ≤ F ≤ 1000 vehicles Average Steady state
800 ≤ F ≤ 1400 vehicles High High increasing impact

1200 ≤ F ≤ 2000 vehicles Very High Very high increasing impact

Length

0.1 < Le ≤ 2 KM Very Short Very high impact
1 ≤ Le≤ 6 KM Short High impact

4≤ Le ≤ 12 KM Average Steady state
8 ≤ Le ≤ 17 KM Long Reducing impact
15 ≤ Le < 19 KM Very Long High reducing impact

Lane
1 < La ≤ 2 Narrow High increasing impact
2 ≤ La ≤ 3 Average Reducing impact
3 ≤ La < 4 Wide High reducing impact

Table 2. Output variable clustering ranges.

Output Variable Numerical Ranges Linguistic Term Equivalence

LOC

1< LOC ≤ 280 vehicles Completely congestion free

- IF Flow is very low/low/avg. AND
Lane is narrow/avg./wide AND
length is short/avg./long/very long.

186 ≤ LOC ≤ 580 vehicles Congestion free

- IF Flow is very low/low/avg./high
AND Lane is narrow/avg./wide AND
length is avg./long/very long.

470 ≤ LOC ≤ 940 vehicles Low

- IF Flow is low/avg./high/very high
AND Lane is narrow /avg./wide
AND length is avg./long/very long.

750 ≤ LOC ≤ 1200 vehicles Stable

- IF Flow is low/avg./high/very high
AND Lane is narrow /avg./wide AND
length is short/avg./long/very long.

1130≤ LOC ≤ 1500 vehicles Near Congestion
- IF Flow is avg./high/very high AND

Lane is narrow/avg./wide AND
length is length is short/avg.
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Table 2. Cont.

Output Variable Numerical Ranges Linguistic Term Equivalence

1400 ≤ LOC ≤ 1650 vehicles Congestion

- IF Flow is high/very high AND Lane
is narrow/avg. AND length is very
short/short/avg.

1600 ≤ LOC < 2000 vehicles Severe Congestion
- IF Flow is very high AND Lane is

narrow/avg. AND length is very
short/short.

3.3. The Fuzzy Cognitive Map

As an extension of conventional cognitive maps [35], Kosko [36] introduced the concept
of the Fuzzy Cognitive Map (FCM) to solve restrictions related to the binary structure of
the initial cognitive map model. FCM merges the idea of cognitive maps and the concept
of fuzzy sets, first proposed by Zadeh [33], with the added concept of signed fuzzy impacts
to construct a unique type of artificial neural network or fuzzy bipolar graph. These
characteristics help to create fuzzy nodes (components or concepts) that utilize the non-
binary features of the modeled system’s components and gradual intensifications of their
causal linkages. Figure 7 depicts a schematic illustration of a simple FCM; using weighted
arcs, interconnections and connections among nodes are modeled.
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In the development of an FCM-based road traffic flow model, determining activation
values for nodes (segments) related to weight assignments is crucial. An inference rule
developed from Equations (5) and (6) is used by the presented model to assign activation
values. The suggested integration thus emphasizes two crucial aspects: nodes can both
reflect their past values (i.e., previous traffic density in the given node or segment) and
activation values may be derived utilizing the values of the connected nodes and their
associated causal weights at each time step. Involved methods and the proposed inference
rule are as follows:

• Calculating the density of segment i in link m at different time frames [37]:

ρm,i(t + 1) = ρm,i(t) +
Ts

Lmλm
[qm,i−1(t)− qm,i(t)] (5)

• Calculating the value of concept Ci at time t, wherein the value of Ci may represent
the calculated density in the given segment [38]:

A(t+1)
i = f (

n

∑
j=1
i 6=j

wji A(t)
j + A(t)

i ) (6)

• Calculating the value of concept Ci at time t, wherein the value of Ci may represent
the calculated density in the given segment [30]:
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ρ
(t+1)
m,i = f (

n

∑
j=1
i 6=j

ρ
(t)
m,i,j Wij + ρ

(t)
m,i,i) (7)

Consequently, every freeway segment is signified by a node, the value of which is
taken as the density ρ of segment i of link m, and the weighted arcs are set to a constant
parameter based on variables Lmλm as a rough estimate of the capacity; where Lm signifies
the lengths of the segments of link m, and λm signifies the quantity of the available lanes
in link m. Accordingly, these parameters are used to set up the nodes and weights. Then,
the system has the right to interact; following every iteration, new values are made and
put into the new state vector. This approach will be continued until the simulation exhibits
a stabilized state at a specified numerical boundary and reaches equilibrium (see further
details in [30]).

4. Results and Discussion

FIS and FCM are designed in relation to traffic control approaches, i.e., mainstream
control, ramp management, and route guiding, in freeway networks based on a macro-level
data analysis. In this part, the features of each fuzzy system-based technique are examined
in greater detail.

4.1. FIS in Congestion Level Prediction

Mainstream control is utilized to regulate the flow of vehicles driving on the main
lanes, typically by delivering appropriate signals to drivers via variable message signs
(VMS) or other means such as traffic lights. On a macroscopic scale, these management
procedures aim to standardize traffic conditions, avoid the recurrence of congestion, and
limit the chance of vehicle collisions. A further objective is to address the appearance of one-
time congestion issues by increasing system reliability in low-capacity conditions. [39]. The
projected FIS attempts to enhance freeway mobility and safety by providing or mandating
suitable speed restrictions displayed via VMSs. As explained in the third section, using
three forms of available data, the level of congestion for every segment is calculated,
including the number of vehicles in a given timestep, the length and the lane of each
segment. These inputs provide approximations of the segment’s rough capacity to fulfill
newly created demand that may cause an alteration in the Level of Congestion (LOC).

Figure 8 shows how operative the proposed FIS might be in generalizing complex
nonlinear connections between congestion levels and the involved features of the traffic;
in which the interdependence of the input variables and LOC can be demonstrated using
a fuzzy control surface in a graphical insight view. It indicates that a correlation exists
between LOC and the input parameters. When the length is between 4 and 6 km and the
number of lanes is 2 or 3, the LOC undergoes the greatest change (Figure 8A). Whenever
the length variable is between 1 and 6 km, each segment with a rising flow rate of more
than 200 vehicles experiences an intense reaction (approximately a 50 percent increase) in
the LOC (Figure 8B). Increasing or reducing the number of lanes has the greatest impact on
the LOC. Segments with 3 or 4 lanes will not experience severe congestion; however, an
increase of 200 vehicles per hour in segments with fewer than two lanes can increase the
LOC by more than 50 percent (Figure 8C).
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When input data are inserted into the designed FIS, congestion severity can be pre-
dicted. If real-time input parameter properties are entered as shown in Figure 9, as an
example of the proposed model application: The LOC would be anticipated as 243, which
is classified based on the assigned membership function, for the level of congestion-free,
given the flow rate of 239, two-lane segment, and its length of 9.5 km.
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Measuring congestion is essential for optimizing traffic management and control. The
creation of an effective transportation system is largely determined by the current road
mobility patterns. Therefore, the method applied to evaluate the severity of congestion
ought to be sufficiently realistic to enable decision-makers to take the needed steps to alle-
viate congestion and to rapidly construct an effective transportation system. Consequently,
transportation engineers have recognized the exact features that are normally prescribed
in a congestion degree [40,41]. An effective evaluation of congestion should primarily
include the following: non-technical companies should be capable of easily comprehending
and evaluating the results of the analysis; it should provide a consistent range of possible
values; be relevant to all road types; and be capable of predictive and statistical analysis.
In addition to these traits, in contrast to conventional approaches to traffic detection, the
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presented approach has an intelligent discipline recognized as approximate reasoning [8,42]
that sacrifices exact traffic-connected qualities (e.g., geometric features such as junctions,
bifurcations, offramps, and onramps) that may be selected in both microscopic and meso-
scopic types of traffic modeling in order to achieve substantially lower computational
contributions and time.

4.2. FCM in Traffic Flow Simulation

A range of interdependent and connected components describe the complex road
traffic flow rules. Thus, FCM is provided as a computational intelligence method of
resolving the imprecision and volatility within highway networks. From the perspective
of macroscopic modeling, these uncertainties are mostly associated with road traffic flow,
density, and estimated capacity-related variables that might increase the likelihood of a
breakdown and change the condition of traffic from free flow to congested flow [24]. In
the projected FCM, segments of each link (freeway) are allocated as nodes (concepts),
whose values are determined by their computed densities. Figure 10 shows a geographical
description of the selected freeways.
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Figure 11 illustrates the FCM with initialized weights and notes. FCM commences
performance analysis of the process. In each iteration of the FCM, the state of notes is
determined using Equation (7). Higher activation values in the nodes (segments) are
reflected by larger nodes in the simulated FCM; these larger nodes signify higher density
and display activation values with a stronger influence on the network. Three alternate
highways between Budapest and the Austrian border are depicted by S1, S2, and S3 and
their 58 segments as nodes in the network. S1 contains nine nodes that end at node ES1
and merges with one of the S2 nodes; S3, as the preferred route, also interacts closely with
the nodes in S2, which both end at node E as the last Hungarian segment before entering
Austrian territory.
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Table 3 and its corresponding Figure 12 depict the FCM traffic flow simulation of the
initial states, in which the road segments are denoted by nodes, e.g., S3a, S3b, . . . , and
the computed values show the segments’ density to illustrate how changes in inconstant
attributes (e.g., a variation in the flow rate or a change in the quantity of lanes) alter system
behavior. This model provides diverse solutions for implementing the most commonly
used traffic control strategies, such as ramp management and route guidance. Consequently,
as one of the most frequent causes of severe LOC, i.e., based on Figure 8C, a lane-drop
scenario is simulated in a two-lane segment (S3h). Though a lane was dropped, the density
reduced slightly, which clearly indicates that the remaining lane’s traffic density increased
significantly and reached severe LOC. Compared to their initial states, the density values of
connected segments vary, i.e., S3g and S3i can be observed in Table 4 and its corresponding
Figure 13, in which the density of S3i falls by 11%, and thereafter there is a minor decline
in S3j, though in the upstream nodes, S3g and S3f rise by 16% and 8%, respectively.

Table 3. Initial simulation result of the traffic flow density in the chosen network, adapted from [16].

Step S3 S3a S3b S3c S3d S3e S3f S3g S3h S3i S3j S3k S3l S3m S3n

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
2 0.67 0.71 0.73 0.65 0.71 0.74 0.73 0.74 0.64 0.68 0.80 0.70 0.76 0.66 0.67
3 0.67 0.72 0.76 0.63 0.72 0.77 0.76 0.78 0.63 0.68 0.85 0.72 0.79 0.66 0.66
4 0.67 0.72 0.77 0.63 0.72 0.78 0.77 0.79 0.63 0.67 0.85 0.73 0.80 0.67 0.65
5 0.67 0.72 0.77 0.62 0.72 0.78 0.77 0.79 0.63 0.66 0.85 0.73 0.80 0.67 0.65
6 0.67 0.72 0.77 0.62 0.72 0.78 0.77 0.79 0.63 0.66 0.85 0.73 0.80 0.67 0.65
7 0.67 0.72 0.77 0.62 0.72 0.78 0.77 0.79 0.63 0.66 0.85 0.73 0.80 0.67 0.65

Table 4. Traffic flow density in one lane reduction scenario, adapted from [16].

Step S3 S3a S3b S3c S3d S3e S3f S3g S3h S3i S3j S3k S3l S3m S3n

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 0.67 0.71 0.73 0.65 0.71 0.74 0.74 0.74 0.62 0.68 0.80 0.70 0.76 0.66 0.67
3 0.67 0.72 0.76 0.63 0.72 0.77 0.78 0.78 0.61 0.68 0.85 0.72 0.79 0.66 0.66
4 0.67 0.72 0.77 0.63 0.72 0.77 0.79 0.79 0.61 0.67 0.83 0.73 0.80 0.67 0.65
5 0.67 0.72 0.77 0.62 0.72 0.79 0.84 0.84 0.61 0.64 0.83 0.73 0.80 0.67 0.65
6 0.67 0.72 0.77 0.62 0.72 0.79 0.84 0.94 0.63 0.62 0.82 0.73 0.80 0.67 0.65
7 0.67 0.72 0.77 0.62 0.72 0.79 0.84 0.94 0.63 0.59 0.82 0.73 0.80 0.67 0.65
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Simulations confirmed the FCM’s viability as a computational intelligence tool, not 
only at the macroscopic modeling level to examine the overall behavior of road traffic flow, 
but also in terms of studying and tracking relevant changes inside freeway networks. These 
features provide useful information and can contribute to positive outcomes connected to 
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planning reasons, such as evaluating the impact of new road projects or comparing the ef-
fects of alternative development scenarios; anticipating the impact of changes in road capac-
ity, e.g., in repairing needs; recognizing dynamic congestion patterns and error-prone places 
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Furthermore, modern approaches, despite their distinct characteristics, are able to 
operate online based on real-time qualities originating from the road network, as opposed 
to the primitive traffic control with fixed plans generated from past data. These traffic 
control approaches, such as mainstream control, ramp management, and route guiding, 
can be fed by the analysis and forecasts made possible by the given FIS and FCM. Addi-
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Simulations confirmed the FCM’s viability as a computational intelligence tool, not
only at the macroscopic modeling level to examine the overall behavior of road traffic flow,
but also in terms of studying and tracking relevant changes inside freeway networks. These
features provide useful information and can contribute to positive outcomes connected to
traffic control techniques, namely, the prediction and monitoring of the road traffic flow
state in complex networks for lowering traffic emissions and enhancing road safety; for
planning reasons, such as evaluating the impact of new road projects or comparing the
effects of alternative development scenarios; anticipating the impact of changes in road
capacity, e.g., in repairing needs; recognizing dynamic congestion patterns and error-prone
places in order to optimize ramp management and route guidance for eco-routing [43].

Furthermore, modern approaches, despite their distinct characteristics, are able to
operate online based on real-time qualities originating from the road network, as opposed
to the primitive traffic control with fixed plans generated from past data. These traffic
control approaches, such as mainstream control, ramp management, and route guiding, can
be fed by the analysis and forecasts made possible by the given FIS and FCM. Additionally,
in classifying traffic controllers, local approaches are founded on localized data produced
by sensors situated near the actuators, whereas in the global control approach, the gathered
segment data are not regarded individually, but rather as an input to evaluate the state of
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the whole freeway network [20]. Consequently, in the presented framework (see Figure 3),
FIS might be offered as a local traffic controller that can be used for mainstream control
methods, and FCM can be provided as a global traffic controller that can evaluate the
system dynamics supporting ramp metering and route guidance.

5. Conclusions and Future Direction

The explosive growth of road traffic flow modeling needs a particular focus on as-
sessing the capabilities of various computational intelligence approaches in this domain.
Consequently, this study presented FIS and FCM as two computational intelligence ap-
proaches for assessing freeway traffic data pertaining to traffic flow modeling at the macro-
scopic level for resolving congestion-related concerns at the heart of mobility effectiveness
improvement strategies. Due to the world’s growing population, there is no surety that
congestion can be eradicated entirely. However, these approaches are offered to ease
congestion to a fair extent.

This study develops innovative solutions of FIS and FCM in the analysis of complex
freeway networks, with a focus on critical vehicular traffic congestion control strategies,
such as ramp management, mainstream control, and route guidance, with the primary
objective of enhancing freeway safety and reducing emissions. In addition, mobility
effectiveness can be enhanced by employing these techniques as the primary reason for
designing and managing transportation networks. According to the complexity of the
problem, it is probable that the FIS and FCM models cannot capture all of the contributions
of a macroscopic traffic flow control technique; hence, the generated results may differ
from the actual condition of freeway traffic. Yet, any estimating method will inevitably
include a trade-off between model performance and operating time; therefore, methods
based on fuzzy systems offer substantial advantages for traffic control techniques from this
standpoint. Moreover, the dataset for this study does not include all segments that have
the ability to impact road traffic behavior, but only those that are part of the e-toll network.
Notably, by including new mapping and data, the precision of the representation of freeway
networks can be greatly increased, resulting in more accurate but also more complex FCM
models with finer simulation outcomes. The next step in this area of investigation should
focus on developing a real-time route guidance generation method by combining FCM with
other algorithms like Dijkstra and Q-learning to confront the stochastic nature of the traffic
conditions and all involved segments in the freeway networks, with a special emphasis on
bottleneck locations.
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