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1. Introduction

In this paper, we consider the equation

− divHa(x, Xu) = µ in Ω ⊂ Hn, (1)

where Ω is a domain and µ is a Radon measure with |µ| < ∞ and µ(Hn \Ω) = 0; hence
the Equation (1) can be considered as defined in all of Hn. Here Xu = (X1u, X2u, . . . , X2nu)
is denoted as the horizontal gradient of a function u : Ω → R, see Section 2 for more
details, and the continuous function a : Ω×R2n → R2n is assumed to be C1 in the gradient
variable and satisfies the following structural conditions for every x, y ∈ Ω and z, ξ ∈ R2n,

(|z|2 + s2)
p−2

2 |ξ|2 ≤ 〈Dza(x, z)ξ, ξ〉 ≤ L(|z|2 + s2)
p−2

2 |ξ|2; (2)

|a(x, z)− a(y, z)| ≤ L′|z|(|z|2 + s2)
p−2

2 |x− y|α, (3)

where L, L′ ≥ 1, s ≥ 0, α ∈ (0, 1] and Dza(x, z) is a symmetric matrix for every x ∈ Ω.
Here we call the Equation (1) with a satisfying (2) and (3) as quasi-linear p-Laplacian type
non-homogeneous equation.

A function u ∈ HW1,p
loc (Ω) is called as a weak solution to (1) if∫

Ω
〈a(x, Xu), Xϕ〉dx =

∫
Ω

ϕdµ,

where HW1,p
loc (Ω) is the first order p-th integrable horizontal local Sobolev space, namely,

all functions u ∈ Lp
loc (Ω) with their distributional horizontal gradients Xu ∈ Lp

loc (Ω).

Given the typical example a(x, z) = (|z|2 + s2)
p−2

2 z, the Equation (1) becomes the sub-
elliptic non-degenerate p-Laplacian equation with measure data

−divH(|Xu|2 + s2)
p−2

2 Xu = µ if s > 0,

and the sub-elliptic p-Laplacian equation with measure data

− divH |Xu|p−2Xu = µ if s = 0. (4)

Mathematics 2022, 10, 4129. https://doi.org/10.3390/math10214129 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214129
https://doi.org/10.3390/math10214129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9915-5739
https://doi.org/10.3390/math10214129
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214129?type=check_update&version=2


Mathematics 2022, 10, 4129 2 of 22

When measure µ = 0, the Equation (4) becomes the sub-elliptic p-Laplacian equation

− divH |Xu|p−2Xu = 0. (5)

Particularly, we call weak solutions to the Equation (5) as p-harmonic functions in Ω ⊂ Hn.
For p-harmonic functions in Euclidean spaces Rn, their C1,α-regularity has been es-

tablished by [1–5]. For p-harmonic functions in the Heisenberg group Hn, their C0,1 and
C1,α-regularities have been established by [6–12]. It is therefore natural to consider the case
of regularity for the corresponding inhomogeneous equation. In Euclidean spaces Rn,
when 2− 1/n < p < ∞, Duzaar-Mingione [13,14] built up the C0,1-regularity of solutions
to the Equation (1) with measure µ ∈ L1(Ω). In the Heisenberg group Hn, when 2 ≤ p < ∞,
Mukherjee-Sire [15] built up the C1,γ-regularity of solutions to the Equation (1) with mea-
sure µ = f ∈ Lq(Ω) for some q > Q = 2n + 2 and some γ ∈ (0, 1). But when 1 < p < 2,
the C0,1 and C1,γ-regularities for the Equation (1) in the Heisenberg group Hn are unknown.
This paper aims to establish the C0,1 and C1,γ-regularities in the case 1 < p < 2.

It is known that the Heisenberg group Hn is a typical step two Carnot group, see
Section 2 for more details. There is the vertical vector field T on Hn, which brings great
difficulties to study the existence and the regularity of solutions for the equations. There-
fore it is of great significance to study the equations in Hn. The study of the existence
of solutions for some complex nonlinear equations including (p, q)-Laplacian equations
and p(·)-Laplacian equations et al. in Hn attracted a lot of attentions in past decades,
see [16–21]. Recently, the existence of solutions for p-biharmonic problem and Neumann
problem have been given by Safari-Razani [22–24], which provides the basis for studying
the regularity of solutions.

Before stating our main results, let us recall that truncated linear Riesz potentials are
defined as

Iµ
β(x0, 2R) :=

∫ R

0

µ(B(x, ρ))

ρQ−β

dρ

ρ
, β ∈ (0, Q].

Theorem 1. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1) with µ ∈ L1
loc (Ω).

If 2− 1/Q < p ≤ 2 and a : Ω×R2n → R2n satisfies the structural conditions (2) and (3), then
there exist constants c = c(n, p, L) > 0 and R̄ = R̄(n, p, L, L′, α, dist(x0, ∂Ω)) > 0, such that
the pointwise estimate

|Xu(x0)| ≤c−
∫

B2R

(|Xu|+ s)dx + c
|µ|(B2R)

RQ−1

2
p
+ c
|µ|(B2R)

RQ−1

3Q−Qp−2
Q−p

+ c[I|µ|1 (x0, 2R)]
2
p + c[I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p (6)

holds for any x0 ∈ Hn, whenever B2R(x0) ⊂ Ω and 0 < R ≤ R̄. Furthermore, if a(x, z)
is independent of x, then (6) holds for any 0 < R < 1

2 dist(x0, ∂Ω). Here Q = 2n + 2 is
the homogeneous dimension of Hn.

Theorem 2. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1). Assume that 2− 1/Q <
p ≤ 2 and a : Ω × R2n → R2n satisfies the structural conditions (2) and (3). If we have
µ = f ∈ Lq

loc (Ω) for some q > Q, then Xu is Hölder continuous and there exist constants
c = c(n, p, L) > 0 and R̄ = R̄(n, p, L, L′, α, dist(x0, ∂Ω)) > 0, such that for any x0 ∈ Ω,
0 < R ≤ R̄ and x, y ∈ BR(x0) ⊂ Ω, the estimate

|Xu(x)− Xu(y)| ≤cd(x, y)γ

{
−
∫

BR

(|Xu|+ s)dx + ‖ f ‖
2
p
Lq(BR)

+ ‖ f ‖
3Q−Qp−2

Q−p
Lq(BR)

+ [I|µ|1 (x0, 2R)]
2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

}
(7)
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holds for some γ = γ(n, p, L, α, q) ∈ (0, 1). In particular, if a(x, z) is independent of x, then (7)
holds for R̄ = R̄(n, p, L, L′, dist(x0, ∂Ω)) > 0 and γ = γ(n, p, L, q) ∈ (0, 1). Here Q = 2n + 2
is the homogeneous dimension of Hn.

Theorems 1 and 2 give when 2− 1/Q < p ≤ 2 the C0,1
loc and C1,α

loc -regularities of weak
solutions to quasi-linear p-Laplacian type non-homogeneous Equations (1) in the Heisen-
berg group Hn, see [15] for 2 ≤ p < ∞, where Q = 2n + 2. Compared with the Euclidean
space Rn, the range of p is optimal, see [13].

Ideas of the Proofs

We sketch the ideas to prove Theorems 1 and 2. The basic geometries and properties
of the Heisenberg group used in this paper are stated in Section 2.

We will prove Theorem 1 in Section 4. The proof of Theorem 1 relies on novel tech-
niques established by Duzaar-Mingione [13] based on sharp comparison estimates of ho-
mogeneous equations with frozen coefficients. In Section 3, we establish two comparison
estimates, see Lemmas 1 and 2 for details. Basing on two comparison estimates, we estab-
lish the main estimate of the weak solution u to the Equation (1), see Lemma 3 for details.
Compared with the Euclidean setting, there exists the extra term supBR̃

|Xv| in (34), which
comes from commutators of the horizontal vector fields, see Proposition 1 for details.
We use Lemma 2 to estimate the extra term in Section 4. In Section 4, basing on Lemma 3,
we use scientific induction to obtain Lemma 4. Finally, we use Lemma 4 to prove Theorem 1
in Section 4.

We will prove Theorem 2 in Section 5. The proof of Theorem 2 relies on a perturbation
lemma established by Mukherjee-Sire [15], see Lemma 6 for details. In Section 5, we use
Lemma 2 to establish the weaker integral decay estimate of the oscillation of the gradient of
the weak solution u to the Equation (1), see Lemma 5 for details. Basing on Lemmas 6 and 5,
we obtain Proposition 2 in Section 5. Finally, we use Lemma 7 and Proposition 2 to prove
Theorem 2 in Section 5. Lemma 7 follows from (13) and Lemma 2 in Section 5.

2. Preliminaries
2.1. Notations

In this paper, for s ≥ 0, we denote

V(z) := (|z|2 + s2)
p−2

4 z, z ∈ R2n. (8)

By (Lemma 2.1, [25]), the inequality

c−1(|z1|2 + |z2|2 + s2)
p−2

2 ≤ |V(z2)−V(z1)|2
|z2 − z1|2

≤ c(|z1|2 + |z2|2 + s2)
p−2

2 (9)

holds for any z1, z2 ∈ R2n and any s ≥ 0, where c = c(n, p) > 0 is independent of s, also
see ([13], (2.2)). Inequality (9) and the structure condition (2) imply

c−1|V(z2)−V(z1)|2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉. (10)

2.2. The Heisenberg Group

For an integer n ≥ 1, we denote by Hn the Heisenberg group, which is identified with
the Euclidean space R2n+1. The group multiplication on Hn is given by

x ◦ y :=

(
x1 + y1, . . . , x2n + y2n, t + s +

1
2

n

∑
i=1

(xiyn+i − xn+iyi)

)
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for points x = (x1, . . . , x2n, t), y = (y1, . . . , y2n, s) ∈ Hn. The left invariant vector fields
corresponding to the canonical basis of the Lie algebra are

Xi = ∂xi −
xn+i

2
∂t, Xn+i = ∂xn+i +

xi
2

∂t,

and the only non-trivial commutator T = ∂t for 1 ≤ i ≤ n. For any 1 ≤ i < j ≤ 2n, we have

[Xi, Xn+i] = T, [Xi, Xj] = 0 ∀j 6= n + i.

We call X1, . . . , X2n as horizontal vector fields and T as the vertical vector field. We
denote Q = 2n + 2 as the homogeneous dimension of Hn.

Let Ω ⊂ Hn be any domain (open connected subset). For any scalar function f ∈
C1(Ω), we denote X f = (X1 f , . . . , X2n f ) as the horizontal gradient; for any scalar function
f ∈ C2(Ω), we denote XX f = (XiXj f )2n×2n as the second order horizontal derivative and
∆H f = ∑2n

j=1 XjXj f as the sub-Laplacian operator. We write lengths of X f and XX f as

|Xu| =
(

2n

∑
i=1
|Xiu|2

)1/2

, |XXu| =
(

2n

∑
i,j=1
|XiXju|2

)1/2

.

For any vector valued function F = ( f1, . . . , f2n) : Hn → R2n, we denote divH(F) =
∑2n

i=1 Xi f as the horizontal divergence. The Haar measure in Hn is the Lebesgue measure
of R2n+1. We denote |E| as the Lebesgue measure of a measurable set E ⊂ Hn and
−
∫

E f dx = 1
|E|
∫

E f dx as the average of an integrable function f over set E.
We denote d as the Carnot–Carathéodory metric (CC-metric) and Br(x) = B(x, r) :=

{y ∈ Hn : d(x, y) < r} as the CC-metric balls with the center x ∈ Hn and the radius
r > 0. Here the CC-metric d is defined as the length of the shortest horizontal curves
connecting two points, see [26]. For any points x, y ∈ Hn, the CC-metric d(x, y) is equiv-
alent to the homogeneous metric dHn(x, y) = ‖y−1 ◦ x‖Hn . Here the homogeneous norm

for x = (x1, . . . , x2n, t) ∈ Hn is defined as ‖x‖Hn :=
(

∑2n
i=1 x2

i + |t|
)1/2

. Since these two
metrics are equivalent, all the CC-metric balls Br(x) throughout this paper can be restated
to the homogeneous metric balls Kρ(x) := {y ∈ Hn : dHn(y, x) < ρ}.

The horizontal Sobolev space HW1,p(Ω) with 1 ≤ p < ∞ is the collection of all
functions u ∈ Lp(Ω) with Xu ∈ Lp(Ω,R2n). HW1,p(Ω) is a Banach space equipped with
the norm

‖u‖HW1,p(Ω) = ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,R2n).

For any m ≥ 2, the m-order horizontal Sobolev space HWm,p(Ω) is the collection
of all functions u with Xu ∈ HWm−1,p(Ω), and its norm is defined in a similar way.
For any m ≥ 1, we denote HWm,p

loc (Ω) as the collection of all functions u : Ω→ R such that
u ∈ HWm,p(U) for all U b Ω, and HWm,p

0 (Ω) as the completion of C∞
c (Ω) equipped with

the ‖ · ‖HWm,p(Ω)-norm.
In the rest of this section, we recall some regularities and apriori estimates of the ho-

mogeneous equation corresponding to the Equation (1) with freezing of the coefficients.
For any x0 ∈ Ω, we consider the equation

divHa(x0, Xu) = 0 in Ω. (11)

The following regularity theorem follows from (Theorem 1.1, [12]) and (Theorem 1.3, [10]),
also see (Theorem 2.3, [15]).

Theorem 3. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (11). If a(x0, z) satisfies
the condition (2) and Dza(x0, z) is a symmetric matrix, then Xu is locally Hölder continuous.
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Moreover, there exist constants c = c(n, p, L) > 0 and β = β(n, p, L) ∈ (0, 1) such that
the followings hold,

sup
BR/2

|Xu|p ≤ c−
∫

BR

(|Xu|2 + s2)
p
2 dx; (12)

−
∫

Bρ

|Xu− (Xu)Bρ |pdx ≤ c
( ρ

R

)β
−
∫

BR

(|Xu|2 + s2)
p
2 dx, (13)

for every concentric Bρ ⊂ BR ⊂ Ω and 1 < p < ∞.

Using Sobolev’s inequality and Moser’s iteration on the Caccioppoli type inequalities
in [12], we have the following local estimate, for any σ ∈ (0, 1) and q > 0,

sup
BσR

|Xu| ≤ c(1− σ)
− Q

q

(
−
∫

BR

(|Xu|2 + s2)
q
2 dx
) 1

q
(14)

for some c = c(n, p, L, q) > 0, also see ((2.14), [15]), where u ∈ C1,β(Ω) is a solution
to the Equation (11) for some β ∈ (0, 1), and Q = 2n + 2. Using (14) with σ = 1/2 and
q = 1, for all 0 < r ≤ R/2, we have∫

Br
|Xu|dx ≤ c

( r
R

)Q ∫
BR

(|Xu|+ s)dx, (15)

for some c = c(n, p, L) > 0, also see ((2.16), [15]), where u ∈ C1,β(Ω) is a solution
to the Equation (11) for some β ∈ (0, 1), and Q = 2n + 2.

The next result has been proved for the case p ≥ 2 in (Proposition 3.1, [15]); the proof
for the case 1 < p ≤ 2 can be obtained with minor modifications. We omit the proof.

Proposition 1. Let Br0 ⊂ Ω and u ∈ C1,β(Ω) be a solution to the Equation (11), with β =
β(n, p, L) ∈ (0, 1). Then there exists c = c(n, p, L) > 0 such that the inequality

−
∫

Bρ

|Xu− (Xu)Bρ |dx ≤ c
(ρ

r

)β
[
−
∫

Br
|Xu− (Xu)Br |dx + χrβ

]
(16)

holds for all 0 < ρ < r < r0, where

χ =
1

rβ
0

(
s + max

1≤i≤2n
sup
Br0

|Xiu|
)

.

3. Comparison Estimates

In this section, we fix x0 ∈ Ω and denote Bρ = B(x0, ρ) for every ρ > 0. For simplicity,
we denote

Mρ =
|µ|(Bρ)

ρQ−1

for every ρ > 0, where Q = 2n + 2. Fix R > 0 such that B2R ⊂ Ω. We consider the Dirich-
let problem {

divHa(x, Xw) = 0 in B2R;
w− u ∈ HW1,p

0 (B2R).
(17)

Now we give the first comparison lemma.
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Lemma 1. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1) and 2− 1/Q < p ≤ 2.
Then the weak solution w ∈ HW1,p(B2R) to the Equation (17) satisfies the inequality

−
∫

B2R

|Xu− Xw|dx ≤cM
2
p
2R + cM

3Q−Qp−2
Q−p

2R + cM2R

(
−
∫

B2R

(|Xu|+ s)dx
) 2−p

2

+ cM2R

(
−
∫

B2R

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
, (18)

where c = c(n, p, L) > 0 and Q = 2n + 2.

Proof of Lemma 1. For any integer k ≥ 0, R > 0 and γ > 0, we define the truncation
operators

Tk(t) := max
{
− k

Rγ
, min

{
k

Rγ
, t
}}

, Φk(t) := T1(t− Tk(t)), t ∈ R.

Denote

Ck :=
{

x ∈ B2R :
k

Rγ
<
|u(x)− w(x)|

m
≤ k + 1

Rγ

}
,

where m > 0, we will choose constants γ > 0 and m > 0 in the following. Since w− u ∈
HW1,p

0 (B2R), we use φ = Φk(
u−w

m ) to test Equations (1) and (17), then we have∫
B2R

〈a(x, Xu)− a(x, Xw), Xφ〉dx =
∫

B2R

φdµ. (19)

Note that

Xiφ =

{
0 in B2R \ Ck;
1
m (Xiu− Xiw) in Ck.

This, together with (10) and (19), yields∫
Ck

|V(Xu)−V(Xw)|2dx ≤c
∫

Ck

〈a(x, Xu)− a(x, Xw), Xu− Xw〉dx

=cm
∫

B2R

〈a(x, Xu)− a(x, Xw), Xφ〉dx

=cm
∫

B2R

Φk(
u− w

m
)dµ

≤ cm
Rγ
|µ|(B2R).

From this, by Hölder’s inequality, we have

∫
Ck

|V(Xu)−V(Xw)|
2
p dx ≤c|Ck|

p−1
p

(∫
Ck

|V(Xu)−V(Xw)|2dx
) 1

p

≤c|Ck|
p−1

p
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p

=c
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p

(∫
Ck

1dx
) p−1

p

≤c
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p

 1(
mk
Rγ

) Q
Q−1

∫
Ck

|u− w|
Q

Q−1


p−1

p

. (20)
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Similarly, when k = 0, we have

∫
C0

|V(Xu)−V(Xw)|
2
p dx ≤c|C0|

p−1
p
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p

≤c|B2R|
p−1

p
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p . (21)

Combining (20) and (21), we have∫
B2R

|V(Xu)−V(Xw)|
2
p dx

=
∫

C0

|V(Xu)−V(Xw)|
2
p dx +

∞

∑
k=1

∫
Ck

|V(Xu)−V(Xw)|
2
p dx

≤ c|B2R|
p−1

p
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p

+ c
∞

∑
k=1

( m
Rγ

) 1
p
[|µ|(B2R)]

1
p

 1(
mk
Rγ

) Q
Q−1

∫
Ck

|u− w|
Q

Q−1 dx


p−1

p

.

Note that

∞

∑
k=1

[
1

k
Q

Q−1

∫
Ck

|u− w|
Q

Q−1 dx

] p−1
p

≤

 ∞

∑
k=1

(
1
k

) Q(p−1)
Q−1

 1
p( ∞

∑
k=1

∫
Ck

|u− w|
Q

Q−1 dx

) p−1
p

.

Since 2− 1/Q < p ≤ 2 implies Q(p− 1)/(Q− 1) > 1, we have

∞

∑
k=1

(
1
k

) Q(p−1)
Q−1

≤ c.

Thus ∫
B2R

|V(Xu)−V(Xw)|
2
p dx

≤ c|B2R|
p−1

p
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p

+ c
( m

Rγ

) 1
p−

Q(p−1)
(Q−1)p

[|µ|(B2R)]
1
p

(∫
B2R

|u− w|
Q

Q−1 dx
) p−1

p
.

By the Sobolev inequality, we have∫
B2R

|V(Xu)−V(Xw)|
2
p dx

≤ c|B2R|
p−1

p
( m

Rγ

) 1
p
[|µ|(B2R)]

1
p

+ c
( m

Rγ

) 1
p−

Q(p−1)
(Q−1)p

[|µ|(B2R)]
1
p

(∫
B2R

|Xu− Xw|dx
) Q(p−1)

(Q−1)p
. (22)
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Noting that (9) implies

|Xu− Xw| =
[
(|Xu|2 + |Xw|2 + s2)

p−2
2 |Xu− Xw|2

] 1
2
(|Xu|2 + |Xw|2 + s2)

2−p
4

≤c|V(Xu)−V(Xw)|(|Xu|2 + |Xw|2 + s2)
2−p

4

≤c|V(Xu)−V(Xw)|[|Xu− Xw|
2−p

2 + |Xu|
2−p

2 + s
2−p

2 ]. (23)

By Young’s inequality, we have

|Xu− Xw| ≤ c|V(Xu)−V(Xw)|
2
p +

1
2
|Xu− Xw|+ c|V(Xu)−V(Xw)|(|Xu|+ s)

2−p
2 .

By Hölder’s inequality, we have∫
B2R

|Xu− Xw|dx ≤c
∫

B2R

|V(Xu)−V(Xw)|
2
p dx

+ c
(∫

B2R

|V(Xu)−V(Xw)|
2
p dx
) p

2
(∫

B2R

(|Xu|+ s)dx
) 2−p

2
. (24)

Let m = |µ|(B2R) and γ = Q− 2. Then (22) becomes

−
∫

B2R

|V(Xu)−V(Xw)|
2
p dx ≤ cM

2
p
2R + cM

3Q−Qp−2
(Q−1)p

2R

(
−
∫

B2R

|Xu− Xw|dx
) Q(p−1)

(Q−1)p
,

which, together with (24), yields

−
∫

B2R

|Xu− Xw|dx

≤ cM
2
p
2R + cM

3Q−Qp−2
(Q−1)p

2R

(
−
∫

B2R

|Xu− Xw|dx
) Q(p−1)

(Q−1)p

+ c

M2R + M
3Q−Qp−2
(Q−1)2

2R

(
−
∫

B2R

|Xu− Xw|dx
) Q(p−1)

(Q−1)2

(−∫
B2R

(|Xu|+ s)dx
) 2−p

2
. (25)

Finally, using Young’s inequality to estimate the second and last terms in the right
hand side of (25), we conclude (18).

For the second comparison estimate, we require the Dirichlet problem with freez-
ing of the coefficients. Let w ∈ HW1,p(B2R) be a weak solution to the Equation (17).
We consider the Dirichlet problem{

divHa(x0, Xv) = 0 in BR;
v− w ∈ HW1,p

0 (BR).
(26)

Now we give the second comparison lemma.
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Lemma 2. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1) and let w ∈ HW1,p(B2R)
be a weak solution to the Equation (17). Assume that 2− 1/Q < p ≤ 2. Then the weak solution
v ∈ HW1,p(BR) to the Equation (26) satisfies

−
∫

BR

|Xu− Xv|dx ≤cM
2
p
2R + cM

3Q−Qp−2
Q−p

2R + cM2R

(
−
∫

B2R

(|Xu|+ s)dx
) 2−p

2

+ cM2R

(
−
∫

B2R

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2

+ cRα−
∫

B2R

(|Xu|+ s)dx, (27)

where c = c(n, p, L, L′) > 0 and Q = 2n + 2.

Proof of Lemma 2. By (Theorem 6.1, [27]) and the condition (2), we have∫
BR

|Xv|pdx ≤ c1

∫
BR

(|Xw|+ s)pdx, (28)

where c1 = c1(n, p, L) ≥ 1. Here in the proof of (Theorem 6.1, [27]), only the condition
(2) and Sobolev inequality are used, and therefore (Theorem 6.1, [27]) can also be used
in the Heisenberg group.

Using sub-elliptic reverse Hölder’s inequality and Gehring’s lemma, see (Section 3, [28]),
we have (

−
∫

BR

(|Xw|+ s)pdx
) 1

p
≤ c−

∫
B2R

(|Xw|+ s)dx. (29)

Using (9) and (10), the fact that both v and w are weak solutions and v − w ∈
HW1,p

0 (BR), we have ∫
BR

(|Xv|2 + |Xw|2 + s2)
p−2

2 |Xw− Xv|2dx

≤ c
∫

BR

|V(Xw)−V(Xv)|2dx

≤ c
∫

BR

〈a(x0, Xw)− a(x0, Xv), Xw− Xv〉dx

= c
∫

BR

〈a(x0, Xw)− a(x, Xw), Xw− Xv〉dx,

which, together with condition (3), yields∫
BR

(|Xv|2 + |Xw|2 + s2)
p−2

2 |Xw− Xv|2dx

≤ cRα
∫

BR

(|Xw|2 + s2)
p−1

2 |Xw− Xv|dx

≤ cRα
∫

BR

(|Xv|2 + |Xw|2 + s2)
p−1

2 |Xw− Xv|dx.

By Young’s inequality, we have∫
BR

(|Xv|2 + |Xw|2 + s2)
p−2

2 |Xw− Xv|2dx

≤ cR2α
∫

BR

(|Xv|2 + |Xw|2 + s2)
p
2 |Xw− Xv|2dx.
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This and (9) imply∫
BR

|V(Xw)−V(Xv)|2dx ≤ cR2α
∫

BR

(|Xv|2 + |Xw|2 + s2)
p
2 dx.

Combining this and (28), we have∫
BR

|V(Xw)−V(Xv)|2dx ≤ cR2α
∫

BR

(|Xw|+ s)pdx. (30)

Similarly to (23), we have

|Xu− Xw|p ≤ c|V(Xw)−V(Xv)|p(|Xv|2 + |Xw|2 + s2)
p(2−p)

4 .

From this, by Hölder’s inequality, (28) and (30), we have

−
∫

BR

|Xu− Xw|pdx

≤ c
(
−
∫

BR

|V(Xw)−V(Xv)|2dx
) p

2
(
−
∫

BR

(|Xv|2 + |Xw|2 + s2)
p
2 dx

) 2−p
2

≤ cRpα−
∫

BR

(|Xw|+ s)pdx. (31)

By Hölder’s inequality, (31) and (29), we have

−
∫

BR

|Xu− Xw|dx ≤ c
(
−
∫

BR

|Xu− Xw|pdx
) 1

p

≤ cRα

(
−
∫

BR

(|Xw|+ s)pdx
) 1

p

≤ cRα−
∫

B2R

(|Xw|+ s)dx. (32)

Using (18) in Lemma 1 and (32), we have

−
∫

BR

|Xu− Xv|dx =−
∫

BR

|Xu− Xw|dx +−
∫

BR

|Xw− Xv|dx

≤cM
2
p
2R + cM

3Q−Qp−2
Q−p

2R + cM2R

(
−
∫

B2R

(|Xu|+ s)dx
) 2−p

2

+cM2R

(
−
∫

B2R

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
+ cRα−

∫
B2R

(|Xw|+ s)dx. (33)

Noting that

−
∫

B2R

(|Xw|+ s)dx = −
∫

B2R

|Xw− Xu|dx +−
∫

B2R

(|Xu|+ s)dx,

then using (18) in Lemma 1 to estimate the last integral in the hand side of (33), we conclude
(27). Here we can choose R small enough such that Rα ≤ 1.

Now we give the main lemma.
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Lemma 3. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1) and 2− 1/Q < p ≤ 2
and let v ∈ HW1,p(BR̃) be a weak solution to the Equation (26) with BR̃ ⊂ Ω. Then there exist
β = β(n, p, L) ∈ (0, 1) and c = c(n, p, L, L′) > 0 such that, for every 0 < ρ < R < R̃, we have

−
∫

Bρ

|Xu− (Xu)Bρ |dx

≤ c
( ρ

R

)β
−
∫

B2R

|Xu− (Xu)B2R |dx

+ c
(

R
ρ

)Q[
M

2
p
2R + M

3Q−Qp−2
Q−p

2R + M2R

(
−
∫

B2R

(|Xu|+ s)dx
) 2−p

2

+ M2R

(
−
∫

B2R

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2

+ Rα−
∫

B2R

(|Xu|+ s)dx
]
+ c
(

ρ

R̃

)β

sup
BR̃

|Xv|, (34)

where Q = 2n + 2.

Proof of Lemma 3. By Proposition 1 with r = R and r0 = R̃, we have

−
∫

Bρ

|Xv− (Xv)Bρ |dx

≤ c
( ρ

R

)β
[
−
∫

BR

|Xv− (Xv)BR |dx + sup
B5R/4

|Xv|
]

≤ c
( ρ

R

)β
[
−
∫

BR

|Xu− (Xu)BR |dx + 2−
∫

BR

|Xu− Xv|dx
]
+ c
(

ρ

R̃

)β

sup
BR̃

|Xv|.

Noting that

−
∫

Bρ

|Xu− Xv|dx ≤ c
(

R
ρ

)Q
−
∫

BR

|Xu− Xv|dx,

we have

−
∫

Bρ

|Xu− (Xu)Bρ |dx ≤−
∫

Bρ

|Xv− (Xv)Bρ |dx + 2−
∫

Bρ

|Xu− Xv|dx

≤c
( ρ

R

)β
−
∫

BR

|Xu− (Xu)BR |dx + c
(

R
ρ

)Q
−
∫

BR

|Xu− Xv|dx

+ c
(

ρ

R̃

)β

sup
BR̃

|Xv|.

Finally, using the inequality

−
∫

BR

|Xu− (Xu)BR |dx ≤ 2Q+1−
∫

B2R

|Xu− (Xu)B2R |dx

and Lemma 2, we conclude (34).

4. Proof of Theorem 1

In this section, we prove Theorem 1. Fix x0 ∈ Hn and denote BR := B(x0, R).
Assume that 0 < R < R̃ ≤ R̄ = R̄(n, p, L, L′, α, dist(x0, ∂Ω)). For any H > H̃ > 1
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and i ∈ {0, 1, 2, . . . }, we denote Ri = R/(2H)i, R̃i = 5R/[4(2H̃)i], Bi := BRi , ki := |(Xu)Bi |,
Ai := −

∫
Bi
|Xu− (Xu)Bi |dx and Mi := MRi . Then

km+1 =
m

∑
i=0

(ki+1 − ki) + k0

≤
m

∑
i=0
−
∫

Bi+1

|Xu− (Xu)Bi |dx + k0

≤ (2H)Q
m

∑
i=0

Ai + k0. (35)

Lemma 4. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1) and 2− 1/Q < p ≤ 2, and
let v ∈ HW1,p(BR) be a weak solution to the Equation (26). Assume that there exists an integer
m̃ ∈ N∪ {∞} such that m̃ ≥ 1 and

−
∫

Bi

|Xu|dx ≤ |Xu(x0)| (36)

holds whenever 0 ≤ i ≤ m̃− 1. Then for every ε ∈ (0, 1), there exists a constant c̃ = c̃(ε) ≥ 1
such that

km ≤ 2c4M+ 2c3ε|Xu(x0)| (37)

holds whenever m ≤ m̃ + 1, where c3, c4 ≥ 1, Q = 2n + 2 and

M :=−
∫

BR

(|Xu|+ s)dx + (1 + c3 c̃(ε))
{
[I|µ|1 (x0, 2R)]

2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

}
+ sup

B5R/8

|Xv|. (38)

Proof of Lemma 4. By Lemma 3 with 0 < R/2H < R/2 < R̃/2, we have

−
∫

BR/2H

|Xu− (Xu)BR/2H |dx

≤ 1
4
−
∫

BR

|Xu− (Xu)BR |dx

+ cM
2
p
R + cM

3Q−Qp−2
Q−p

R + cMR

(
−
∫

BR

(|Xu|+ s)dx
) 2−p

2

+ cMR

(
−
∫

BR

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2

+ cRα−
∫

BR

(|Xu|+ s)dx +
1
4

(
R
R̃

)β

sup
BR̃/2

|Xv|. (39)

Here we choose H = H(n, p, L) > 1 large enough such that c/Hβ ≤ 1/4. Noting that

−
∫

BR

|Xu|dx = −
∫

BR

|Xu| − (Xu)BR dx + (Xu)BR
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and choosing R̄ small enough such that cR̄ ≤ 1/4, we write (39) as

−
∫

BR/2H

|Xu− (Xu)BR/2H |dx

≤ 1
2
−
∫

BR

|Xu− (Xu)BR |dx

+ cM
2
p
R + cM

3Q−Qp−2
Q−p

R + cMR

(
−
∫

BR

(|Xu|+ s)dx
) 2−p

2

+ cMR

(
−
∫

BR

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2

+ cRα((Xu)BR + s) +
1
4

(
R
R̃

)β

sup
BR̃/2

|Xv|. (40)

By (40) with R = Ri−1 and R̃ = R̃i−1, we have

Ai ≤
1
2

Ai−1 + cM
2
p
i−1 + cM

3Q−Qp−2
Q−p

i−1 + cMi−1

(
−
∫

Bi−1

(|Xu|+ s)dx
) 2−p

2

+ cMi−1

(
−
∫

Bi−1

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
+ cRα

i−1(ki−1 + s)

+
1
4

(
H̃
H

)β(i−1)

sup
BR̃i−1/2

|Xv|.

Summing up over i ∈ {1, . . . , m} the above inequality and letting H̃ = H/21/β, and
the fact

sup
BR̃i−1/2

|Xv| ≤ sup
B5R/8

|Xv|,

we have

m

∑
i=1

Ai ≤
1
2

m−1

∑
i=0

Ai + c
m−1

∑
i=0

[
M

2
p
i + M

3Q−Qp−2
Q−p

i + Mi

(
−
∫

Bi

(|Xu|+ s)dx
) 2−p

2

+ Mi

(
−
∫

Bi

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
]
+ c

m−1

∑
i=0

Rα
i (ki + s)

+ c sup
B5R/8

|Xv|,

and therefore

m

∑
i=1

Ai ≤A0 + 2c
m−1

∑
i=0

[
M

2
p
i + M

3Q−Qp−2
Q−p

i + Mi

(
−
∫

Bi

(|Xu|+ s)dx
) 2−p

2

+ Mi

(
−
∫

Bi

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
]
+ 2c

m−1

∑
i=0

Rα
i (ki + s)

+ 2c sup
B5R/8

|Xv|. (41)
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Combining (35) and (41), we have

km+1 ≤cA0 + k0 + c
m−1

∑
i=0

[
M

2
p
i + M

3Q−Qp−2
Q−p

i + Mi

(
−
∫

Bi

(|Xu|+ s)dx
) 2−p

2

+ Mi

(
−
∫

Bi

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
]
+ c

m−1

∑
i=0

Rα
i (ki + s)

+ c sup
B5R/8

|Xv|. (42)

By (36) and (42), whenever 1 ≤ m ≤ m̃, we have

km+1 ≤c
(

A0 + k0 +
m−1

∑
i=0

[
M

2
p
i + M

3Q−Qp−2
Q−p

i

])

+ c
(
|Xu(x0)|

2−p
2 + s

2−p
2 + |Xu(x0)|

(Q−1)(2−p)
3Q−Qp−2 + s

(Q−1)(2−p)
3Q−Qp−2

) m−1

∑
i=0

Mi

+ c
m−1

∑
i=0

Rα
i (ki + s) + c sup

B5R/8

|Xv|. (43)

Note that

∞

∑
i=0

Mi ≤
∞

∑
i=0

|µ|(Bi)

RQ−1
i

≤ 2Q − 1
log 2

∫ 2R

R

|µ|(B(x0, ρ))

ρQ−1
dρ

ρ
+

(2H)Q−1

log 2H

∞

∑
i=0

∫ Ri

Ri+1

|µ|(B(x0, ρ))

ρQ−1
dρ

ρ

≤ c(H)I|µ|1 (x0, 2R),

the fact that 1 < p ≤ 2 implies 2/p ≥ 1 and (3Q−Qp− 2)/(Q− p) ≥ 1, and

∞

∑
i=0

Rα
i = Rα

∞

∑
i=0

1
(2H)αi ≤

Rα

1− 1/(2H)α
≤ Rα

1− 1/2α
=: d(R).

For 1 ≤ m ≤ m̃, we write (43) as

km+1 ≤c
(

A0 + k0 + [I|µ|1 (x0, 2R)]
2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

)
+ c3

(
|Xu(x0)|

2−p
2 + s

2−p
2 + |Xu(x0)|

(Q−1)(2−p)
3Q−Qp−2 + s

(Q−1)(2−p)
3Q−Qp−2

)
I|µ|1 (x0, 2R)

+ c
m−1

∑
i=0

Rα
i (ki + s) + c sup

B5R/8

|Xv|. (44)

By Young’s inequality, we have

I|µ|1 (x0, 2R)|Xu(x0)|
2−p

2 ≤ ε

2
|Xu(x0)|+ c̃(ε)[I|µ|1 (x0, 2R)]

2
p

and
I|µ|1 (x0, 2R)|Xu(x0)|

(Q−1)(2−p)
3Q−Qp−2 ≤ ε

2
|Xu(x0)|+ c̃(ε)[I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p ,

which, together with (44), yield

km+1 ≤ c4M+ c5

m−1

∑
i=0

Rα
i ki + c3ε|Xu(x0)| (45)
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whereM is as in (38). Here we choose R̄ small enough such that d(R̄) ≤ 1.
Now we prove that the inequality

ki ≤ 2c4M+ 2c3ε|Xu(x0)| (46)

holds for every 0 ≤ i ≤ m̃ + 1. When i = 0 and i = 1, we have

A0 + k0 + d(R)s ≤ 3−
∫

BR

(|Xu|+ s)dx

and
k1 ≤ 2QHQ−

∫
BR

|Xu|dx.

When 1 ≤ i ≤ m̃ + 1, we assume that (46) holds for every i ≤ m with 1 ≤ m ≤ m̃, and
prove it for m + 1. By using (45) and the assumption (46) for i ≤ m− 1, we have

km+1 ≤c4M+ c5

m−1

∑
i=0

Rα
i (2c4M+ 2c3ε|Xu(x0)|) + c3ε|Xu(x0)|

=[c4 + 2c4c5d(R)]M+ [2c3c5d(R) + c3]ε|Xu(x0)|
≤2c4M+ 2c3ε|Xu(x0)|.

Here we choose R̄ small enough such that

d(R̄) ≤ min{1/(100c3), 1/(100c4), 1/(100c5)}.

We complete the proof.

Now we prove Theorem 1.

Proof of Theorem 1. Define the set

S :=
{

i ∈ N : |Xu(x0)| ≥ −
∫

Bi

|Xu|dx
}

,

and consider two cases: S = N and S 6= N.
Case 1. When S = N, for every i ∈ N, we have

−
∫

Bi

|Xu|dx ≤ |Xu(x0)|.

Using Lemma 4 with m̃ = ∞, then letting m→ ∞, we have

|Xu(x0)| = lim
m→∞

km ≤ 2c4M+ 2c3ε|Xu(x0)|. (47)

Choosing ε = 1/(4c3), we have

|Xu(x0)| ≤ 4c4M.

On the other hand, to estimate the last integral inM, using (14) with σ = 5/8 and
q = 1, we have

sup
B5R/8

|Xv| ≤c−
∫

BR

(|Xv|+ s)dx

≤c−
∫

BR

(|Xu|+ s)dx + c−
∫

BR

|Xu− Xv|dx,
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from which, using Lemma 2 and Young’s inequality, we have

sup
B5R/8

|Xv| ≤ cM
2
p
2R + cM

3Q−Qp−2
Q−p

2R + c−
∫

B2R

(|Xu|+ s)dx. (48)

Combining (47) and (48), we conclude (6) in the case.
Case 2. When S 6= N, we let m̃ := min(N \ S) ≥ 0 and obtain

|Xu(x0)| < −
∫

Bm̃
|Xu|dx, (49)

and
−
∫

Bi

|Xu|dx < |Xu(x0)| (50)

for every 0 ≤ i ≤ m̃− 1. When m̃ = 0, we have |Xu(x0)| < (|Xu|)B0 , and therefore (6)
holds true. When m̃ ≥ 1, the inequality (49) implies

|Xu(x0)| < −
∫

Bm̃
|Xu|dx ≤ −

∫
Bm̃
|Xu− (Xu)Bm̃ |dx + |(Xu)Bm̃ | = Am̃ + km̃. (51)

Using (50) and Lemma 4, we have

km̃ ≤ 2c4M+ 2c3ε|Xu(x0)|. (52)

Since (50) satisfies the assumption (36), then combining (41) and (37), we have

Am̃ ≤A0 + 2c
m̃−1

∑
i=0

[
M

2
p
i + M

3Q−Qp−2
Q−p

i + Mi

(
−
∫

Bi

(|Xu|+ s)dx
) 2−p

2

+ Mi

(
−
∫

Bi

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
]
+ 2c

m̃−1

∑
i=0

Rα
i (2c4M+ 2c3ε|Xu(x0)|+ s)

+ 2c sup
B5R/8

|Xv|,

from which, using (50) again, we have

Am̃ ≤c−
∫

BR

(|Xu|+ s)dx + c
[
[I|µ|1 (x0, 2R)]

2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

]
+ I|µ|1 (x0, 2R)

[
|Xu(x0)|

2−p
2 + s

2−p
2 + |Xu(x0)|

(Q−1)(2−p)
3Q−Qp−2 + s

(Q−1)(2−p)
3Q−Qp−2

]
+ cd(R)(2c4M+ 2c3ε|Xu(x0)|+ s) + c sup

B5R/8

|Xv|. (53)

Estimating (53) as in (43)–(46) in the proof of Lemma 4, we have

Am̃ ≤ cM+ cε|Xu(x0)|,

which, together with (51), yields

|Xu(x0)| ≤ cM+ cε|Xu(x0)|.

Choosing ε = 1/(2c), we have

|Xu(x0)| ≤ 2cM.

Combining this and (48), we conclude (6) in the case.
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Finally, we note that if a(x, z) is independent of x then we can assume L′ = 0 and
therefore all items containing Rα disappear. Thus the proof holds for any R > 0 whenever
B2R ⊂ Ω. We complete the proof.

5. Proof of Theorem 2

In this section, we prove Theorem 2. Fix x0 ∈ Hn and denote BR := B(x0, R). As-
sume that 0 < R < R̄ = R̄(n, p, L, L′, α, dist(x0, ∂Ω)). To prove Threorem 2, we need
the following lemmas.

Lemma 5. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1), 2− 1/Q < p ≤ 2 and
BR̄ ⊂ Ω. Then there exist c = c(n, p, L, L′) > 0 such that, for every 0 < ρ ≤ R ≤ R̄/2, we have

−
∫

Bρ

(|Xu|+ s)dx ≤c−
∫

BR

(|Xu|+ s)dx

+ c
(

R
ρ

)Q[
M

2
p
2R + M

3Q−Qp−2
Q−p

2R + M2R

(
−
∫

B2R

(|Xu|+ s)dx
) 2−p

2

+ M2R

(
−
∫

B2R

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
+ Rα−

∫
B2R

(|Xu|+ s)dx
]

, (54)

where Q = 2n + 2.

Proof of Lemma 5. Letting v ∈ HW1,p(BR) be a weak solution to the Equation (26), we have∫
Bρ

(|Xu|+ s)dx ≤
∫

Bρ

(|Xv|+ s)dx +
∫

Bρ

|Xu− Xv|dx. (55)

From (15), we have∫
Bρ

(|Xv|+ s)dx ≤ c
( ρ

R

)Q ∫
BR

(|Xv|+ s)dx

≤ c
( ρ

R

)Q ∫
BR

(|Xu|+ s)dx + c
( ρ

R

)Q ∫
BR

|Xv− Xu|dx. (56)

Combining (55) and (56), then using Lemma 2 and the inequality

−
∫

Bρ

|Xu− Xv|dx ≤ c
(

R
ρ

)Q
−
∫

BR

|Xu− Xv|dx,

we conclude (54).

The following lemma is (Lemma 4.2, [15]).

Lemma 6. Let φ : (0, ∞) → [0, ∞) be a non-decreasing functions, A > 1 and ε ≥ 0 be fixed
constants. Let ψ, Φ : (0, ∞) → [0, ∞) be functions such that ∑∞

j=0 ψ(tjr) ≤ Φ(r) for any
0 < t < t0 < 1. Given any a > 0, suppose that

φ(ρ) ≤ A
[(ρ

r

)a
+ ε
]
φ(r) + raψ(r) (57)

holds for any 0 < ρ < r ≤ R0, then there exists constants ε0 = ε0(A, a) > 0 and c = c(A, a) > 0
such that if ε ≤ ε0, then for all 0 < ρ < r ≤ R0, we have

φ(ρ) ≤ c
[(ρ

r

)a−ε̄
φ(r) + ρa−ε̄rε̄Φ(r)

]
(58)

for any 0 < ε̄ < a.
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Based on Lemmas 5 and 6, we obtain the following proposition.

Proposition 2. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1), 2− 1/Q < p ≤ 2
and BR̄ ⊂ Ω. Then there exist c = c(n, p, L, L′) > 0 such that, for any 0 < ε̄ < Q and
0 < r < R ≤ R̄, we have∫

Br
(|Xu|+ s)dx ≤c

( r
R

)Q−ε̄
[ ∫

BR

(|Xu|+ s)dx

+ RQ
{
[I|µ|1 (x0, 2R)]

2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

}]
, (59)

where Q = 2n + 2.

Proof of Proposition 2. We fix 0 < r < R ≤ R̄ and denote

φ(r) :=
∫

Br
(|Xu|+ s)dx.

By Lemma 5 with ρ = r and R→ R/2, we have

φ(r) ≤c
( r

R

)Q
φ(R) + cRQ

[
M

2
p
R + M

3Q−Qp−2
Q−p

R + MR

(
−
∫

BR

(|Xu|+ s)dx
) 2−p

2

+ MR

(
−
∫

BR

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
]
+ cRαφ(R),

which, together with Young’s inequality, yields

φ(r) ≤ c
[( r

R

)Q
+ Rα + ε1

]
φ(R) + c

(
1 +

1
ε1

)
RQ
[

M
2
p
R + M

3Q−Qp−2
Q−p

R

]
.

Note that
∞

∑
j=0

MtjR ≤ I|µ|1 (x0, 2R)

holds for any t ∈ (0, 1) and R > 0. Using Lemma 6 with a = Q, choosing R̄ small enough
such that R̄α < ε0(n, p, L)/2 and letting ε1 = ε0(n, p, L)/2, we have

φ(r) ≤ c
[( r

R

)Q
φ(R) + rQ−ε̄Rε̄

{
[I|µ|1 (x0, 2R)]

2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

}]
,

that is, (59).

To obtain C1,γ
loc -regularity of u, we need the following lemma.
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Lemma 7. Let u ∈ HW1,p(Ω) be a weak solution to the Equation (1), 2− 1/Q < p ≤ 2 and
BR̄ ⊂ Ω. Then there exist β = β(n, p, L) ∈ (0, 1) and c = c(n, p, L, L′) > 0 such that, for every
0 < ρ < R < R̄/2, we have

−
∫

Bρ

|Xu− (Xu)Bρ |dx

≤ c
( ρ

R

)β
−
∫

BR

(|Xu|+ s)dx

+ c
(

R
ρ

)Q[
M

2
p
2R + M

3Q−Qp−2
Q−p

2R + M2R

(
−
∫

B2R

(|Xu|+ s)dx
) 2−p

2

+ M2R

(
−
∫

B2R

(|Xu|+ s)dx
) (Q−1)(2−p)

3Q−Qp−2
+ Rα−

∫
B2R

(|Xu|+ s)dx
]

, (60)

where Q = 2n + 2.

Proof of Lemma 7. Letting v ∈ HW1,p(BR) be a weak solution to the Equation (26), we have

−
∫

Bρ

|Xu− (Xu)Bρ |dx ≤ 2−
∫

Bρ

|Xu− (Xv)Bρ |dx

≤ 2−
∫

Bρ

|Xv− (Xv)Bρ |dx + 2−
∫

Bρ

|Xu− Xv|dx.

By (13), we have

−
∫

Bρ

|Xv− (Xv)Bρ |dx ≤ c
( ρ

R

)β
−
∫

BR

(|Xv|+ s)dx

≤ c
( ρ

R

)β
−
∫

BR

(|Xu|+ s)dx + c
( ρ

R

)β
−
∫

BR

|Xv− Xu|dx.

Combining the above two inequalities, then using the inequality

−
∫

Bρ

|Xu− Xv|dx ≤ c
(

R
ρ

)Q
−
∫

BR

|Xv− Xu|dx,

and Lemma 2, we conclude (60).

Now we prove Theorem 2.

Proof of Theorem 2. Using Lemma 7 with R = r/2, we have∫
Bρ

|Xu− (Xu)Bρ |dx

≤ c
(ρ

r

)Q+β ∫
Br
(|Xu|+ s)dx

+ crQ
[

M
2
p
r + M

3Q−Qp−2
Q−p

r + Mr

(
−
∫

Br
(|Xu|+ s)dx

) 2−p
2

+ Mr

(
−
∫

Br
(|Xu|+ s)dx

) (Q−1)(2−p)
3Q−Qp−2

]
+ rα

∫
Br
(|Xu|+ s)dx.
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Using Young’s inequality to estimate the second term in the hand side of the above
inequality, then using Proposition 2, we have∫

Bρ

|Xu− (Xu)Bρ |dx

≤ c
ρQ+βRε̄

rβ+ε̄RQ

[ ∫
BR

(|Xu|+ s)dx + RQ
{
[I|µ|1 (x0, 2R)]

2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

}]
+ crQ

[(
1 +

1
ε2

)(
M

2
p
r + M

3Q−Qp−2
Q−p

r

)
+ (ε2 + rα)−

∫
Br
(|Xu|+ s)dx

]
(61)

for every 0 < ρ < r < R < R̄. Given µ = f ∈ Lq
loc (Ω) for some q > Q, then by Hölder’s

inequality, we have

|µ|(Br)

rQ−1 =
1

rQ−1

∫
Br
| f |dx ≤ |Br|1−1/q

rQ−1

(∫
Br
| f |q

)1/q
≤ cr1−Q/q‖ f ‖Lq(Br)

and therefore,

M
2
p
r ≤ cr

(
1− Q

q

)
2
p ‖ f ‖

2
p
Lq(Br)

, M
3Q−Qp−2

Q−p
r ≤ cr

(
1− Q

q

)
3Q−Qp−2

Q−p ‖ f ‖
3Q−Qp−2

Q−p
Lq(Br)

.

Thus, by Proposition 2 and (61), we have∫
Bρ

|Xu− (Xu)Bρ |dx

≤ c
[

ρQ+βRε̄

rβ+ε̄
+ (rα + ε2)rQ−ε̄Rε̄

]
×
[
−
∫

BR

(|Xu|+ s)dx + [I|µ|1 (x0, 2R)]
2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

]
+ c
(

1 +
1
ε2

)
rQ+

(
1− Q

q

)
2
p ‖ f ‖

2
p
Lq(Br)

+ c
(

1 +
1
ε2

)
rQ+

(
1− Q

q

)
3Q−Qp−2

Q−p ‖ f ‖
3Q−Qp−2

Q−p
Lq(Br)

for every 0 < ρ < r < R < R̄. We choose δ, ε̄ small enough such that

δ + ε̄ ≤ α, 2δ + ε̄ ≤ +

(
1− Q

q

)
2
p

, Qε̄ < βδ

and therefore,

α + Q− ε̄ ≥ Q + δ, Q− ε̄− δ +

(
1− Q

q

)
2
p
≥ Q + δ, βδ−Qε̄ > 0.

Here 1 < p ≤ 2 implies 3Q−Qp−2
Q−p ≥ 2

p . Thus, letting ε2 = rδ+ε̄, we have

∫
Bρ

|Xu− (Xu)Bρ |dx

≤ c
[

ρQ+β

rβ+ε̄
+ rQ+δ

][
−
∫

BR

(|Xu|+ s)dx + [I|µ|1 (x0, 2R)]
2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

+ ‖ f ‖
2
p
Lq(Br)

+ ‖ f ‖
3Q−Qp−2

Q−p
Lq(Br)

]
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for every 0 < ρ < r < R < R̄. Choosing r = ρκ with some κ ∈ (0, 1), we rewrite the above
inequality as∫

Bρ

|Xu− (Xu)Bρ |dx

≤ c
[

ρQ+(1−κ)β−κε̄ + ρκ(Q+δ)

]
×
[
−
∫

BR

(|Xu|+ s)dx + [I|µ|1 (x0, 2R)]
2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

+ ‖ f ‖
2
p
Lq(Br)

+ ‖ f ‖
3Q−Qp−2

Q−p
Lq(Br)

]
≤ cρQ+γ

[
−
∫

BR

(|Xu|+ s)dx + [I|µ|1 (x0, 2R)]
2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

+ ‖ f ‖
2
p
Lq(Br)

+ ‖ f ‖
3Q−Qp−2

Q−p
Lq(Br)

]
,

where the second inequality follows when Q + γ ≤ min{Q + (1− κ)β − κε̄, κ(Q + δ)}.
Here we can make sure that this is true with the choice of κ = κ(γ) such that

Q + γ

Q + δ
≤ κ ≤ β− γ

β + ε̄

for any 0 < γ ≤ (βδ − Qε̄)/(Q + β + δ + ε̄). Also, note that if γ, ε̄ are small enough,
κ = κ(γ) can be chosen close enough to 1 and we can make sure ρκ < R, whenever
0 < ρ < R. Thus, we obtain

−
∫

Bρ

|Xu− (Xu)Bρ |dx

≤ cργ

[
−
∫

BR

(|Xu|+ s)dx + [I|µ|1 (x0, 2R)]
2
p + [I|µ|1 (x0, 2R)]

3Q−Qp−2
Q−p

+ ‖ f ‖
2
p
Lq(Br)

+ ‖ f ‖
3Q−Qp−2

Q−p
Lq(Br)

]
for every 0 < ρ < R < R̄. We complete the proof.

6. Concluding Remarks

Recently, the C0,1 and C1,α-regularities for the Equation (11) with Hörmander vector
fields of Step two have been established by Citti-Mukherjee [29]. Here we call the vec-
tor fields X1, . . . , Xm as Hörmander vector fields of step two if they satisfy the step two
hypothesis of Nagel-Stein [30], that is,

X1, . . . , Xm and {[Xj, Xk]}j,k∈{1,...,m} span the tangent space at each x ∈ Ω.

The proofs of Theorems 1 and 2 are based on some regularities and apriori estimates
of the Equation (11), and therefore our methods and results can be extended to the Lie
group with Hörmander vector fields of Step two.
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