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Abstract: In this paper, we show that the local distribution class Lloc ∩ OS loc is not closed under
infinitely divisible distribution roots, i.e., there is an infinitely divisible distribution which belongs to
the class, while the corresponding Lévy distribution does not. Conversely, we give a condition, under
which, if an infinitely divisible distribution belongs to the class Lloc ∩OS loc, then so does the Lévy
distribution. Furthermore, we find some sufficient conditions that are more concise and intuitive.
Using different methods, we also give a corresponding result for another local distribution class,
which is larger than the above class. To prove the above results, we study the local closure under
random convolution roots. In particular, we obtain a result on the local closure under the convolution
root. In these studies, the Esscher transform of distribution plays a key role, which clarifies the
relationship between these local distribution classes and related global distribution classes.

Keywords: infinitely divisible distribution roots; Lévy distribution; local distribution class; random
convolution roots; closure; Esscher transform
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1. Preliminary

In this paper, we study the closure under infinitely divisible distribution (I.I.D.) roots
for some local distribution classes, also known simply as the local closure under I.I.D. roots.
In other words, we discuss the following problem, if an I.I.D. belongs to a local distribution
class, does its corresponding Lévy distribution also belong to this class? These results are
closely related to some local distribution classes and Esscher transform of distributions.
Thus, in order to better illustrate the main results of this paper, we first introduce the above
concepts and their basic properties in this section.

Throughout the paper, unless stated otherwise, all limits are taken as x tends to
infinity; for two positive functions f and g, f (x) ∼ g(x) means lim sup f (x)/g(x) = 1,
f (x) � g(x) means 0 < lim inf f (x)/g(x) ≤ lim sup g(x)/ f (x) < ∞, f (x) = o

(
g(x)

)
means lim f (x)/g(x) = 0; for a distribution V, let V = 1−V be the tail distribution of V,
V∗k be the k-fold convolution of V with itself for all integers k ≥ 2, V∗1 = V and V∗0 be the
distribution degenerate at zero; and all distributions are supported on [0, ∞).

1.1. Infinitely Divisible Distribution

Let H be an I.D.D. with the Laplace transform∫ ∞

0
e−λyH(dy) = exp

{
− aλ−

∫ ∞

0
(1− eλy)υ(dy)

}
, (1)

where a ≥ 0 is a constant, and υ is a Borel measure on (0, ∞) with the properties
µ = υ(1, ∞) < ∞ and

∫ ∞
0 min{1, y2}ν(dy) < ∞. Let

F(x) = υ(0, x]1{x>1}/µ, x ∈ (−∞, ∞)
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be the Lévy distribution generated by the measure υ. The distribution H admits the
representation H = H1 ∗ H2, which is reserved for the convolution of two distributions H1
and H2 satisfying

H1(x) = O(e−βx) for each β > 0 (2)

and

H2(x) = e−µ
∞

∑
k=0

F∗k(x)µk/k!, x ∈ (−∞, ∞). (3)

See, for example, pages 450 and 571 of Feller [1], Embrechts et al. [2] and Chapter 4 of
Sato [3].

One of the research topics of I.D.D is the closure under I.D.D. roots for all types of
distribution classes. More precisely, we say that a certain distribution class is closed under
I.D.D. roots, if an I.D.D. belongs to the class, then its Lévy distribution also belongs to the
same one; otherwise, we say that the class is not closed under the I.D.D. roots.

This paper mainly studies the closure of some local distribution classes under the
I.D.D. roots, known simply as the local closure under the I.D.D. roots.

1.2. Related Distribution Classes

In this paper, for each 0 < T ≤ ∞, we denote

V(x + ∆T) = V(x, x + T] = V(x)−V(x + T) and V(x + ∆∞) = V(x), x ≥ 0.

For each distribution V and 0 < T < ∞, we set that there is a x0 = x0(V, T) ≥ 0 such that
V(x + ∆T) > 0, x ≥ x0.

We say that a distribution V belongs to the distribution class Lloc, if for each 0 < T ≤ ∞,

V(x− t + ∆T) ∼ V(x + ∆T) for each t > 0.

We say that a distribution V belongs to the distribution class Sloc, if V belongs to the class
Lloc and for each 0 < T ≤ ∞,

V∗2(x + ∆T) ∼ 2V(x + ∆T).

See, for example, Borokov and Borokov [4].
The classes Lloc and Sloc are included in two new distribution classesOS loc andOLloc

defined by the following conditions that, for each 0 < T ≤ ∞,

C∗∆T
(V, t) = lim sup V(x− t + ∆T)

/
V(x + ∆T) < ∞ for each t > 0;

and for each 0 < T ≤ ∞,

C∗∆T
(V) = lim sup V∗2(x + ∆T)

/
V(x + ∆T) < ∞,

respectively.
In the definitions of the above-mentioned local distribution classes, if “for each

0 < T ≤ ∞” is replaced by “for some 0 < T ≤ ∞”, then these classes are successively
called local long-tailed distribution class, local subexponential distribution class, O-local
long-tailed distribution class and O-local subexponential distribution class, denoted by
L∆T , S∆T , OL∆T with indicator C∗∆T

(V, t) for each 0 < t < ∞ and OS∆T with indicator
C∗∆T

(V), respectively. The classes L∆T and S∆T for some 0 < T ≤ ∞ were introduced by
Asmussen et al. [5]. The classOS∆T for some 0 < T ≤ ∞ originates from the work of Wang
et al. [6]. Clearly, the inclusion relations Lloc ⊂ L∆T and Sloc ⊂ S∆T for each 0 < T ≤ ∞
are proper.
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For research on the local distribution classes, in addition to the above-mentioned ref-
erences, please refer to Wang et al. [7], Wang et al. [8], Denisov et al. [9], Yang et al. [10],
Watanabe [11], etc.

In particular, when T = ∞, we get the corresponding global distribution classes L, S ,
OL with indicator

C∗(V, t) = C∗∆∞
(V, t) = lim sup V(x− t)

/
V(x) < ∞ for each t > 0

and OS with indicator

C∗(V) = C∗∆∞
(V) = lim sup V∗2(x)

/
V(x) < ∞,

respectively. The classes L and S were introduced by Chistyakov [12], and the classes OL
and OS come from Shimula and Watanabe [13] and Klüppelberg [14], respectively.

Further, Lemma 2 of Chistyakov [12] shows S ⊂ L. This inclusion relation is proper,
see Section 3 of Embrechts and Goldie [15], and so on. However, with respect to the
prerequisite that V ∈ L∆T is necessary in the definition of the class S∆T for some 0 < T < ∞,
see Propositions 3.1 and 3.2 of Chen et al. [16]. Another proper inclusion relationOS ⊂ OL
is given by Proposition 2.1 of Shimura and Watanabe [13].

Clearly, the class OL contains the heavy-tailed distribution classes ∪0<T≤∞L∆T and
the classOS contains the heavy-tailed distribution classes ∪0<T≤∞S∆T . Here, a distribution
V is called the heavy-tailed distribution, if M(V, α) =

∫ ∞
0 eαyV(dy) = ∞ for each α > 0;

otherwise, it is called the light-tailed distribution. Furthermore, for some γ > 0, the follow-
ing light-tailed distribution class L(γ) is a subclass of OL, another light-tailed distribution
class S(γ) is a subclass of OS . Both classes were introduced by Chover et al. [17,18].

A distribution V belongs to the distribution class L(γ) for some γ > 0, if

V(x− t) ∼ V(x)eγt for each t > 0.

A distribution V belongs to the distribution class S(γ) for some γ > 0, if V ∈ L(γ),
M(V, γ) =

∫ ∞
0 eγyV(dy) < ∞ and

V∗2(x) ∼ 2M(V, γ)V(x).

Clearly, here M(V, γ) ≥ 1. In addition, the prerequisite that V ∈ L(γ) for some γ > 0 also
is necessary in the definition of the class S(γ), because the distribution here is closely related
to its local distribution. In fact, if we define two distribution classes L∆T (γ) and S∆T (γ) for
some 0 < γ, T < ∞, then we can easily find that L∆T (γ) = L(γ) and S∆T (γ) = S(γ).

In the definition of the class L(γ), if V is a lattice, then x and t should be restricted to
values of the lattice span of V, see Bertoin and Doney [19].

In addition, we might also set L = L(0) and S = S(0).
There are many research results on the distribution classes mentioned above, see Foss

et al. [20], Wang [21] and the references therein.

1.3. Esscher Transform

Now, we use the Esscher transform to show the relationship between some heavy-
tailed local distribution and the corresponding light-tailed global distribution.

For any distribution V and γ 6= 0, by M(V, γ) ≥ min{1, eγxV(x)}, x ≥ 0, we know
that M(V, γ) > 0. Further, if M(V, γ) < ∞, then we define a distribution Vγ such that

Vγ(x) =
∫ x

0−
eγyV(dy)1[0,∞)(x)

/
M(V, γ), x ∈ (−∞, ∞), (4)
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which is called the Esscher transform (or the exponential tilting) of V. Clearly, for γ > 0,
we have

0 < M(V,−γ) < 1, V = (V−γ)γ and M(V,−γ)M(V−γ, γ) = 1, (5)

and for all k ≥ 1,

(V∗k)γ = (Vγ)
∗k = V∗kγ , (V∗k)−γ = (V−γ)

∗k = V∗k−γ and M(V∗k,−γ) = Mk(V,−γ), (6)

see Teugels [22], Veraverbeke [23] and Embrechts and Goldie [24] for technical details.
Further, for some 0 < T < ∞ and γ > 0, Definitions 1.1 and 1.2 of Wang and Wang [25]

define four global distribution classes as follows:

T L∆T (γ) =
{

V : M(V, γ) < ∞ and Vγ ∈ L∆T

}
,

T S∆T (γ) =
{

V : M(V, γ) < ∞ and Vγ ∈ S∆T

}
;

T Lloc(γ) =
{

V : M(V, γ) < ∞ and Vγ ∈ Lloc
}

and
T S loc(γ) =

{
V : M(V, γ) < ∞ and Vγ ∈ Sloc

}
.

The following proposition reveals the important role of the Esscher transform for the
study of local distribution classes, see Propositions 2.1 and 2.2 of Wang and Wang [25]. On
the contrary, this result also shows that some local distribution classes give new vitality to
the Esscher transform.

Proposition 1. (i) For some 0 < T < ∞ and γ > 0, a distribution V ∈ L∆T (or S∆T ) ⇐⇒
V−γ ∈ T L∆T (γ) (or T S∆T (γ)).

(ii) A distribution V ∈ Lloc (or Sloc) ⇐⇒ V−γ ∈ L(γ)
(
or S(γ)

)
, that is T Lloc(γ) =

L(γ) (or T S loc(γ) = S(γ)). Furthermore, each of them implies that, for each 0 < T < ∞

V(x + ∆T) ∼ γTeγxV−γ(x)
/

M(V−γ, γ) = M(V,−γ)γTeγxV−γ(x). (7)

More results of the Esscher transform can be found in the above references and the
others therein.

The paper is organized as follows. In Section 2, we present the main results for
Theorems 1–3 related to local closure under I.I.D. roots. In Section 3, we prove the above
results. To this end, we study the local closure under random convolution roots. Then in
Section 4, we show that the condition (10) of Theorem 3 can be replaced by a more concise
and intuitive condition (11). Finally, in Section 5, we briefly introduce some applications of
the obtained results and further research problems. As an application of Theorem 2, we
give a positive result on the local closure under the convolution root, which represents the
local version of common Embrechts and Goldie conjecture.

2. Main Results

Before giving the main results of this paper, we recall some existing results on closure
under I.I.D. roots.

For the global distribution classes, the class S(γ) is closed under I.D.D. roots, see
Embrechts et al. [2] for the case γ = 0, Sgibnev [26], Pakes [27] and Watanabe [28] for the
case γ > 0. Recently, Cui et al. [29] proved that the class L(γ) ∩ OS for some γ ≥ 0 is
closed under the roots with some restrictive condition.

However, for some global distribution classes without special restrictions, there were
some negative results, i.e., there exists an I.D.D. H belonging to some class, while its Lévy
distribution F does not belong to the same class; see Theorem 1.1 (iii) of Shimura and
Watanabe [13] for the class OS , Theorem 1.2 (3) of Xu et al. [30] for the class L ∩OS and
L \ OS and Theorem 1.1 of Xu et al. [31] for the class L(γ) ∩OS with some γ > 0.
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As previously mentioned, this paper mainly studies the closure of some local distribu-
tion classes under the I.D.D. roots. Clearly, if a distribution V ∈ L∆T for some 0 < T < ∞,
then V(x + ∆T) = o

(
V(x)

)
. Therefore, the study of local distribution cannot be replaced

by that of global distribution.
One of the difficulties in the study of local distributions is the loss of their almost

monotonic decreasing property. Corollary 3.1 of Jiang et al. [32] shows that some local
distributions in the class Sloc and the class Lloc \ Sloc are not even close to decreasing.
Therefore, the study of local distribution is definitely more challenging than that of global
distribution. Furthermore, we find hardly any existing results regarding local closure under
I.I.D. roots.

Now, we first give a negative conclusion for the class Lloc ∩OS loc.

Theorem 1. The class Lloc ∩OS loc is not closed under I.D.D. roots.

Next, we give two positive conclusions for the class Lloc ∩ OS loc and T L∆T0
(γ) ∩

OS∆T0
with some 0 < γ, T0 < ∞, respectively.

Theorem 2. Let H be an I.D.D. with the Lévy distribution F. Assume that H ∈ Lloc ∩OS loc,
and for all k ≥ 1,

lim inf F∗k−γ(x− t)
/

F∗k−γ(x) ≥ eγt for each t > 0. (8)

Then the following two conclusions hold.
(i) H2 ∈ Lloc ∩OS loc and H2(x + ∆T) ∼ H(x + ∆T) for each 0 < T ≤ ∞.
(ii) There exists an integer l0 ≥ 1 such that F∗n ∈ Lloc ∩ OS loc for all n ≥ l0 and

F∗n /∈ Lloc ∩OS loc for all 1 ≤ n ≤ l0 − 1. In particular, if F ∈ OS loc, then F∗n ∈ Lloc ∩OS loc
for all n ≥ 1.

Remark 1. (i) According to Corollary 1.1 of Cui et al. [29], the condition (8) can be implied by
some more concise and convenient conditions that

F−γ ∈ OL, lim F−γ(x)C∗(F−γ, x) = 0 and (8) holds for k = 1. (9)

Therefore, all conclusions of Theorem 2 hold under the conditions (9) and H ∈ Lloc ∩OS loc. Some
related examples can be found in Corollary 1.2 and Example 4.1 of Cui et al. [29].

(ii) In the proof of Theorem 1, we can find that there exists an I.D.D. H with Lévy distribution
F such that l0 = 2. This fact shows that there are many distributions F that satisfy condition (8),
but which do not belong to the class L(γ).

Clearly, the local distribution class L∆T0
∩OS∆T0

for some 0 < T0 ≤ ∞ is larger than
the class Lloc ∩OS loc. Therefore, it is natural to investigate the corresponding result for the
former. To this end, we first consider its corresponding light-tailed global distribution class
T L∆T0

(γ) ∩OS∆T0
for some 0 < γ, T0 < ∞, which is larger than the class L(γ) ∩OS . We

will find that the research method of the following result is different from that of Theorem 2.

Theorem 3. Let H be an I.D.D. with the Lévy distribution F. For some 0 < γ, T0 < ∞, assume
that H ∈ T L∆T0

(γ) ∩OS∆T0
and for all k ≥ 1,

lim inf F∗kγ (x− t + ∆T0)
/

F∗kγ (x + ∆T0) ≥ 1 for each t > 0. (10)

Then the following two conclusions hold.
(i) H2 ∈ T L∆T0

(γ) ∩OS∆T0
and H2(x + ∆T0) � H(x + ∆T0).
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(ii) There is an integer l0 ≥ 1 such that F∗n ∈ T L∆T0
(γ) ∩ OS∆T0

for all n ≥ l0 and
F∗n /∈ T L∆T0

(γ) ∩ OS∆T0
for all 1 ≤ n ≤ l0 − 1. In particular, if F ∈ OS∆T0

, then F∗n ∈
T L∆T0

(γ) ∩OS∆T0
for all n ≥ 1.

Remark 2. The condition (10) can also be replaced by the following more concise and convenient
conditions:

Fγ ∈ OL∆T0
, lim Fγ(x + ∆T0)C

∗
∆T0

(Fγ, x) = 0 and (10) holds for k = 1. (11)

See Theorem 6 with V = Fγ below.

3. The Proofs of Theorems 1–3
3.1. Proof of Theorem 1

Let F(0) be a heavy-tailed distribution such that

F(0)(x) = 1(−∞,a0)
(x) + C

∞

∑
n=0

(( ∞

∑
i=n

1
aα

i
− x− an

aα+1
n

)
1[an ,2an)(x) +

( ∞

∑
i=n+1

1
aα

i

)
1[2an ,an+1)

(x)
)

(12)

with the density f(0)(x) = C ∑∞
n=0 a−α−1

n 1[an ,2an)(x) for all x, where

α ∈
(3

2
,

√
5 + 1
2

)
, an = arn

for r = 1 +
1
α

, some a > 8α and all n ≥ 1, and C =
( ∞

∑
n=0

a−α
n

)−1
.

Let F1(0) be the class comprising the above distributions F(0) defined by (12). Further,
for some γ > 0 and distribution F(0) ∈ F1(0), define the light-tailed distribution F(γ) in
the form

F(γ)(x) = 1(−∞,0)(x) + e−γxF(0)(x)1[0,∞)(x) (13)

with its density f(γ) for all x. Then we can construct a new distribution class

F1(γ) = {F(γ) defined by (13) : F(0) ∈ F1(0)}.

See the proof of Theorem 1 of Xu et al. [31].
Let H = H1 ∗ H2 is an I.D.D. with Lévy distribution F(γ) ∈ F1(γ) for some γ > 0.

Then Proposition 1 and Theorem 1 of Xu et al. [31] show that, H, H2 and F∗k
(γ)

for all k ≥ 2

belong to the class
(
L(γ) ∩ OS

)
\ S(γ), while F(γ) with M(F(γ), γ) < ∞ belongs to the

class OL \
(
L(γ) ∪OS

)
.

Because M(F(γ), γ) < ∞, M(H, γ) < ∞, then Hγ = H1,γ ∗ H2,γ, as the Esscher trans-
form of H, is defined and is I.D.D. with Lévy distribution F(γ),γ. To reveal the properties of
Hγ and F(γ),γ, we need the following result.

Lemma 1. For some 0 < γ, T < ∞, V−γ ∈ OS∆T ⇐⇒ V ∈ OS∆T . Thus, V−γ ∈ OS loc ⇐⇒
V ∈ OS loc. Further, if V−γ ∈ L(γ), then V−γ ∈ OS ⇐⇒ V−γ ∈ OS loc. Therefore,

V−γ ∈ L(γ) ∩OS ⇐⇒ V ∈ Lloc ∩OS loc.

Proof. We now prove the first conclusion. From (2.4) of Wang and Wang [25], we have

V−γ(x + ∆T) = M(V−γ, γ)e−γx
(

V(x + ∆T)− γ
∫ T

0
e−γyV(x + y, x + T]dy

)
, x ≥ 0. (14)
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Further, we obtain the following inequality,

e−γTV(x + ∆T) ≤ eγxV−γ(x + ∆T)
/

M(V−γ, γ) ≤ V(x + ∆T), x ≥ 0. (15)

If V ∈ OS∆T , then according to Radon–Nikodym Theorem, by (15) and (4), we have

V∗2−γ(x + ∆T) =
∫ x

0
V−γ(x− y + ∆T)V−γ(dy) +

∫ x+T

x
V−γ(0, x− y + T]V−γ(dy)

≤ e−γx M(V−γ, γ)
∫ x

0
V(x− y + ∆T)V(dy)

/
M(V,−γ) + V−γ(x + ∆T)

≤ e−γx M(V−γ, γ)V∗2(x + ∆T)
/

M(V,−γ) + V−γ(x + ∆T)

≤ 2C∗∆T
(V)M(V−γ, γ)e−γxV(x + ∆T)

/
M(V,−γ) + V−γ(x + ∆T)

≤
(
2C∗∆T

(V)M(V−γ, γ)eγT
/

M(V,−γ) + 1
)
V−γ(x + ∆T) for large enough x > 0,

that is V−γ ∈ OS∆T . Conversely, if V−γ ∈ OS∆T , then we also get V ∈ OS∆T by the same
approach.

The second conclusion comes from the arbitrariness of T.
If V−γ ∈ L(γ), then V∗2−γ ∈ L(γ). Thus, for each 0 < T ≤ ∞, by

V∗k−γ(x + ∆T) ∼ (1− e−γT)V∗k−γ(x), k = 1, 2,

the third conclusion holds.
Proposition 1 and the third conclusion imply the final conclusion.

Now, we continue to prove the theorem. According to Lemma 1 and Proposition 1,
by H ∈

(
L(γ) ∩OS

)
\ S(γ) and F(γ) ∈ OL \

(
L(γ) ∪OS

)
, we know that Hγ ∈

(
Lloc ∩

OS loc
)
\ Sloc, while F(γ),γ ∈ OLloc \

(
Lloc ∪OS loc

)
. Therefore, the class Lloc ∩OS loc is not

closed under I.D.D. roots.

3.2. Proof of Theorem 2

To prove this theorem, we give two preliminary results. Firstly, we consider the closure
under random convolution roots for the distribution class Lloc ∩OS loc. Clearly, this result
and the following Theorem 5 not only play a key role in the proof of Theorems 2 and 3, but
also have their own independent value.

Let V be a distribution and let τ be a nonnegative integer-valued random variable
with masses pk = P(τ = k) for all nonnegative integers k satisfying ∑∞

k=0 pk = 1. Denoted
by V∗τ is the random convolution or compound convolution generated by V and τ, i.e.,

V∗τ =
∞

∑
k=0

pkV∗k.

Let m = sup{k : pk > 0}. In this paper, we consider the following two cases:

Case 1 : pk > 0 for all k ≥ 1; Case 2 : 1 ≤ m < ∞ and pk > 0 for all 1 ≤ k ≤ m.

Theorem 4. Assume that for any 0 < ε < 1 and some 0 < T0 < ∞, there exists an integer
n0 = n0(V, ε, τ, T0) ≥ 1 such that

∞

∑
k=n0+1

pkV∗(k−1)(x + ∆T0) ≤ εV∗τ(x + ∆T0), x ≥ 0, (16)
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and for each k ≥ 1 in Case 1 or 1 ≤ k ≤ m in Case 2,

lim inf V∗k−γ(x− t)
/

V∗k−γ(x) ≥ eγt for each t > 0. (17)

If V∗τ ∈ Lloc ∩ OS loc, then for the above two cases, there exists an integer l0 ≥ 1 in Case 1 or
1 ≤ l0 ≤ m in Case 2 such that V∗n ∈ Lloc ∩OS loc for all l0 ≤ n < m and V∗n /∈ Lloc ∩OS loc
for all 1 ≤ n ≤ l0 − 1. In particular, if V ∈ OS loc, then V∗n ∈ Lloc ∩ OS loc for all n ≥ 1 in
Case 1 or 1 ≤ n ≤ m in Case 2.

Proof. We first prove the theorem for Case 1 that m = ∞.
In Lemma 1, we replace V with V∗τ . Then by V∗τ ∈ Lloc ∩OS loc, we know that

(V∗τ)−γ ∈ L(γ) ∩OS .

In addition,

0 < M(V∗τ ,−γ) =
∞

∑
k=0

pk Mk(V,−γ) = EMτ(V,−γ) < 1

and

(V∗τ)−γ(x) =
∞

∑
k=1

pk Mk(V,−γ)

M(V∗τ ,−γ)
V∗k−γ(x) =

∞

∑
k=1

qkV∗k−γ(x) = (V−γ)∗σ(x), x ≥ 0, (18)

where σ is a random variable such that P(σ = k) = qk for all nonnegative integers k
satisfying ∑∞

k=0 qk = 1.
For any 0 < ε < 1, we denote ε0 = εe−γT0 . By (15), (18) and (16) replaced ε with ε0,

according to Fubini Theorem, for the corresponding n0 = n0(V, ε0, τ, T0) large enough,
we have

∞

∑
k=n0+1

qkV∗(k−1)
−γ (x) =

∞

∑
k=n0+1

qk

∞

∑
m=0

V∗(k−1)
−γ (x + mT0 + ∆T0)

≤
∞

∑
k=n0+1

pk Mk−1(V,−γ)Mk−1(V−γ, γ)
∞

∑
m=0

e−γ(x+mT0)V∗(k−1)(x + mT0 + ∆T0)
/

M(V∗τ ,−γ)

=
∞

∑
k=n0+1

pk

∞

∑
m=0

e−γ(x+mT0)V∗(k−1)(x + mT0 + ∆T0)
/

M(V∗τ ,−γ)

=
∞

∑
m=0

e−γ(x+mT0)
∞

∑
k=n0+1

pkV∗(k−1)(x + mT0 + ∆T0)
/

M(V∗τ ,−γ) (19)

≤ ε0

∞

∑
m=0

e−γ(x+mT0)V∗τ(x + mT0 + ∆T0)
/

M(V∗τ ,−γ)

≤ ε0eγT0
∞

∑
m=0

(V∗τ)−γ(x + mT0 + ∆T0)

= ε(V∗τ)−γ(x)

= ε(V−γ)∗σ(x), x ≥ 0.

Since (V∗τ)−γ ∈ L(γ) ∩OS , according to Theorem 2.1 with γ > 0 of Cui et al. [29],
by (19) and (17), we have V∗n−γ ∈ L(γ) ∩OS for all n ≥ n0. Thus, according to Lemma 1,
V∗n ∈ Lloc ∩OS loc for all n ≥ n0.

Let l0 = min{n : V∗n ∈ Lloc ∩ OS loc}. Then 1 ≤ l0 ≤ n0. According to Lemma 1,
by V∗l0 ∈ Lloc ∩ OS loc, we know that V∗l0−γ ∈ L(γ) ∩ OS . Furthermore, according to
Theorem 3 of Embrechts and Goldie [15] and Proposition 2.6 of Shimura and Watanabe [13],
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we have V∗n−γ ∈ L(γ) ∩OS for all n ≥ l0. Therefore, V∗n ∈ Lloc ∩OS loc for all n ≥ l0 after
using Lemma 1 again.

Similarly, we can prove V∗n /∈ Lloc ∩OS loc for all 1 ≤ n ≤ l0 − 1.
In particular, if V ∈ OS loc, then V−γ ∈ OS . Thus, according to Theorem 2.1 with

γ > 0 of Cui et al. [29], we have V−γ ∈ L(γ), which implies V ∈ Lloc. Therefore, l0 = 1,
that is V∗n ∈ Lloc ∩OS loc for all n ≥ 1.

Next, we prove the theorem for the Case 2 that 1 ≤ m < ∞ and pm > 0.
Because

(V∗τ)−γ(x) ≥ qmV∗m−γ (x) ≥ qmV∗k−γ(x), 1 ≤ k ≤ m− 1,

(V∗τ)−γ(x) � V∗m−γ (x). Then by (V∗τ)−γ ∈ OS , we immediately get V∗m−γ ∈ OS . Con-
sequently, there is an integer l0 = min{1 ≤ n ≤ n0 : V∗n−γ ∈ OS} such that 1 ≤ l0 ≤ m

and V∗l0−γ ∈ OS . According to Proposition 2.6 of Shimura and Watanabe [13], V∗n−γ ∈ OS
and (V∗τ)−γ(x) � V∗n−γ(x) for all l0 ≤ n ≤ m. Thus, for each n ≥ l0, there is a constant
Dn = Dn(V, τ) > 0 such that

lim sup (V∗τ)−γ(x)
/

V∗n−γ(x) = Dn < ∞.

Further, we prove V∗n−γ ∈ L(γ) for each l0 ≤ n ≤ m. Since (V∗τ)−γ ∈ L(γ), for any
0 < ε < 1 and each t > 0, there is a constant x1 = x1(V−γ, τ, ε, t) > t such that, for all
x > x1,

ε(V∗τ)−γ(x) ≥ (V∗τ)−γ(x− t)− eγt(V∗τ)−γ(x)

=
(

∑
1≤k 6=n≤m

+ ∑
k=n

)
pk
(
V∗k−γ(x− t)− eγtV∗k−γ(x)

)
≥ −εeγt ∑

1≤k 6=n≤n0

pkV∗k−γ(x) + pn
(
V∗n−γ(x− t)− eγtV∗n−γ(x)

)
≥ pn

(
V∗n−γ(x− t)− eγtV∗n−γ(x)

)
− εeγt(V∗τ)−γ(x),

which implies that for all x > x1,

V∗n−γ(x− t) ≤ eγtV∗n−γ(x) + (1 + eγt)ε(V∗τ)−γ(x)
/

pn.

Hence,

lim sup V∗n−γ(x− t)
/

V∗n−γ(x) ≤ eγt + (1 + 2eγt)εDn

/
pn. (20)

Clearly, the fixed integer n is independent of ε. Thus, combined with the arbitrariness of ε,
(20) and (17) lead to V∗n−γ ∈ L(γ).

In particular, if V−γ ∈ OS , then by the same method, we can get V∗n−γ ∈ L(©) ∩OS
for all 1 ≤ n ≤ m.

Secondly, we consider the closure under convolution roots for the distribution class
Lloc ∩OS loc.

Lemma 2. Let G1 be a distribution, G2 = V∗τ as above and G = G1 ∗ G2. Assume that for any
0 < ε < 1, there exists an integer n0 = n0(V, ε, τ) ≥ 1 such that

∞

∑
k=n0+1

pkV∗(k−1)
−γ (x) ≤ ε(V∗τ)−γ(x), x ≥ 0. (21)
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Further, suppose that (17) is satisfied for all k ≥ 1 and

G1,−γ(x) = o
(
G2,−γ(x)

)
(22)

If G ∈ Lloc ∩OS loc, then

G2 ∈ Lloc ∩OS loc and G2(x + ∆T0) ∼ G(x + ∆T0).

Proof. According to Lemma 1, by G ∈ Lloc ∩OS loc, we know that

G−γ = G1,−γ ∗ G2,−γ ∈ L(γ) ∩OS .

Thus, according to Lemma 3.1 of Cui et al. [29], by (17) for all k ≥ 1, (21) for any given
0 < ε < 1 and (22), we have

G2,−γ ∈ L(γ) ∩OS and G−γ(x) ∼ M(G1,−γ, γ)G2,−γ(x).

Therefore, according to Lemma 1 and Proposition 1, by (7), we can prove the lemma.

Now, we prove Theorem 2.
(i) Firstly, we prove

H1,−γ(x) = o
(

H2,−γ(x)
)
. (23)

To the end, we denote

H−γ(x) = H−γ(ln ex) = H−γ(ln y) = f−γ(y).

According to Lemma 1, by H ∈ Lloc ∩OS loc, we have H−γ ∈ L(γ) ∩OS . Thus, f−γ(·) is
a regular variation function with index γ, which implies

eβx H−γ(x)→ ∞ for each β > γ. (24)

By H1(x) = O
(
e−βx) for each β > 0, we have

eβx H1,−γ(x) ≤ eβx H1(x)
/

M(H1, γ)→ 0 for each β > 0. (25)

For i = 1, 2, let Xi be a random variable with distribution Hi,−γ. Then

H−γ(x) = H1,−γ ∗ H2,−γ(x) ≤ P
(

max{X1, X2} > x/2
)
≤ H1,−γ(x/2) + H2,−γ(x/2).

Thus, by (24) and (25), we know that

eβx H2,−γ(x) = e(2
−1β)2x H2,−γ(2x/2)→ ∞ for each β > 2γ. (26)

Combining with (25) and (26), we know that (23) holds.
Secondly, by (18), according to Proposition 6.1 of Watanabe and Yamamuro [33], we

have

qk = pk Mk(F−γ,−γ)
/

M(H2,−γ) = e−µµk Mk(F−γ,−γ)
/(

M(H2,−γ)k!
)

for all k ≥ 0.

Thus, for any 0 < ε < 1, there exists an integer n0 = n0(F−γ, H2,−γ, ε) ≥ 1 such that

∞

∑
k=n0+1

qkF∗(k−1)
−γ (x) ≤ ε(F∗τ)−γ(x) = εH2,−γ(x), x ≥ 0. (27)
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Finally, according to Lemma 2 replaced Gi with Hi, i = 1, 2, combining with (8), (23)
and (27), by H ∈ Lloc ∩OS loc, we know that

H2 ∈ Lloc ∩OS loc and H2(x + ∆T0) ∼ H(x + ∆T0).

(ii) In Theorem 4, we take V = F and V∗τ = H2. Clearly, (16) holds for each distribu-
tion V = F, any 0 < ε < 1 and some n0 ≥ 1, see, for example, Watanabe and Yamamuro [33].
Further, according to Theorem 4, by H2 ∈ Lloc ∩ OS loc, combined with (8) and (16), we
obtain all the conclusions.

3.3. Proof of Theorem 3

In order to prove the theorem, we need the following two results. The first result is
the local version of the half of Lemma 2.1 of Cui et al. [29].

Lemma 3. Let V∗τ be a random convolution defined as above.
(i) If pk−1 ≥ pk > 0 for all k ≥ 2, then the following proposition (B) implies the proposition

(A) for some 0 < T < ∞.
(A) For any 0 < ε < 1, there exists an integer n0 = n0(V, τ, ε, T) ≥ 1 such that

∞

∑
k=n0+1

pkV∗k(x + ∆T) ≤ εV∗τ(x + ∆T), x ≥ 0. (28)

(B) For any 0 < ε < 1, there exists an integer n0 = n0(V, τ, ε, T) ≥ 1 such that (16) holds.
(ii) If V∗τ ∈ OS∆T for some 0 < T < ∞ with p1 > 0, then the proposition (B) implies the

proposition (A) replaced x ≥ 0 by x ≥ x1 for some x1 ≥ x0.

Remark 3. (i) In particular, if τ obeys a Poisson distribution, then for any 0 < ε < 1, (16) holds
for some n0 ≥ 1. Further, because pk−1 ≥ pk > 0 for all k ≥ 2, (28) holds for the same ε and n0.

(ii) The condition 0 < pk ≤ pk−1 for all k ≥ 2 can be relaxed to the condition that
0 < pk ≤ Cpk−1 for some C > 0 and all k ≥ 2.

Proof. (i) If (16) holds, then by pk−1 ≥ pk > 0 for all k ≥ 2, we know that for any n0 ≥ 1,

∞

∑
k=n0+1

pkV∗k(x + ∆T) ≤
∞

∑
k=n0+1

pk−1V∗k(x + ∆T), x ≥ 0.

Therefore, (28) is implied by (16).
(ii) Clearly, we only need to prove the lemma for Case 1. Because V∗τ ∈ OS∆T for

some 0 < T < ∞, there exists a constant x1 = x1(V, τ, T) ≥ x0 such that

D∗(V∗τ , T) = sup
x≥x1

(V∗τ)∗2(x + ∆T)
/

V∗τ(x + ∆T) < ∞.

For any 0 < ε < 1, we take

ε0 = p1ε
/(

1 + D∗(V∗τ , T)
)
,

then 0 < ε0 < 1.
For the above ε0, according to proposition (B), by m = ∞, there exists an integer

n0 = n0(V, τ, ε0, T) ≥ 1 such that 0 < an0 =
∞
∑

k=n0+1
pk < ε0 and (16) holds, in which ε is
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replaced with ε0 . Then
∞
∑

k=n0+1
pkV∗(k−1)

/
an0 can be considered as a distribution. Therefore,

by p1 > 0 and V∗τ(x + ∆T) ≥ p1V(x + ∆T) for all x ≥ 0, we have

∞

∑
k=n0+1

pkV∗k(x + ∆T) = an0 V ∗
( ∞

∑
k=n0+1

pkV∗(k−1)
/

an0

)
(x + ∆T)

≤ an0

∫ x

0−

( ∞

∑
k=n0+1

pkV∗(k−1)
/

an0

)
(x− y + ∆T)V(dy) + an0 V(x + ∆T)

≤ ε0

( ∫ x

0−
V∗τ(x− y + ∆T)V∗τ(dy) + V∗τ(x + ∆T)

)/
p1

≤ ε0
(
V∗2τ(x + ∆T) + V∗τ(x + ∆T)

)/
p1

≤ ε0
(
1 + D∗(V∗τ , T)

)
V∗τ(x + ∆T)

/
p1

= εV∗τ(x + ∆T), x ≥ x1,

that is (28) holds for any 0 < ε < 1, all x ≥ x1 and some n0 ≥ 1.

Theorem 5. Assume that V∗τ ∈ T L∆T0
(γ) ∩ OS∆T0

for some 0 < γ, T0 < ∞ with pk > 0
for all k ≥ 1 in Case 1 or 1 ≤ k ≤ m in Case 2. If for any 0 < ε < 1, there exists an integer
n0 = n0(V, τ, ε, T0) ≥ 1 such that (16) holds, and for each the above k,

lim inf V∗kγ (x− t + ∆T0)
/

V∗kγ (x + ∆T0) ≥ 1 for each t > 0, (29)

then there exists an integer l0 ≥ 1 in Case 1 or 1 ≤ l0 ≤ m in Case 2 such that V∗n ∈
T L∆T0

∩OS∆T0
for all n ≥ l0 in Case 1 or l0 ≤ n ≤ m in Case 2 and V∗n /∈ T L∆T0

∩OS∆T0
for all 1 ≤ n ≤ l0 − 1. In particular, if V ∈ OS∆T0

, then V∗n ∈ T L∆T0
∩OS∆T0

for all n ≥ 1 in
Case 1 or 1 ≤ n ≤ m in Case 2.

Proof. For case 1, we first prove V∗n ∈ OS∆T0
for all n ≥ n0, where n0 fixed in (16).

Because V∗τ ∈ T L∆T0
(γ), M(V∗τ , γ) < ∞. Thus, M(V∗n, γ) < ∞ for all n ≥ 1. By (14), it

holds that,

V∗θ(x + ∆T0) =
M(V∗θ , γ)

eγx

(
(V∗θ)γ(x + ∆T0)− γ

∫ T0

0

(V∗θ)γ(x + y, x + T0]

eγy dy
)

, x ≥ 0, (30)

where θ = k for each k ≥ 1 or θ = τ. Thus, similar to (15), we have

e−γT0(V∗θ)γ(x + ∆T0) ≤ eγxV∗θ(x + ∆T0)
/

M(V∗θ , γ) ≤ (V∗θ)γ(x + ∆T0), x ≥ 0. (31)

When θ = τ, just as (18), we denote

(V∗τ)γ(x + ∆T0) =
∞

∑
k=1

qkV∗kγ (x + ∆T0) = (Vγ)
∗σ(x + ∆T0), x ≥ 0, (32)
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where qk = pk Mk(V, γ)
/

M(V∗τ , γ), k ≥ 1. According to Proposition 1 and Lemma 1,
since V∗τ ∈ T L∆T0

(γ) ∩ OS∆T0
, so (V∗τ)γ ∈ L∆T0

∩ OS∆T0
. Furthermore, according to

Lemma 3, by (31), (28) with x1 ≥ x0 and (32), for 0 < ε < 1 and n0 in (16), we have

n0

∑
k=1

qkV∗kγ (x + ∆T0) ≥ eγx
n0

∑
k=1

pkV∗k(x + ∆T0)
/

M(V∗τ , γ)

≥ (1− ε)eγxV∗τ(x + ∆T0)
/

M(V∗τ , γ)

≥ (1− ε)e−γT0(V∗τ)γ(x + ∆T0), x ≥ x1. (33)

Further, for each n ≥ 1, using Fatou lemma, by (29), we have

lim inf
V∗(n+1)

γ (x + ∆T0)

V∗nγ (x + ∆T0)
≥

∫ ∞

0
lim inf

V∗nγ (x− y + ∆T0)

V∗nγ (x + ∆T0)
1[0,x](y)Vγ(dy) ≥ 1. (34)

Combining with (33), (34) and (V∗τ)γ ∈ OS∆T0
, we know that

V∗nγ (x + ∆T0) � (V∗τ)γ(x + ∆T0) and V∗nγ ∈ OS∆T0
for all n ≥ n0. (35)

Using Lemma 1 again, by (31), we have

V∗n(x + ∆T0) � V∗τ(x + ∆T0).

Therefore, by V∗τ ∈ OS∆T0
, we know that V∗n ∈ OS∆T0

for all n ≥ n0.
Next, we prove that V∗n ∈ T L∆T0

(γ) for each n ≥ n0. According to Lemma 3 (ii), by
(31), (16) and (32), for the above 0 < ε < 1, n0, x1 ≥ x0 and each n ≥ n0, there exists an
integer m0 = m0(F, τ, ε, T0, γ) ≥ n such that

∞

∑
k=m0+1

qkV∗kγ (x + ∆T0) ≤ eγ(T0+x)
∞

∑
k=m0+1

pkV∗k(x + ∆T0)
/

M(V∗τ , γ)

≤ eγ(T0+x)εe−γT0 V∗τ(x + ∆T0)
/

M(V∗τ , γ)

≤ ε(V∗τ)γ(x + ∆T0)

= ε(Vγ)
∗σ(x + ∆T0) for all x ≥ x1. (36)

Further, by (V∗τ)γ ∈ L∆T0
∩OS∆T0

, (29) and (36), for each t > 0, there exists a constant
x2 = x2(V, τ, ε, t, m0, γ) ≥ x1 such that, for all x ≥ x2,

ε(V∗τ)γ(x + ∆T0) ≥ (V∗τ)γ(x− t + ∆T0)− (V∗τ)γ(x + ∆T0)

=
(

∑
1≤k 6=n≤m0

+ ∑
k=n

+ ∑
k≥m0+1

)
qk
(
V∗kγ (x− t + ∆T0)−V∗kγ (x + ∆T0)

)
≥ −ε ∑

1≤k≤m0

qkV∗kγ (x + ∆T0) + qn
(
V∗nγ (x− t + ∆T0)−V∗nγ (x + ∆T0)

)
− ε(V∗τ)γ(x + ∆T0),

which implies that

V∗nγ (x− t + ∆T0) ≤ V∗nγ (x + ∆T0) + 3ε(V∗τ)γ(x + ∆T0)
/

qn, x ≥ x2.

Hence, by (V∗τ)γ(x + ∆T0) � V∗nγ (x + ∆T0) and the arbitrariness of ε, we can get

lim sup V∗nγ (x− t + ∆T0)
/

V∗nγ (x + ∆T0) ≤ 1. (37)

Combined with (29) and (37), V∗nγ ∈ L∆T0
. Therefore, V∗n ∈ T L∆T0 (γ)

, for all n ≥ n0.
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Similar to the proof of Theorem 4, the theorem can be proved.
For Case 2, by (34), we have V∗mγ (x + ∆T0) � (V∗τ)γ(x + ∆T0). Then, it is easy to get

that V∗mγ ∈ OS∆T0
.

Next, we prove that V∗m ∈ T L∆T0
(γ). For any 0 < ε < 1 and x large enough, by (29)

for 1 ≤ k ≤ m, we can get

ε(V∗τ)γ(x + ∆T0) ≥ (V∗τ)γ(x− t + ∆T0)− (V∗τ)γ(x + ∆T0)

=
(

∑
1≤k<m

+ ∑
k=m

)
qk
(
V∗kγ (x− t + ∆T0)−V∗kγ (x + ∆T0)

)
≥ −ε ∑

1≤k<m
qkV∗kγ (x + ∆T0) + qm

(
V∗mγ (x− t + ∆T0)−V∗mγ (x + ∆T0)

)
for each t > 0.

After the same simplification, we have

V∗mγ (x− t + ∆T0) ≤ V∗mγ (x + ∆T0) + 2ε(V∗τ)γ(x + ∆T0)
/

qm for each t > 0.

Hence, we can obtain the same conclusion as (37) for n = m which implies V∗m ∈
T L∆T0

(γ).
We omit the proof of the remaining conclusion, which is similar to that of Theorem 4.

Now, we prove Theorem 3.
(i) Firstly, we prove that

H1,γ(x + ∆T0) = o
(

H2,γ(x + ∆T0)
)
. (38)

Its proof is slightly more difficult than that of (23). For this, we denote

Hγ(x + ∆T0) = Hγ(ln ex + ∆T0) = Hγ(ln y + ∆T0) = fγ(y), x ≥ 0.

According to Lemma 1, by H ∈ T L∆T0
(γ) ∩OS∆T0

, we have Hγ ∈ L∆T0
∩OS∆T0

. Thus,
fγ(·) is a regular variation function with index 0, which implies

eβx Hγ(x + ∆T0)→ ∞ for each β > 0. (39)

By H1(x) = O
(
e−βx) for each β > 0 and (15) with V = H1,γ and T = T0, we have

eβx H1,γ(x + ∆T0) ≤ eγT0 M−1(H1, γ)e(β+γ)x H1(x + ∆T0)→ 0 for each β > 0. (40)

Then by (39) and (40), we know that

H1,γ(x + ∆T0) = o
(

Hγ(x + ∆T0)
)
. (41)

Furthermore, by (10), for each pair m, k ≥ 1, we have

lim inf F∗kγ (x− jT0 + ∆T0)
/

F∗kγ (x + ∆T0) ≥ 1 for each 1 ≤ j ≤ m. (42)

In addition, there exists an integer n1 = n1(H1,γ, T0) large enough such that H1,γ(0, n1T0] > 0.
Then by (41) and Hγ ∈ L∆T0

∩OS∆T0
, for any

0 < ε < H1,γ(0, n1T0]
/(

2(n1 + 1)C∗∆T0
(Hγ)

)
,

there exists an integer m1 = m1(H1, H2, ε, T0, γ) and a constant x3 ≥ x2 such that

H1,γ(x + ∆T0) < εHγ(x + ∆T0), x ≥ m1T0, (43)
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n1

∑
j=0

H∗2γ (x + jT0 + ∆T0) ≤ 2(n1 + 1)C∗∆T0
(Hγ)Hγ(x + ∆T0), x ≥ m1T0 (44)

and

m1

∑
j=0

F∗n0
γ (x− jT0 + ∆T0) ≤ 2(m1 + 1)F∗n0

γ (x−m1T0 + ∆T0), x ≥ x3, (45)

where the final inequality stems from (42) with k = n0 in (35) and (16). In addition, by (35)
with V = F, we know that for the above m1 and n0, there are

0 < C1 = C1(H2,γ, T0, m1, n0) < C2 = C2(H2,γ, T0, m1, n0) < ∞

and x4 = x4(H2,γ, T0, m1, n0) ≥ x3 such that, for all 1 ≤ j ≤ m1,

C1H2,γ(x− jT0 + ∆T0) ≤ F∗n0
γ (x− jT0 + ∆T0) ≤ C2H2,γ(x− jT0 + ∆T0), x ≥ x4. (46)

For i = 1, 2, let Xi be a random variable with distribution Hi,γ. Assume that X1 is
independent of X2 and (X∗1 , X∗2 ) is an independent copy of (X1, X2). Further, denote
A0 = {X1 + X2 ∈ x + ∆T0} for all x ≥ 0. We then divide Hγ(x + ∆T0) = P(A0) as follows:

P(A0) = P(A0, 0 ≤ X2 ≤ x−m1T0) + P(A0, x−m1T0 < X2 ≤ x + T0)

= P1(x) + P2(x), x ≥ 0. (47)

For P1(x), by (43), (44) and Hγ ∈ L∆T0
∩OS∆T0

, we have

P1(x) =
∫ x−m1T0

0−
H1,γ(x− y + ∆T0)H2,γ(dy)

≤ ε
∫ x−m1T0

0−
Hγ(x− y + ∆T0)H2,γ(dy)

= εP(X∗1 + X∗2 + X2 ∈ x + ∆T0 , 0 ≤ X2 ≤ x−m1T0)

≤ εP(x < X∗1 + X∗2 + X2 ≤ x + T0, 0 ≤ X1 ≤ n2T0)
/

H1,γ
(
(0, n2T0]

)
(48)

≤ εP(x < X1 + X2 + X∗1 + X∗2 ≤ x + T0 + n2T0)
/

H1,γ(0, n2T0]

= ε
n2

∑
j=0

H∗2γ (x + jT0 + ∆T0)
/

H1,γ(0, n2T0]

≤ 2ε(n2 + 1)C∗∆T0
(Hγ)Hγ(x + ∆T0)

/
H1,γ(0, n2T0], x ≥ m1T0.

For P2(x), by (45) and (46), we have

P2(x) ≤ P(x− x0 < X2 ≤ x + T0) =
m1

∑
j=0

H2,γ(x− jT0 + ∆T0)

≤
m1

∑
j=0

F∗n0
γ (x− jT0 + ∆T0)/C1 (49)

≤ 2(m1 + 1)F∗n0
γ (x−m1T0 + ∆T0)

/
C1

≤ 2C2(m1 + 1)H2,γ(x−m1T0 + ∆T0)
/

C1, x ≥ x4.

Combined with (47), (48) and (49), we have(
1−

2ε(n2 + 1)C∗∆T0
(Hγ)

H1,γ(0, n2T0]

)
Hγ(x + ∆T0) ≤

2C2(m1 + 1)
C1

H2,γ(x−m1T0 + ∆T0) (50)
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for x ≥ max{m1T0, x4}. Furthermore, by (50), (39) and 2ε(n2 + 1)C∗(Hγ)
/

H1,γ(0, n2T0] < 1,
we know that

eβ(x−m1T0)H2,γ(x−m1T0 + ∆T0) = e−βm1T0 eβx H2,γ(x−m1T0 + ∆T0)→ ∞ for each β > 0,

that is

eβx H2,γ(x + ∆T0)→ ∞ for each β > 0. (51)

Then by (15), (40) and (51), it holds that

H1,γ(x + ∆T0)
/

H2,γ(x + ∆T0) = eβx H1,γ(x + ∆T0)
/

eβx H2,γ(x + ∆T0)→ 0 for each β > 0,

and thus (38) holds.
Secondly, by Hγ ∈ L∆T0

∩OS∆T0
and (50), we know that

H2,γ(x + ∆T0) � Hγ(x + ∆T0) and H2,γ ∈ OS∆T0
.

Finally, we prove that H2,γ ∈ L∆T0
. On one hand, for any 0 < ε < 1/2, take n0 in (33)

and (16) with Vγ = Fγ, by (32) and (10), according to Lemma 3 (i), for each t > 0, there is a
constant x5 = x5(F, ε, t, γ) ≥ x4 such that

H2,γ(x− t + ∆T0) ≥
n0

∑
k=1

qkF∗kγ (x− t + ∆T0)

≥ (1− ε)
n0

∑
k=1

qkF∗kγ (x + ∆T0) (52)

≥ (1− ε)
∞

∑
k=1

qkF∗kγ (x + ∆T0)−
∞

∑
k=n0+1

qkF∗kγ (x + ∆T0)

≥ (1− 2ε)H2,γ(x + ∆T0), x ≥ x5.

On the other hand, for any 0 < ε < 1, each t > 0 and n0 in (33) with Vγ = Fγ, by (36) and
(10) for all k ≥ 1, there is a constant x6 = x6(F, ε, t, γ) ≥ x5 such that, when x ≥ x6,

H2,γ(x + ∆T0)− H2,γ(x− t + ∆T0)

H2,γ(x− t + ∆T0)
≤

n0

∑
k=1

( F∗kγ (x + ∆T0)

F∗kγ (x− t + ∆T0)
− 1
)
+ ε ≤ ε(n0 + 1). (53)

Combining (52) and (53), with the arbitrariness of ε, we know that H2,γ ∈ L∆T0
. Then

(i) holds by Lemma 1 and Proposition 1.
(ii) In Theorem 5, we take V = F, G = H, G1 = H1 and G2 = H2. Because

pk = e−µµk/k! k ≥ 0, according to Remark 3 (i), (16) holds for each distribution V, thus
for F. Therefore, since H2 ∈ T L∆T0

(γ) ∩OS∆T0
, according to Theorem 5, by (16) for F and

(10), we obtain all the results.

4. On the Condition (10)

In this section, we give some concise and convenient conditions to replace condition
(10), see the following Theorem 6. To this end, we require three lemmas.

Lemma 4. If a distribution V ∈ OL∆T for some 0 < T < ∞ satisfying

lim inf V(x− t + ∆T)
/

V(x + ∆T) ≥ 1 for each t > 0, (54)
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then

V(x− t + ∆T) � V(x + ∆T) � V(x + t + ∆T) for each t > 0 (55)

and

V(x + ∆T1) = O
(
V(x + ∆T)

)
for each pair 0 < T1 6= T < ∞. (56)

Proof. Firstly, by (54) and V ∈ OL∆T , we know that, for each t > 0,

V(x + ∆T) . V(x− t + ∆T) . C∆T (V, t)V(x + ∆T),

that is V(x− t + ∆T) � V(x + ∆T). Thus

V(x + ∆T) = V(x + t− t + ∆T) � V(x + t + ∆T).

Therefore, (55) holds.
Secondly, for each 0 < T1 6= T < ∞, there exists an integer m ≥ 1 such that (m− 1)T <

T1 ≤ mT. Further, by V ∈ OL∆T and V(x + ∆T) � V(x + t + ∆T) for each t > 0, we have

V(x + ∆T1) ≤ V(x + ∆mT) =
m−1

∑
k=0

V(x + kT + ∆T) .
m−1

∑
k=0

C∗∆T
(V, kT)V(x + ∆T

)
,

that is (56) holds.

Lemma 5. For i = 1, 2, let Vi be a distribution such that Vi ∈ OL∆T for some 0 < T < ∞ and

lim inf Vi(x− t + ∆T)
/

Vi(x + ∆T) ≥ 1 for each t > 0. (57)

(i) Then Vi(x + ∆T) = O
(
V1 ∗V2(x + ∆T)

)
, i = 1, 2. (58)

(ii) If

lim C∗∆T
(V1, x)V2(x + ∆T) = 0, (59)

then V1 ∗V2 ∈ OL∆T and

C∗∆T
(V1 ∗V2, t) ≤ max{C∗∆T

(V1, t), C∗∆T
(V2, t)} for each t ≥ 0. (60)

Proof. (i) For any 0 < A < ∞, according to Fatou lemma, by (57), we have

lim inf
V1 ∗V2(x + ∆T)

Vi(x + ∆T)
≥
∫ A

0−
lim inf

Vi(x− y + ∆T)

Vi(x + ∆T)
Vj(dy) ≥ Vj([0, A])→ 1, as A→ ∞,

for all 1 ≤ i 6= j ≤ 2, that is (58) holds.
(ii) In order to prove (60), we perform some preparatory work.
For each t > 0, any 0 < ε < 1 and i = 1, 2, by Vi ∈ OL∆T , there exists xi =

xi(Vi, ε, T, t) > 0 such that

Vi(x− t + ∆T) ≤ (1 + ε)C∗∆T
(Vi, t)Vi(x + ∆T) for all x ≥ xi. (61)

For the above ε, by (59), there exists x3 = x3(Vi, ε, T) > 0 such that when x ≥ x3,

C∗∆T
(V1, x)V2(x + ∆T) < ε. (62)
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For above t > 0, by (56), (61), (62) and (58), we know that there is x0 = x0(V1, V2, ε, T, t) ≥
max{x1, x2, x3}, 0 < Ki = Ki(V1, V2, T) < ∞, i = 1, 2 and m = m(V1, V2, T, ε, t) ≥ 2 such
that, when x ≥ mx0,

V1(x− x0 − t− T + ∆2T)V2(x0 + ∆T) ≤ K1V1(x− x0 − t− T + ∆T)V2(x0 + ∆T)

≤ K1(1 + ε)3C∗∆T
(V1, T)C∗∆T

(V1, t)C∗∆T
(V1, x0)V1(x + ∆T)V2(x0 + ∆T)

≤ K1K2(1 + ε)3C∗∆T
(V1, T)C∗∆T

(V1, t)C∗∆T
(V1, x0)V2(x0 + ∆T)V1 ∗V2(x + ∆T)

< ε(1 + ε)3KV1 ∗V2(x + ∆T), (63)

where K = K1K2C∗∆T
(V1, T)C∗∆T

(V1, t). In addition, let X and Y be the two random variables
with corresponding distributions V1 and V2. Suppose that X is independent of Y. Denote

At = {X + Y ∈ x− t + ∆T} for t ≥ 0.

In the following, we deal with V1 ∗V2(x− t + ∆T) in two cases where T ≤ t < ∞ and
0 < t < T. For T ≤ t < ∞, by (61) and x ≥ mx0 + T, we have

V1 ∗V2(x− t + ∆T) = P(At, 0 ≤ X ≤ x− t− x0) + P(At, x− t− x0 < X ≤ x− t + T)

≤ P(At, 0 ≤ X ≤ x− t− x0) + P(At, 0 < Y ≤ T + x0)

=
∫ x−t−x0

0−
V2(x− t− y + ∆T)V1(dy) +

∫ T+x0

0
V1(x− t− y + ∆T)V2(dy) (64)

≤ (1 + ε)
(

C∗∆T
(V2, t)

∫ x−t−x0

0−
V2(x− y + ∆T)V1(dy)

+C∗∆T
(V1, t)

∫ T+x0

0
V1(x− y + ∆T)V2(dy)

)
≤ (1 + ε)max{C∗∆T

(V1, t), C∗∆T
(V2, t)}V1 ∗V2(x + ∆T).

For 0 < t < T, we give a segmentation for V1 ∗V2(x− t + ∆T) which is different from (64)
as follows. Further, by (61), (63) and x ≥ mx0 + T, we have

V1 ∗V2(x− t + ∆T) ≤ P(At, 0 ≤ X ≤ x− t− x0) + P(At, 0 < Y ≤ x0)

+P(At, x0 < Y ≤ T + x0)

≤
∫ x−t−x0

0−
V2(x− t− y + ∆T)V1(dy) +

∫ x0

0
V1(x− t− y + ∆T)V2(dy)

+V1(x− x0 − t− T + ∆2T)V2(x0 + ∆T) (65)

≤ (1 + ε)
(

C∗∆T
(V2, t)

∫ x−t−x0

0−
V2(x− y + ∆T)V1(dy) + C∗∆T

(V1, t)
∫ x0

0
V1(x− y + ∆T)V2(dy)

)
+ε(1 + ε)2KV1 ∗V2(x + ∆T)

≤ (1 + ε)
(

max{C∗∆T
(V1, t), C∗∆T

(V2, t)}+ ε(1 + ε)3K
)
V1 ∗V2(x + ∆T).

Therefore, V1 ∗V2 ∈ OL∆T and (60) holds by (64), (65) and the arbitrariness of ε.

Lemma 6. Let V1 and V2 be the two distributions belonging to the class OL∆T for some 0 < T <
∞. If conditions (57) and (59) are satisfied, then for each t > 0,

lim inf V1 ∗V2(x− t + ∆T)
/

V1 ∗V2(x + ∆T) ≥ 1. (66)
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Proof. In order to prove (66), we carry out some preparatory work. For each t > 0, by (57)
and V2 ∈ OL∆T , we know that, for any 0 < ε < 1, there exists x1 = x1(V1, V2, ε, T, t) > 0
such that, when x ≥ x1,

(1− ε)Vi(x + ∆T) ≤ Vi(x− t + ∆T) ≤ (1 + ε)C∗∆T
(Vi, t)Vi(x + ∆T), i = 1, 2. (67)

Furthermore, according to Lemma 5, there exists x2 = x2(V1, V2, T, t) > 0 and C > 0 such
that, when x ≥ x2,

V1(x + ∆T) ≤ CV1 ∗V2(x + ∆T) and V1 (or 2)
(
x + ∆t (or ∆t+T)

)
≤ CV1(x + ∆T). (68)

Further, we denote x0 = max{x1, x2}+ t + T and At = {X + Y ∈ x− t + ∆T}, where X
and Y are two random variables defined in Lemma 5.

Now, we prove (66) for each t > 0. When x ≥ x0, by (67), we have

V1 ∗V2(x− t + ∆T) = P(At, 0 ≤ X ≤ x− t− x0) + P(At, x− t− x0 < X ≤ x− t + T)

=
∫ x−t−x0

0−
V2(x− t− y + ∆T)V1(dy) + P(At, x− t− x0 < X ≤ x− t + T)

≥ (1− ε)
∫ x−t−x0

0−
V2(x− y + ∆T)V1(dy) + P(At, x− t− x0 < X ≤ x− t + T) (69)

≥ (1− ε)
(
V1 ∗V2(x + ∆T)−

∫ x−x0

x−t−x0

V2(x− y + ∆T)V1(dy)

−P(A0, x− x0 < X ≤ x + T) + P(At, x− t− x0 < X ≤ x− t + T)
)

= (1− ε)
(
V1 ∗V2(x + ∆T)− P1(x)− P2(x) + P3(x)

)
.

Firstly, we estimate P1(x). When x− t− x0 < y ≤ x− x0,

V2(x− y + ∆T) ≤ P(x0 < Y ≤ x0 + t + T).

Then, by (68), (67) and (59), we know that

P1(x) ≤ V2(x0 + ∆t+T)V1(x− x0 − t + ∆t)

≤ C2V2(x0 + ∆T)V1(x− x0 − t + ∆T)

≤ (1 + ε)2C2V1(x + ∆T)C∗∆T
(V1, t)C∗∆T

(V1, x0)V2(x0 + ∆T) (70)

≤ (1 + ε)2C3V1 ∗V2(x + ∆T)C∗∆T
(V1, t)C∗∆T

(V1, x0)V2(x0 + ∆T)

= o
(
V1 ∗V2(x + ∆T)

)
as x0 → ∞.

Secondly, we estimate P3(x)− P2(x).

P3(x)− P2(x) = P(At, x− t− x0 < X ≤ x− t + T, 0 < Y < x0 + T)

−P(A0, x− x0 < X ≤ x + T, 0 ≤ Y < x0 + T)

=
∫ x0

0−

(
V1(x− t− y + ∆T)−V1(x− y + ∆T)

)
V2(dy) (71)

+
∫ x0+T

x0

P(X ∈ x− t− y + ∆T , x− t− x0 < X ≤ x− t + T)V2(dy)

−
∫ x0+T

x0

P(X ∈ x− y + ∆T , x− x0 < X ≤ x + T)V2(dy)

= P11(x) + P12(x)− P13(x).

By (67), we have

P11(x)
V1 ∗V2(x + ∆T)

≥ −ε

V1 ∗V2(x + ∆T)

∫ x0

0−
V1(x− y + ∆T)V2(dy) ≥ −ε. (72)
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Using the proof method of (70), we can get that

P12(x) =
∫ x0+T

x0

P(x− t− x0 < X ≤ x− t− y + T)V2(dy)

≤ V1(x− t− x0 + ∆T)V2(x0 + ∆T) (73)

= o
(
V1 ∗V2(x + ∆T)

)
, as x0 → ∞.

Similarly, we have

P13(x) =
∫ x0+T

x0

P(x− x0 < X ≤ x− y + T)V2(dy)

≤ V1(x− x0 + ∆T)V2(x0 + ∆T) (74)

= o
(
V1 ∗V2(x + ∆T)

)
, as x0 → ∞.

Combining with (69)–(74), we know that (66) holds.

Theorem 6. Suppose that V ∈ OL∆T for some 0 < T < ∞. If conditions (57) and (59) are
satisfied for V1 = V2 = V, then for all k ≥ 2, V∗k ∈ OL∆T ,

C∗∆T
(V∗k, t) ≤ C∗∆T

(V, t) for each t ≥ 0. (75)

and

lim inf V∗k(x− t + ∆T)
/

V∗k(x + ∆T) ≥ 1 for each t ≥ 0. (76)

Proof. We use mathematical induction to prove the result.
Clearly, (75) and (76) hold for k = 1. Assume that V∗k ∈ OL∆T , (75) and (76) hold

for some k ≥ 2. Set V1 = V∗k and V2 = V in Theorem 6. By (59) and (75), we have
V∗(k+1) = V1 ∗V2 ∈ OL∆T and (76) holds for k + 1. Thus, (75) holds for k + 1, too.

In particular, we take V = Fγ and T = T0 in (76), then we obtain (10) in Theorem 3 of
this paper.

5. Conclusions and Future Work

In this paper, we prove that the class Lloc ∩OS loc, in addition to T L∆T0
(γ) ∩OS∆T0

for some 0 < γ, T0 < ∞ are not closed under the I.I.D. root. However, by adding certain
conditions, the two classes become closed under the I.I.D. root. At the same time, we also
provide the corresponding results under the random convolution roots.

In this section, we briefly introduce the theoretical significance and application value
of the above results reported herein, in addition to some unresolved problems.

5.1. Theoretical Significance and Application Value

In complex practice, F is often in a “black box”, that is, it is unknown or partially
unknown. For example, in Theorem 2, we only know that F has property (8) or (9), but
we do not know whether it has property F∗k ∈ Lloc ∩OS loc for some k ≥ 1. Furthermore,
the properties of H, as the external expression of F, can be estimated by some statistical
methods. Therefore, it is of great theoretical significance and application value to use
known H to estimate unknown F. This presents the research purpose of this paper.

In the following, we provide some specific examples to illustrate applications of the
research findings herein.

Firstly, it is well known that the distribution of components of the Lévy process is I.I.D.
Therefore, research on I.I.D. H is beneficial to the Lévy process.

Secondly, in the Cramér–Lundeberg risk model, the distributions F, H2 and H1 sat-
isfying the conditions (2) and (3) can be regarded as the distributions of the claim, the



Mathematics 2022, 10, 4128 21 of 24

total claim amount and the perturbation to the total claim amount, respectively, see Sub-
Section 1.3.3 of Embrechts et al. [34]. If the disturbed distribution of total claim amount
H = H1 ∗ H2 is an I.I.D. and H ∈ Lloc ∩ OS loc, then according to Theorem 2, we have
H2 ∈ Lloc ∩OS loc and H2(x + ∆T) ∼ H(x + ∆T) for each 0 < T ≤ ∞ under condition (8)
or (9). Interestingly, F does not have to belong to class Lloc ∩OS loc, but F∗k belongs to that
class for all k ≥ 2, see Theorems 1 and 2 mentioned in this paper.

There are many similar examples, such as H2 which is the distribution of propor-
tional reinsurance or the claim in Poisson model, see Example 5.2 (i) of Klüppelberg and
Mikosch [35] and the main theorems of Veraverbeke [36].

Therefore, the results of this paper undoubtedly play an important role in risk theory
and other fields.

Finally, the results of this paper can offer a more complete and profound answer to the
famous Embrechts–Goldie conjecture, see Section 5.2 below for details.

5.2. On the Embrechts–Goldie Conjecture

Let X be a distribution class, and let V be a distribution. If V∗2 ∈ X implies V ∈
X , then we say that the class X is closed under convolution roots. Clearly, the closure
under I.D.D roots is the natural extension of the closure under convolution roots for some
distribution class.

Theorem 2 of Embrechts et al. [2] shows that the class S is closed under convolution
roots. The same conclusion also holds for the class S(γ) for some γ > 0 if the distribution
V ∈ L(γ), see Theorem 2.10 of Embrechts and Goldie [24]. Therefore, Embrechts and
Goldie [15,24] put forward a famous conjecture:

If V∗k ∈ L(γ) for some (even for all) k ≥ 2 and γ ≥ 0, then V ∈ L(γ).

Many positive or negative conclusions related to the conjecture are then proposed. Some
positive results can be found in Theorem 1.2 of Watanabe [11] for the class S(γ) for some
γ > 0, Theorem 6 of Xu et al. [31] for the classes L(γ) and L(γ) ∩OS . Of course, these
outcomes are valid under certain restrictive conditions.

The following references provide us with the negative results.
Theorem 1.1 of Watanabe [11] shows that the class S(γ) for some γ > 0 is not closed

under the convolution roots in general.
Earlier, Shimura and Watanabe [37] showed that there is a distribution V such that

V∗2 ∈ L(γ) \ OS for some γ ≥ 0, while V ∈ OL \
(
∪γ≥0 L(γ) ∪ OS

)
and V(x) =

o
(
V∗2(x)

)
.

Further, Theorem 1.1 of Xu et al. [31] points out that there is a distribution V ∈
OL \

(
∪γ≥0 L(γ) ∪OS

)
and V(x) 6= o

(
V∗2(x)

)
such that V∗2 ∈

(
L(γ) ∩OS

)
\ S(γ) for

each γ > 0.
For γ = 0, Theorem 2.2 (1) of Xu et al. [30] shows that there is a distribution V such

that V ∈ OL \
(
L ∪ OS

)
and V(x) 6= o

(
V∗2(x)

)
, while V∗k ∈

(
L(γ) ∩ OS

)
\ S for all

k ≥ 2. Then, Proposition 2.2 of Xu et al. [30] points out that there are two distributions V1
and V2 such that V1, V2 /∈ OL, while V∗k1 ∈

(
L ∩OS

)
\ S and V∗k2 ∈ L \ OS for all k ≥ 2.

This result reveals a surprising phenomenon that, although the properties of a dis-
tribution V are very poor, its convolution, and even its random convolution and the
corresponding I.I.D., bear good properties.

Therefore, the Embrechts–Goldie conjecture has been denied for the class L(γ) and
its subclasses S(γ) \ S , (L(γ) ∩ OS) \ S(γ) and L(γ) \ OS for each γ ≥ 0, where the
corresponding distribution V ∈ OL \

(
∪γ≥0 L(γ) ∪OS

)
, and even V /∈ OL.

In this subsection, we mainly focus on the local closure under the convolution root.
For negative conclusions, Corollary 1.1 of Watanabe [11] shows that the classes Sloc,

Lloc, S∆T and L∆T for some 0 < T < ∞ are not closed under convolution roots. Further,
Theorem 1 of the paper and its proof show that the class Lloc ∩OS loc is not closed either.
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In addition, Theorem 1.1 and Corollary 1.1 of Watanabe and Yamamuro [38] and
Theorem 1.1 and Corollary of Watanabe [39] obtain some results corresponding to Corol-
lary 1.1 of Watanabe [11] for the subexponential density classes and the subexponential
lattice distribution classes, respectively. Clearly, the lattice distribution is a special local
distribution, and the density is closely related to its local distribution.

As positive conclusions, Theorem 2.1 of Watanabe [39] shows that the subexponential
lattice distribution classes are closed under convolution roots with a condition. However,
other positive conclusions about the local closure in non-lattice cases are rare.

In this paper, according to Theorem 6 of Xu et al. [31], Proposition 1 and Lemma 1
of the paper, using the Esscher transform, we give a corresponding positive result for the
class Lloc ∩OS loc and omit the proof details.

Theorem 7. Let V be a distribution, and let γ and T be two positive and finite constants.
(i) Assume that V ∈ OS loc and

lim inf V−γ(x− t)
/

V−γ(x) ≥ eγt for each t > 0 (77)

or

V−γ(x) = o
(
V∗2−γ(x)

)
. (78)

If V∗2 ∈ Lloc, then V ∈ Lloc.
(ii) Assume that V ∈ Lloc with the mean µV < ∞, the condition (77) is satisfied and

C∗(V∗2−γ) < 6M(V∗2−γ, γ). (79)

If V∗2 ∈ Lloc ∩OS loc, then V ∈ Lloc ∩OS loc.

Using the Esscher transform, by (15), we can replace the condition (78) with a more
immediate condition.

Proposition 2. If V∗2 ∈ Lloc, then (78) is implied by the following condition:

V(x + ∆T) = o
(
V∗2(x + ∆T)

)
.

5.3. Some Unresolved Problems

Clearly, for other local distribution classes, such as the class Lloc \ OS loc and the class
T L∆T0

(γ) \ OS∆T0
for some 0 < γ, T0 < ∞, the following corresponding questions arise:

Are they closed under the I.I.D. root? If not, under what conditions are they closed
under the I.I.D. root?

Perhaps we can first solve the corresponding problem of the global distribution class
L(γ) \ OS with some γ > 0. In addition, the existing results, apart from Proposition 2.1 of
Xu et al. [30], often assume that F ∈ OL. Then, if F /∈ OL, what will we get?

Further, if F does not belong to the class Lloc ∩ OS loc, Lloc \ OS loc or T L∆T0
(γ) \

OS∆T0
for some 0 < γ, T0 < ∞, what kind of F can make F∗k for all k ≥ l0 and some l0 ≥ 2,

H2 and H belong to the same class? Even if F /∈ OLloc, what will we get?
In our opinion, these questions are both interesting and difficult to solve. The theory

will become more complete following the provision of solutions to these questions.
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