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Abstract: This paper addresses an integrated scheduling problem of batch manufacturing and
delivery processes with a single batch machine and direct-shipping trucks. In the manufacturing
process, some jobs in the same family are simultaneously processed as a production batch in a single
machine. The batch production time depends only on the family type assigned to the production
batch and it is dynamically adjusted by batch deterioration and rate-modifying activities. Each job
after the batch manufacturing is reassigned to delivery batches. In the delivery process, each delivery
batch is directly shipped to the corresponding customer. The delivery time of delivery batches is
determined by the distance between the manufacturing site and customer location. The total volume
of jobs in each production or delivery batch must not exceed the machine or truck capacity. The
objective function is to minimize the total tardiness of jobs delivered to customers with different due
dates. To solve the problem, a mixed-integer linear programming model to find the optimal solution
for small problem instances is formulated and meta-heuristic algorithms to find effective solutions
for large problem instances are presented. Sensitivity analyses are conducted to find the effect of
problem parameters on the manufacturing and delivery time.

Keywords: scheduling; supply chain management; meta-heuristic algorithms; mixed-integer linear
programming; batch production; batch delivery
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1. Introduction

Recently, many studies have been conducted on individual manufacturing and deliv-
ery problems, both of which are an important part of supply chain management (SCM).
The methodologies for an integrated scheduling problem (ISP) generally provide better
performance to improve the efficiency of the entire supply chain than individual manu-
facturing and delivery problems [1]. The study on ISPs is difficult even if ISPs provide
better performance because of the complexity of the supply chain and the conflict of stake-
holders in the supply chain. Nevertheless, ISPs are required for many sectors of industry
such as ceramics, food, port cargo handling, and freight logistics [2]. In this study, we
confine our study to ISPs regarding the manufacturing and delivery process. We apply the
batch loading and scheduling problem (BLSP) in the manufacturing process [3] and the
direct-shipping problem in the delivery process [1,4].

In the manufacturing process, jobs can be processed simultaneously on a batch pro-
cessing machine, and a set of jobs that are processed simultaneously is called a production
batch. The volumes of jobs are different. The total volume in a production batch must
not exceed the machine capacity. Jobs with different families must not be assigned to the
same production batch. The batch production time depends only on the family type as-
signed to the production batch. Furthermore, we consider deterioration and rate-modifying
activities. In collaborative works between operators and machines, such as machining,
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assembling, and maintenance, the batch production time can increase due to operator
fatigue or machine failure, where the increased portion of this batch production time is
called deterioration. The recovery process from the deteriorated state to the original state is
called rate-modifying activity (RMA) [5]. In this study, the batch production time increases
in proportion to the interval between the recent RMA and the start time of the batch because
we assume that the deterioration effect occurs linearly.

In the delivery process, each job after batch manufacturing is reassigned to delivery
batches. The delivery batches are directly shipped by fixed numbers of homogeneous
trucks. In this study, we consider that the delivery batch is independent of the production
batch. The total volume in a delivery batch must not exceed the truck capacity. Jobs from
different customers must not be assigned to the same delivery batch. The truck can deliver
only one delivery batch at a time. The truck leaving the factory returns immediately after
shipping the delivery batch to the customer. The delivery time including return time
depends only on the customer of that particular delivery batch. The objective function is
minimizing the total tardiness of jobs delivered to customers with different due dates.

Figure 1 describes a Gantt chart example for the presented ISP. The number of jobs,
families, and customers are 5, 2, and 2, respectively. Jobs 1 and 2 belong to Family 1 and
Jobs 3, 4, and 5 belong to Family 2. Jobs 1, 3, and 5 are requested from Customer 1, and
Jobs 2 and 4 are requested from Customer 2. The production time for the family and the
delivery time for the customer are (50, 100) and (229, 161), respectively. The due date and
volume of jobs are (264, 235, 401, 477, 459) and (5, 10, 7, 14, 10), respectively. The machine
capacity, truck capacity, deterioration rate, and RMA processing time are 20, 20, 0.3, and 20,
respectively. The jobs are assigned to production batches (BM) while keeping the constraints
on the family compatibility and machine capacity. The production batches are sequenced
with RMAs inserted between them. The production time of Batch 2 increases in proportion
to the interval between the start time of Batches 2 and 1 due to deterioration. The original
production time of Batch 2 is 100. The interval between the start time of Batches 2 and 1 is
50. The deterioration rate is 20. Thus, the production time of Batch 2 is 115 (=100 + 50× 0.3).
Assuming the RMA was performed before Batch 3 is processed, the deterioration for Batch
3 is restored and the batch production time is not increased. The manufacturing completion
time of jobs is (50, 50, 165, 285, 165). Jobs that have been processed are assigned to delivery
batches (BD) while keeping the constraints on the customer compatibility and the truck
capacity. Truck 1 transports Batch 2 at time 279, but the manufacturing completion time of
Job 4 is 285. Therefore, the waiting time is 6 (= 285 – 279) between Batches 2 and 3 in Truck
1. The completion time of jobs in the batches for the corresponding customer is (279, 211,
440, 446, 440). By comparing the due dates of each job, the total tardiness of each job is 54
(=15 + 0 + 39 + 0 + 0).
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2. Literature Review

In this section, we survey studies on ISPs, including batch processing. For ISPs
including deterioration or RMA, we focus on their scheme.

For ISPs with a direct-shipping method, Liu [6] dealt with a two-stage delivery prob-
lem. The first stage of delivery is to deliver jobs from the warehouse to the batching
machine by crane. The second stage of delivery is to deliver the processed jobs to the
customer by only one vehicle. He proposed genetic algorithms to minimize the sum of
makespan and the total setup cost. Jia et al. [2] studied a problem with parallel batch
processing machines with different capacities. They proposed several heuristic algorithms
for minimizing the total weighted delivery time of jobs. Selvarajah and Steiner [7] assumed
that only items with the same customer and product belong to one batch. They presented
a polynomial algorithm for minimizing the sum of total inventory holding cost and the
batch delivery cost. Gao et al. [8] studied a problem with limited vehicle capacity. The
jobs are batched without breaking the vehicle capacity constraints before being processed.
They presented polynomial-time algorithms for two special cases with the same production
time and delivery time of order, respectively. Furthermore, they provided a heuristic to
solve a general problem. Cheng et al. [9], Cheng et al. [10], and Jia et al. [11] assumed
that the vehicle capacity is an integer multiple of the machine capacity. Cheng et al. [9]
and Cheng et al. [10] assumed that the batches are packaged in the same size of boxes or
pallets and propose each O(nlogn) time algorithm for identical and arbitrary job sizes. Jia
et al. [11] dealt with a problem with parallel batch machines. They present two hybrid
meta-heuristic algorithms based on ant colony optimization and a deterministic heuristic
for minimizing total weighted delivery time. In addition, they proposed a lower bound
for evaluating the presented algorithms. Li et al. [12] studied a problem with unbounded
parallel-batch and job families. They defined the family as the customer who requested
the job. They assumed that jobs with the same family have identical sizes in a vehicle, and
jobs with different families are not delivered together. They showed that the problem is
NP-hard and proposed a heuristic algorithm for minimizing completion time. Li et al. [13]
studied a problem with both machine and vehicle capacity. Jobs have different sizes and
the total volume of jobs in each batch does not exceed the machine capacity. Likewise,
the total volume of jobs in the delivery batch does not exceed the vehicle capacity. They
proposed a polynomial algorithm for identical job sizes and heuristics for different job
sizes to maximize the total profit. Zhang et al. [14] dealt with a problem including the
order-picking process. The orders are batched without breaking the capacity constraint of
picking devices. They proposed an on-line algorithm for minimizing the makespan and
total delivery cost. Nogueira et al. [15] and Feng and Xu [16] studied ISPs with parallel
batching machines. Nogueira [15] assumed that job size and production time are generic.
They presented a mathematical formulation model and several heuristic algorithms to
maximize the total profits. Feng and Xu [16] developed a 0–1 mixed-integer programming
(MIP) model. Jia et al. [17] further considered parallel non-identical batch machines. He
et al. [18] proposed an enhanced branch-and-price algorithm for integrated 3D printing
with JIT delivery systems. Li et al. [19] developed a MIP formulation and proposed a
column generation-based approach for an ISP with dual delivery modes.

For ISPs with vehicle routing problems (VRP), Karaoğlan and Kesen [20] dealt with
the problem of distributing products with a limited shelf life to customers in a vehicle. They
proposed a branch-and-cut (B&C) algorithm to minimize lead time. Low et al. [21] and Low
et al. [22] studied the problem of delivering the product to the customer after processing it
in the distribution center. They provided adaptive genetic algorithms (AGAs) to minimize
total cost, including delivery cost, vehicle cost, and penalty cost. Li [23] considered the
bi-objective problem minimizing both customer waiting time and vehicle delivery cost.

For ISPs with deterioration or RMA, Kong et al. [24] considered the integrated problem
of CCHR and delivery scheduling in steel production. They assumed that the rolling time
is linearly proportional to the starting time of slabs. Liu et al. [25] dealt with the integrated
problem with parallel batching machines and deteriorating jobs. The production time of a
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job increases non-linearly concerning the starting time, and the production time of a batch
is assumed to be the maximum value of jobs belonging to that batch. Yin et al. [26] studied
batch delivery scheduling on a single machine with RMA. They assumed that processing a
job after RMA would reduce the original production time by modifying rate times.

Table 1 shows the classification for studies on ISPs with batch processing. The studies
are categorized according to compatibility in a production batch, vehicle number, deterio-
ration, RMA, and shipping method.

Table 1. Classification for Studies on ISP with batch processing.

Compatibility in Production Batches
Vehicles
Number

Deterioration RMA
Shipping Method

Incompatible
Product

Incompatible
Family

Incompatible
Customer

Direct-
Shipping VRP

Liu [6] 1 X
Jia et al. [2] Limited X
Selvarajah and Steiner [7] X X 1 X
Gao et al. [8] 1 X
Cheng et al. [9] 1 X
Cheng et al. [10] 1 X
Jia et al. [11] Limited X
Li et al. [12] X 1 X
Li et al. [13] Limited X
Zhang et al. [14] 1 X
Nogueira et al. [15] Limited X
Feng and Xu [16] Unlimited X
Jia et al. [17] Limited X
He et al. [18] X Limited X
Li et al. [19] X Limited X
Karaoğlan and Kesen [20] 1 X
Low et al. [21] Unlimited X
Low et al. [22] Limited X
Li et al. [23] Limited X
Kong et al. [24] Unlimited X X
Liu et al. [25] 1 X X
Yin et al. [26] Unlimited X X
This study X Limited X X X

To the best of our knowledge, an ISP simultaneously considering the family compati-
bility, batch deterioration with multiple RMAs, and direct-shipping method has received
very limited attention; however, several ISP scheduling problems with batch manufacturing
and delivery processes are often dealt with (See Table 1).

3. Mixed-Integer Linear Programming Model

In this section, the proposed mixed-integer linear programming (MILP) model is
formulated; the notation of the formulation that follows is shown below:

Indices
i, j jobs
f families

k, l production batches
m, n delivery batches

u buckets
t trucks
c customers

Parameters
J set of jobs
F set of families

BM set of production batches
U set of buckets
BD set of delivery batches
T set of trucks
C set of customers
p f production time of family f ∈ F
F J

j
family of job j ∈ J

FB
k family of production batches k ∈ BM

hc delivery time for customer c ∈ C
RC

jc 1 if job j ∈ J is required by customer c ∈ C; 0 otherwise
vj volume of job j ∈ J
dj due time of job j ∈ J
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DR deterioration rate
VM machine capacity
Q RMA processing time

VT truck capacity
M a large number

Continuous variables
xk production starting time of production batch k

Ik
time interval between starting time of production batch k and completion time of the most
recent RMA before production batch k

cu completion time of bucket u
rm shipping starting time of delivery batch m
τj tardiness of job j

Binary variables
yBM

ik
1 if production batch k assigns job i; 0 otherwise

yU
ku 1 if bucket u assigns production batch k; 0 otherwise

zU
klu 1 if production batch k immediately precedes production batch l at bucket u; 0 otherwise

yBD
im

1 if delivery batch m assigns job i; 0 otherwise
yT

mt 1 if truck t assigns delivery batch m; 0 otherwise
yC

mc 1 if customer c assigns delivery batch m; 0 otherwise
zT

mnt 1 if delivery batch m immediately precedes delivery batch n in truck t; 0 otherwise

The MILP formulation using the above notation is as follows:

Minimize z = ∑
i∈J

τi (1)

Subject to

∑
k∈BM

FB
k =FJ

i

yBM

ik = 1
∀i ∈ J (2)

∑
i∈J

vi ·yBM

ik ≤ VM ∀k ∈ BM (3)

∑
i∈J

yBM

ik ≤ M· ∑
u∈U

yU
ku ∀k ∈ BM (4)

∑
u∈U

yU
ku ≤ 1 ∀k ∈ BM (5)

∑
l∈BM

zU
lku = yU

ku ∀k ∈ BM ; u ∈ U (6)

∑
l∈BM
l 6=k

zU
klu ≤ yU

ku ∀k ∈ BM ; u ∈ U (7)

∑
k∈BM

zU
kku ≤ 1 ∀u ∈ U (8)

Ik ·(1 + DR) + pFB
k
≤ Il + M·

(
1− ∑

u∈U
zU

klu

)
∀k, l ∈ BM ; k 6= l (9)
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Ik ·(1 + DR) + pFB
k
≤ cu + M·

(
1− yU

ku

)
∀k ∈ BM ; u ∈ U (10)

Ik + ∑
v∈U
v<u

cv + Q· ∑
w∈U
w<u

∑
l∈BM

zU
llw

≤ xk + M·
(
1− yU

ku
) ∀k ∈ BM ; u ∈ U (11)

∑
m∈BD

yBD
im = 1 ∀i ∈ J (12)

∑
i∈J

vi ·yBD
im ≤ VT ∀m ∈ BD (13)

yBD
im + yBD

jm ≤ 1 + ∑
c∈C

RC
ic·RC

jc ∀m ∈ BD ; i, j ∈ J; i < j (14)

rm ≥ xk + Ik ·DR + pFB
k
−M·

(
2− yBD

im − yBM

ik

)
∀i ∈ J; m ∈ BD ; k ∈ BM (15)

∑
c∈C

yC
mc ≤ 1 ∀m ∈ BD (16)

yC
mc ≥ RC

ic·yBD
im ∀i ∈ J; m ∈ BD ; c ∈ C (17)

rm + ∑
c∈C

hc·yC
mc ≤ rn + M·

(
1− ∑

t∈T
zT

mnt

)
∀m, n ∈ BD ; m 6= n (18)

∑
t∈T

yT
mt = 1 ∀m ∈ BD (19)

∑
n∈BD

zT
nmt = yT

mt ∀m ∈ BD ; t ∈ T (20)

∑
n∈BD
n 6=m

zT
mnt ≤ yT

mt ∀m ∈ BD ; t ∈ T (21)

∑
m∈BD

zT
mmt ≤ 1 ∀t ∈ T (22)
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rm + ∑
c∈C

hc·yC
mc − di ≤ τi + M·

(
1− yBD

im

)
∀i ∈ J; m ∈ BD (23)

xk , Ik , cu, rm, τi ≥ 0 ∀k ∈ BM ; u ∈ U; m ∈ BD ; t ∈ T; c ∈ C (24)

yBM

ik , yU
ku, yBD

im , yT
mt, yC

mc = 0 or 1 ∀i ∈ J; k ∈ BM ; u ∈ U; m ∈ BD ; t ∈ T; c ∈ C (25)

zU
klu, zT

mnt = 0 or 1 ∀k, l ∈ BM ; u ∈ U; m, n ∈ BD ; t ∈ T (26)

Constraint (2) denotes a restriction wherein each job must be assigned to one of the
production batches. Constraint (3) confirms that the total volumes of jobs in each production
batch must not exceed machine capacity. Constraints (4) and (5) guarantee that non-empty
production batches are assigned to one bucket. The bucket is defined as a set of batches
processed between RMAs [27]. Constraints (6–8) ensure that production batches assigned to
the same bucket are processed once in a specific sequence. zU

kku = 1 means that production
batch k is in the first position in each bucket.

Constraint (9) determines the precedence relation of production batches within the
same bucket and calculates the interval between their starting time and the completion time
of the recent RMA. Constraint (10) calculates the completion time of buckets. Constraint (11)
calculates the starting time of production batches. Constraint (12) guarantees that each
job is assigned to one delivery batch. Constraint (13) confirms that the total volumes
of jobs in each delivery batch must not exceed truck capacity. Constraint (14) ensures
that jobs in the same delivery batch are shipped to the same customer. Constraint (15)
guarantees that the shipping starting time of delivery batches is larger than the completion
time for all jobs in that delivery batch. The completion time of each job is defined as
the completion time of production batches to which that job is assigned. Constraint (16)
denotes a restriction wherein each delivery batch is shipped to at most one customer.
Constraint (17) enforces a customer–delivery batch relationship through job–customer and
job–delivery batch relationships. Constraint (18) determines the precedence relation of
delivery batches within a truck and calculates the shipping starting time of each delivery
batch. Constraint (19) denotes a restriction wherein delivery batch must be assigned to one
truck. Constraints (20)–(22) guarantee that delivery batches assigned to the same truck are
shipped once in a specific sequence. zT

mmt = 1 means that delivery batch m is in the first
position in each truck. Constraint (23) calculates the tardiness of jobs.

4. Meta-Heuristic Algorithms

An ISP is generally an NP-hard problem, and since the proposed problem is an ISP
with batch processing, it is NP-hard. Therefore, other efficient algorithms that can solve
large problem instances quickly are required instead of the proposed MILP model. In
many scheduling problem papers, the problem is effectively and efficiently solved through
meta-heuristic algorithms [28–30]. Due to this reason, three meta-heuristic algorithms,
namely particle swarm optimization (PSO), the imperialist competitive algorithm (ICA),
and the genetic algorithm (GA), are presented. The three meta-heuristic algorithms have
the same decoding process.
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4.1. Solution Representation and Decoding Method

The solution is divided into two parts: manufacturing and delivery. Thus, there are
two one-dimensional arrays; one represents batching and scheduling for the manufacturing
process, and the other represents truck assignment and scheduling for the delivery process.
Figures 2 and 3 show an illustrative example of the decoding process for an encoded
manufacturing and delivery solution using the meta-heuristic algorithms proposed in
Sections 4.2–4.4. In all the presented meta-heuristic algorithms, the two one-dimensional
encoded arrays are formed independently.
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In Figure 2, Figure 2a is converted to Figure 2b by the random-key method [31]. The
main idea of random keys is that real numbers in the range [0, 1] represent the sequence of
integers. In Figure 2a, the smallest number, 0.07, is in the 10th position. So, the first number
in Figure 2b is 10. In Figure 2a, the smallest number after 0.07, 0.15, exists in the first
position. So, the second number in Figure 2b is 1. In the same way, Figure 2a is converted to
Figure 2b. Each element in Figure 2b represents a job or RMA. Suppose that the number of
jobs is n. Then, the maximum number of RMAs is n− 1, assigned to the position between
the jobs. Thus, 2n− 1 elements are required for Figure 2c. Since the number of jobs is 8
in Figure 2b, the number of elements becomes 15 (= 8 + 7). Odd numbers are converted
to (original number + 1)/2, indicating the job index. All even numbers are converted to
RMAs. Figure 2c contains information about the job index and RMA, which is converted
into the manufacturing solution in several steps. Suppose that Jobs 1, 2, 3, and 4 belong
to Family 1, and Jobs 5, 6, 7, and 8 belong to Family 2. The volume of jobs is (10, 9, 3, 7, 8,
6, 15, 11). The machine capacity is 20. The orders of jobs in Families 1 and 2 are (1,3,2,4)
and (7,6,5,8) from Figure 2c, respectively. For each family, jobs belonging to the family are
assigned to batches in the corresponding order of Figure 2c and satisfy the machine capacity
constraint. According to Figure 2d, Figure 2c is converted to Figure 2e. The position of
batches in Figure 2e is the same as the position of each job index located at the front of
Figure 2c among jobs belonging to the batch. Finally, the first and last RMAs are removed
and consecutive RMAs are considered as one.
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In Figure 3, Figure 3a is converted to a job array using the random-key method. Each
element in Figure 3b represents a job. Since the number of jobs is eight, the number
of elements in Figure 3b is eight. Jobs are assigned to delivery batches in the order of
Figure 3b while simultaneously satisfying the truck capacity constraint and the customer
compatibility constraint. If jobs requested from different customers between two jobs
requested from the same customer exist in the job array, they must not be assigned to the
same delivery batch. Suppose that Jobs 1, 3, 5, and 7 are requested from Customer 1, and
Jobs 2, 4, 6, and 8 are requested from Customer 2. The volume of each job is (8, 7, 5, 13,
6, 6, 9, 10). The truck capacity is 20. The manufacturing completion time of each job is
(200, 350, 300, 65, 220, 70, 55, 160). The delivery time for the customer is (100, 150). The
orders of jobs for Customers 1 and 2 are (7,1,5,3) and (6,4,8,2) from Figure 3b, respectively.
Jobs 7 and 1 must not be assigned to the same batch. Although the total volume of Jobs 7
and 1 does not exceed the truck capacity, there are Jobs 6 and 4 between them. According
to Figure 3c, Figure 3b is converted to Figure 3d. The manufacturing completion time of
delivery batches is equal to the maximum value of manufacturing completion times in each
job assigned in the delivery batch. Thus, the manufacturing completion time of delivery
batches is (55, 70, 200, 160, 300, 350). Batches are assigned to a truck with the smallest
value of differences between the manufacturing completion time of delivery batches and
the available time of trucks according to their order in Figure 3d. If multiple trucks are
assigned to a batch, the delivery batch is arbitrarily assigned to one of these trucks.

An encoded solution of three meta-heuristic algorithms is introduced using the
decoding process presented in Figures 2 and 3. PSO, ICA, and GA are presented in
Sections 4.2–4.4.

4.2. Particle Swarm Optimization (PSO)

The position and velocity consist of two one-dimensional arrays representing the man-
ufacturing and delivery process, respectively. The position and velocity are independently
initialized by the uniform distribution of real numbers between 0 and 1 (U(0, 1)). After that,
the best solution for specific particles (Pi) and the global best solution (Pg) are updated. The
velocity (vi) and position (Xi) of each particle are updated using Equations (27) and (28)
based on Pi and Pg, respectively.

vi ← vi + c1·U(0, 1)·(Pi − Xi) + c2·U(0, 1)·
(

Pg − Xi
)
, (27)

Xi
t ← Xi

t−1 + vi
t. (28)

The PSO procedure is shown in Algorithm 1.

Algorithm 1: The PSO procedure

1 Input iteration (Iter), population size (Sp), and acceleration weight (c1) and (c2).
2 Randomly generate initial positions and velocities through U(0, 1).
3 While (g ≤ Iter)
4 g← g + 1
5 For (i = 1 to Sp)
6 If (Xi < Pi)
7 Pi ← Xi
8 End if
9 If (Xi < Pg)
10 Pg ← Xi
11 End if
12 End for
13 For (i = 1 to Sp)
14 vi ← vi + c1·U(0, 1)·(Pi − Xi) + c2·U(0, 1)·

(
Pg − Xi

)
15 Xi ← Xi + vi
16 End for
17 End while
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4.3. Imperialist Competitive Algorithm (ICA)

The countries consist of two one-dimensional arrays representing the manufacturing
and delivery process, respectively. The countries are independently initialized following the
distribution U(0, 1). Afterward, Nimp powerful countries become imperialist. Any country
that is not imperialist becomes a colony. Colonies are assigned to imperialist countries, and
many colonies are assigned to powerful imperialist countries. To measure the power of
imperialist countries, the normalized objective function value of nth imperialist country is
calculated as follows:

fn = zmax − zn, (29)

where zn and zmax are objective function values for nth imperialist country and maximum
objective function values for all the imperialist countries, respectively. The power of nth
imperialist country is defined as follows:

pn =
fn

∑
Nimp
k=1 fk

(30)

The initial number of colonies of the nth imperialist country (NCn) is calculated as
follows:

NCn = round(pn·Ncol) (31)

Colonies (Xc) move toward the direction of their imperialist
(
Xc

I
)
. The degree of

approach is determined by β and a random number from the distribution U(0, 1).

Xc ← U(0, 1)·β·(Xc
I − Xc) (32)

Each element of countries probabilistically reset the value to U(0, 1). This probability is
called the revolution rate and is set in parameter calibration. After performing the moving
and revolution process, the imperialist countries of each empire are updated. Among all
the countries including the existing imperialist countries, the country with the smallest
objective function value becomes the new imperialist country. Afterward, the weakest
colony in the weakest empire is taken away by other empires. This is called imperialistic
competition. The total power of an empire is a measure of imperialistic competition. It
is determined by the imperialist and colony power of each empire. The total objective
function value of the nth empire (T fn) is calculated as follows:

T fn = zn + ξ·mean(zc), (33)

where ξ is the weight for the colony power and zc is the objective function value for colonies
belonging to empire n. Based on the T fn, the normalized total objective function value of
the nth empire (NT fn) is calculated as follows:

NT fn = T fn −max(T fn), (34)

where max(T fn) is the maximum total objective function value for all empires. The posses-
sion probability (pempn) is calculated as follows:

pempn =

∣∣∣∣∣∣ NT fn

∑
Nimp
k=1 NT fk

∣∣∣∣∣∣ (35)

The ICA procedure is shown in Algorithm 2.
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Algorithm 2: The ICA procedure

1
Input iteration (Iter), population size (Sp), the number of imperialist countries (Nimp), revolution rate (pr),
assimilation constant (β), and coefficient of colonies’ power (ξ).
ith country and nth imperialist country denoted by Xi and X I

n, respectively.

2 Generate initial countries and determine the imperialist countries and colonies.
3 While (g ≤ Iter)
4 g← g + 1
5 For (i = 1 to Sp)
6 Move to the colony toward its imperialist.
7 If (U(0, 1) < pr)
8 Conduct revolution.
9 End if
10 If f

(
Xi) ≤ f

(
X I

n
)

11 X I
n ← Xi

12 End if
13 End for
14 Calculate the total cost of empires.
15 Conduct imperialistic competition.
16 End while

4.4. Genetic Algorithm (GA)

The chromosomes consist of two one-dimensional arrays representing the manufactur-
ing and delivery process, respectively. The chromosomes are independently initialized by
U(0, 1). The one-cut point crossover and uniform mutation are used as genetic operators.
Crossover and mutation also proceed independent of two chromosomes. The uniform
mutation operator is to replace the numeric value of a gene with a random number that
follows U(0, 1), The roulette wheel selection is used as a selection method. The fitness
function for chromosome i (Fi) used in the roulette wheel method is as follows:

Fi = zmax − zi, (36)

where zi and zmax are objective function values for the ith chromosome and maximum
objective function values for all the chromosomes, respectively. The objective function value
for the ith chromosome is calculated as the aggregate solution of the ith manufacturing and
delivery chromosomes. The GA procedure is shown in Algorithm 3.

Algorithm 3: The GA procedure

1 Input generation size (Sg), population size (Sp), crossover rate (pc), and mutation rate (pm).

2
Randomly generate initial population through U(0, 1).
g← 1

3 While (g ≤ Sg)
4 For (i = 1 to Sp)
5 If (U(0, 1) < pc)
6 Perform the crossover operator for two different randomly selected chromosomes.
7 End if
8 End for
9 For (i = 1 to Sp)
10 For (n = 1 to N)
11 If (U(0, 1) < pm)
12 Perform the mutation operation.
13 End if
14 End for
15 End for
16 Perform the roulette wheel selection.
17 g← g + 1
18 End while

5. Computational Results

Problem instances for evaluating the performance of the proposed meta-heuristic
algorithms are divided into large and small problem instances. In the experiment of small
problem instances, the performances of PSO, ICA, and GA are validated by comparing
them with the performance of the MILP model. The MILP is solved by CPLEX solver 12.7
using IBM ILOG CPLEX Optimization Studio. In the experiment of large problem instances,
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the performance of GA is relatively measured by comparing with performances of PSO
and ICA. All meta-heuristic algorithms are implemented in C# and all computational
experiments are performed by PCs with 3.60 GHz Intel Core i7-7700 CPUs.

5.1. Calibration of the Algorithm Parameters

Calibrating meta-heuristic algorithm parameters can significantly affect the perfor-
mance of algorithms. The Taguchi method was used to find the best parameter combina-
tions for PSO, ICA, and GA. The algorithm parameters are set at five levels. Tables 2 and 3
show values for each level and an orthogonal array L25

(
54) of GA parameters, respectively.

Table 2. The value of each level of GA parameters.

Parameters
Levels

1 2 3 4 5

Gs 200 400 600 800 1000
Ps 20 40 60 80 100
pc 0.1 0.3 0.5 0.7 0.9
pm 0.001 0.002 0.003 0.004 0.004

Table 3. Orthogonal arrays for GA parameters.

Run Gs Ps pc pm

1 Gs(1) Ps(1) pc(1) pm(1)
2 Gs(1) Ps(2) pc(2) pm(2)
3 Gs(1) Ps(3) pc(3) pm(3)
4 Gs(1) Ps(4) pc(4) pm(4)
5 Gs(1) Ps(5) pc(5) pm(5)
6 Gs(2) Ps(1) pc(2) pm(3)
7 Gs(2) Ps(2) pc(3) pm(4)
8 Gs(2) Ps(3) pc(4) pm(5)
9 Gs(2) Ps(4) pc(5) pm(1)

10 Gs(2) Ps(5) pc(1) pm(2)
11 Gs(3) Ps(1) pc(3) pm(5)
12 Gs(3) Ps(2) pc(4) pm(1)
13 Gs(3) Ps(3) pc(5) pm(2)
14 Gs(3) Ps(4) pc(1) pm(3)
15 Gs(3) Ps(5) pc(2) pm(4)
16 Gs(4) Ps(1) pc(4) pm(2)
17 Gs(4) Ps(2) pc(5) pm(3)
18 Gs(4) Ps(3) pc(1) pm(4)
19 Gs(4) Ps(4) pc(2) pm(5)
20 Gs(4) Ps(5) pc(3) pm(1)
21 Gs(5) Ps(1) pc(5) pm(4)
22 Gs(5) Ps(2) pc(1) pm(5)
23 Gs(5) Ps(3) pc(2) pm(1)
24 Gs(5) Ps(4) pc(3) pm(2)
25 Gs(5) Ps(5) pc(4) pm(3)

For each run, six problem instances are randomly generated and repeated five times
in each instance. The number of combinations for the algorithm parameters is 25, set by the
Taguchi method. The smaller-the-better approach is used because the objective function
is minimizing the total tardiness. Since various instances are used, the relative deviation
index (RDI) is used instead of the objective function for the S/N ratio. RDI and the S/N
ratio are represented by Equations (37) and (38), respectively.

RDI =
Objsol − Best
Worst− Best

(37)
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S/N ratiok = −10· log

(
6

∑
i=1

5

∑
j=1

RDI2
ijk

)
f or k = 1, 2, . . . , 25 (38)

where Best and Worst are the objective function values from the best and worst of the three
algorithms (PSO, ICA, and GA) for each problem instance, respectively.

Figure 4a shows the mean plots of the S/N ratio for GA parameters. To find out
parameters that significantly affect the difference among the S/N ratios, an analysis of
variance (ANOVA) for the S/N ratio is tested. Table 4 shows the results of ANOVA for the
S/N ratio. A parameter with the smallest sum square (SS) pm is considered an error [32].
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Table 4. ANOVA result for S/N ratio of GA parameters.

Parameters SS df V F0 p-Value

Gs 4.0983 4 1.0246 3.6219 0.1202
Ps 5.1190 4 1.2797 4.5239 0.0865
pc 2.3853 4 0.5963 2.1080 0.2439
pm(error) 1.1315 4 0.2829 - -

Total 12.7342 16 - - -

The significance level is set to 15%, and Gs and Ps with a p-value less than 15% are
judged to be significant. Gs and Ps are set to Gs(5) and Ps(5), respectively. Pc and Pm, which
are parameters for which the difference in the S/N ratio between levels is not significant,
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are selected as the level with the smallest RDI. Figure 4b shows the mean RDI ratio plot
for each GA parameter. Pc and Pm are set to Gs(5) and Ps(3), respectively. Parameter
calibration for PSO and ICA is also executed in the same way as for GA. For PSO, the best
Gs, Ps, c1, and c2 are 1000, 100, 0.1, and 0.8, respectively. For the ICA, the best Gs, Ps, Nimp,
pr, β, and CPW are 1000, 60, 3, 0.05, 2.5, and 0.25, respectively.

5.2. Setting of the Problem Parameters

Two problem instance groups are generated based on the number of |J|, |T|, |C|, and
the expected ratio of tardy jobs (δ) that determine the complexity of problems. The planning
horizons (PH) of small and large problem instances are one day (= 8 h = 480 min) and five
days (= 8×5 h = 2400 min), respectively. The expected lead time of the last job (E[Leadmax])
for each instance should be approximately equal to PH. The expected lead time of the last
job is calculated as:

E[Leadmax] =
|J| × E[v]

VM × E[p]× DC +
|J| × E[v]

VM × RFC×Q + E[h] (39)

where DC and RFC are the deterioration coefficient and RMA frequency coefficient, respec-
tively.

The first term is the expected total batch production time including the deterioration.
The second term is the expected value of total RMA processing time. The third term is the
expected delivery time of the last job. Through preliminary experiments, DC and RFC are
set to 1.25 and 0.4. The generating conditions of each instance are summarized in Table 5.
dj is generated from the discrete distribution of U[(1− 0.75)× µ, (1 + 0.75)× µ], where
µ = (1− δ)× PH. p f is generated from the range given in the table. hc and vj are generated
from the discrete distributions of U [2× pmin, 2× pmax] and U[5, 10], respectively. VM, VT ,
DR, and Q are set to 50, 20, 0.3, and (2× E[p]), respectively. For the small problem instances,
|T|, |C|, and |F| are fixed as 1 and 2. For the large problem instances, |T| and |C| are fixed
as 10, 15, and 20, and |F| is generated from U[5, 10].

Table 5. Problem parameter setting.

Group PH |J| pf hc vj VM VT DR Q
dj

τ = 0.6 τ = 0.3

Small problem
instances

480 5 [65,100] [130,200] [5,10] 20 20 0.3 165
[48,336] NA6 [55,90] [110,180] [5,10] 20 20 0.3 145

Large problem
instances

2400
200 [30,45] [60,90] [5,10] 50 20 0.3 75

[240,1680] [420,2940]250 [25,35] [50,70] [5,10] 50 20 0.3 60
300 [20,30] [40,60] [5,10] 50 20 0.3 50

For example, if |J| = 200,

E[Leadmax] =
200× 7.5

50
× 37.5× 1.25 +

200× 7.5
50

× 0.4× 75 + 75 = 2381.25 ∼= 2400

5.3. Experimental Results in the Small Problem Instances

For small problem instances, to validate the performances of PSO, ICA, and GA, these
are compared to the optimal solution. The performance of meta-heuristic algorithms is
represented by the objective function value (Objsol) and the CPU time. All meta-heuristic
algorithms are tested with 30 replications for each instance. Table 6 shows the performance
of the MILP model, PSO, ICA, and GA for instances with τ = 0.6. If the MILP model is not
able to find the optimal solution within 2 h, CPU time and Opt. are expressed as 7200.00++
and NA, respectively.
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Table 6. Computational results for small problem instances (τ = 0.6).

|J| |T| |C| |F| CPLEX PSO ICA GA

Opt. Time Objsol Time Objsol Time Objsol Time

5 1 1 1 584.00 1.05 584.00 0.26 584.00 0.11 584.00 0.27
2 844.00 2.03 844.00 0.26 844.83 0.11 846.66 0.28

2 1 484.00 0.77 484.00 0.25 484.00 0.11 484.00 0.27
2 980.00 0.34 980.00 0.25 980.00 0.11 980.00 0.28

2 1 1 675.80 4.57 675.80 0.24 675.80 0.11 675.80 0.26
2 949.40 25.03 949.40 0.24 949.40 0.11 949.40 0.26

2 1 365.00 27.30 365.00 0.26 365.00 0.11 365.00 0.28
2 437.00 11.60 437.00 0.25 437.00 0.11 437.00 0.28

6 1 1 1 633.00 4.13 633.00 0.31 639.72 0.14 633.00 0.33
2 770.00 11.83 770.00 0.31 771.47 0.14 770.00 0.33

2 1 629.00 1.62 629.00 0.32 629.43 0.14 629.00 0.34
2 821.00 2.67 821.00 0.30 821.00 0.13 821.00 0.32

2 1 1 NA 7200.00++ 1031.33 0.32 1031.33 0.14 1031.33 0.33
2 671.03 104.65 671.03 0.31 671.03 0.14 671.03 0.34

2 1 NA 7200.00++ 886.98 0.35 887.83 0.14 886.98 0.34
2 NA 7200.00++ 608.70 0.35 618.07 0.15 599.32 0.36

Average 710.64 0.29 711.87 0.13 710.22 0.30

The sample means of Objsols for PSO, ICA, and GA are 710.64, 711.87, and 710.22,
respectively. The sample means of CPU times for PSO, ICA, and GA are 0.29, 0.13, and 0.30,
respectively. PSO, ICA, and GA all found near-optimal solutions.

5.4. Experimental Results in the Large Problem Instances

For large problem instances, the performance of PSO, ICA, and GA is measured by
comparison with each other. The performance of algorithms is represented by the RDI for
large problem instances and the CPU time.

All the algorithms are tested with 30 replications for each instance. Table 7 shows the
performance of GA, ICA, and PSO for instances. At δ = 0.6, the sample means of RDIs
for PSO, ICA, and GA for each instance are 0.91, 0.42, and 0.08, respectively. The sample
means of CPU times for PSO, ICA, and GA for each instance are 95.10, 56.42, and 95.54,
respectively. At δ = 0.3, the sample means of RDIs for PSO, ICA, and GA are 0.93, 0.58, and
0.08, respectively. The sample means of CPU times for PSO, ICA, and GA are 95.62, 56.50,
and 95.70, respectively. The ranking of meta-heuristic algorithms from the best to the worst
performance is GA, ICA, and PSO. PSO and GA with the same population size show similar
CPU time, and ICA with a relatively smaller population size than PSO and GA shows
less CPU time. We execute an additional experiment for ICA with extended CPU time.
However, no significant improvement in the RDI of ICA is shown. Therefore, GA shows
the best RDI among PSO, ICA, and GA under similar CPU time in large problem instances.

For analysis reasons regarding the performance differences for PSO, ICA, and GA, a
convergence test is performed. An instance with |J| = 300, |T| = 20, |C| = 20 is used for
the test and repeated 10 times. Figure 5 shows the convergence graph for PSO, ICA, and
GA. The objective function values of the initial solution are similar for all three algorithms,
but PSO and ICA converge faster to a value with a higher objective function than GA.
Therefore, GA shows better performance in terms of objective function than PSO and ICA.

To verify the significant difference in RDI between algorithms, the Tukey HSD test
was performed. Figure 6 shows the mean plots and Tukey HSD intervals (α = 0.05) for all
instances in Table 7. Figure 6 shows that the confidence intervals between all the algorithms
do not overlap. In the other words, the difference in RDI between PSO, ICA, and GA is
statistically significant.

Figure 7 shows the mean plots and Tukey HSD intervals (α = 0.05) for |J|, |T|, |C|,
and δ groups. For |J|, |T|, |C|, and δ groups, the performance is ranked in the order of
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GA, ICA, and PSO, and the difference in RDI between PSO, ICA, and GA is statistically
significant. In particular, GA provides the best RDI and robustness among all algorithms.

Table 7. Computational results for large problem instances.

|J| |T| |C| τ = 0.6 τ = 0.3

PSO ICA GA PSO ICA GA

RDI Time RDI Time RDI Time RDI Time RDI Time RDI Time

200 10 10 0.90 61.01 0.43 35.95 0.09 61.41 0.90 61.44 0.60 36.22 0.08 61.52
15 0.91 61.32 0.43 36.30 0.06 61.30 0.91 61.78 0.56 36.19 0.07 61.63
20 0.89 61.58 0.44 36.37 0.05 61.88 0.93 61.87 0.60 36.15 0.06 61.87

15 10 0.89 61.66 0.46 36.51 0.12 62.42 0.92 62.08 0.58 36.75 0.07 62.57
15 0.90 62.15 0.41 37.11 0.07 62.59 0.93 62.44 0.61 36.95 0.06 62.66
20 0.87 62.23 0.46 37.01 0.08 62.36 0.91 62.60 0.65 36.97 0.08 63.47

20 10 0.90 62.35 0.45 36.84 0.07 62.79 0.92 62.48 0.58 36.94 0.08 62.55
15 0.93 62.59 0.44 37.01 0.11 63.25 0.93 63.07 0.65 37.06 0.08 62.69
20 0.91 62.91 0.50 37.28 0.10 63.29 0.93 63.05 0.64 37.24 0.11 62.78

250 10 10 0.92 92.04 0.48 54.58 0.09 92.22 0.92 92.22 0.56 54.31 0.09 91.90
15 0.91 92.29 0.46 54.80 0.05 92.04 0.91 92.84 0.59 54.65 0.08 92.39
20 0.93 92.56 0.44 54.71 0.06 92.71 0.94 93.15 0.54 54.82 0.09 92.60

15 10 0.92 92.71 0.38 55.46 0.10 93.34 0.95 93.12 0.59 55.23 0.09 93.55
15 0.89 92.86 0.43 54.99 0.08 93.40 0.92 93.69 0.61 55.57 0.11 93.55
20 0.93 94.02 0.42 55.56 0.10 93.64 0.94 94.12 0.62 55.64 0.10 93.10

20 10 0.88 92.97 0.39 55.52 0.11 93.88 0.91 93.72 0.55 55.59 0.04 93.50
15 0.93 93.95 0.43 56.12 0.11 94.18 0.93 94.67 0.57 56.05 0.09 94.78
20 0.88 94.15 0.42 56.08 0.05 94.42 0.93 94.51 0.58 56.00 0.07 94.28

300 10 10 0.92 128.67 0.42 76.30 0.07 129.12 0.94 129.57 0.54 76.79 0.07 129.18
15 0.90 129.55 0.44 76.98 0.06 129.14 0.89 130.33 0.47 76.68 0.05 130.27
20 0.94 130.14 0.39 77.45 0.10 130.51 0.93 130.49 0.53 76.80 0.07 130.07

15 10 0.91 129.47 0.39 77.02 0.08 129.98 0.94 130.03 0.58 77.43 0.07 130.23
15 0.95 130.62 0.37 78.09 0.10 132.10 0.93 131.17 0.59 77.20 0.08 130.83
20 0.92 130.78 0.38 78.12 0.06 131.46 0.93 131.81 0.55 77.85 0.08 131.70

20 10 0.92 130.49 0.39 77.74 0.08 131.14 0.95 131.34 0.54 78.01 0.07 132.78
15 0.91 131.13 0.35 78.68 0.09 132.44 0.93 131.89 0.57 77.93 0.11 133.99
20 0.92 131.58 0.36 78.08 0.10 132.49 0.94 132.35 0.58 78.51 0.08 133.41

Average 0.91 95.10 0.42 56.42 0.08 95.54 0.93 95.62 0.58 56.50 0.08 95.70
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Figure 6. The mean plots and Tukey HSD intervals (α = 0.05) for PSO, ICA, and GA.
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Figure 7. The mean plots and Tukey HSD intervals (α = 0.05) for |J|, |T|, |C|, and δ groups. (a) |J|
group. (b) |T| group. (c) |C| group. (d) δ group.
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6. Sensitivity Analysis

To reduce total tardiness for the ISP, scheduling problems of the manufacturing and
delivery process are important. It is difficult to find whether manufacturing or delivery
scheduling impacts the proposed total tardiness. To find this impact, the total manufactur-
ing completion time (tM) and the total delivery time (tT) are presented as a performance
measure. tM and tT are defined as follows:

tM =
|J|

∑
j=1

cj (40)

tT =
|J|

∑
j=1

(
Leadj − cj

)
(41)

where cj and Leadj are the manufacturing completion time and lead time of job j, respectively.
Several problem parameters affect the scheduling of ISPs. Each problem parameter

related to the manufacturing and delivery process affects tM and tT , respectively. For
example, obviously, tM decreases when VM increases, or p f decreases and tT decreases
when |T| or VT increases or hc decreases. However, the effects of parameters related to the
manufacturing process on tT and the effects of parameters related to the delivery process
on tM are not obvious. To find these effects, an additional experiment is conducted by only
using GA with the best performance shown.

Graphs (a), (b), and (c) in Figure 8 show the change in tM according to the change in
the parameters |T|, VT , and hc, respectively. In graphs (a), (b), and (c), tM decreases when
|T| or VT increases or hc decreases. Meanwhile, the graphs (d) and (e) in Figure 8 show the
change in tT according to the change in the parameters p f and VM. According to the graphs
(d) and (e), tt decreases when VM increases or p f decreases. In summary, the parameters
related to the delivery affect tM, and the parameters related to manufacturing affect tT .
This is because if the time on one side decreases, the flexibility of decision making on the
other side increases. One of the reasons is that the difference in manufacturing completion
time between jobs decreases and various decisions in the delivery process become possible
as p f decreases.
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Figure 8. Total manufacturing and delivery time under different |T|, hc, VT , p f , and VM. (a) Total
manufacturing time under different |T|. (b) Total manufacturing time under different hc. (c) Total
manufacturing time under different VT . (d) Total delivery time under different p f . (e) Total delivery
time under different VM.

7. Conclusions

In this research, the ISP with a batching machine, time-dependent batch deterioration,
and RMAs is considered. A MILP model was formulated to solve small problem instances.
Meta-heuristic algorithms were proposed to solve the large problem instances. The solution
structure of meta-heuristics consists of two one-dimensional arrays for manufacturing and
delivery. For small problem instances, we found the optimal solution using the developed
MILP model. Additionally, we verified the performance of meta-heuristic algorithms by
showing the near-optimal solution and comparing it with the MILP model in small problem
instances. Three meta-heuristic algorithms, GA, ICA, and PSO, are proposed and relatively
compared by using the relative deviation index (RDI) in large problem instances. The
ranking of meta-heuristic algorithms from the best to the worst performance was GA, ICA,
and PSO. Sensitivity analysis was conducted for GA with the best performance shown. We
found that as the time for either manufacturing or delivery was reduced, the time for the
other also decreased in this analysis.

However, this study has several limitations. For example, the real enterprise data
considered for solving real industry problems are not used, and the objective function is
simply set to total tardiness. The objective function can be modeled as a cost including
setup, inventory, and tardiness costs. As for further work to extend this study, the problem
could apply VRP to our delivery method. In addition, the problem can be extended
to optimization problems resolving the conflict of stakeholders between manufacturing
and third-party logistics (3PL). Finally, matheuristic and simheuristic approaches can
be considered.
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