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Abstract: This paper emphasizes some geometrical properties of the Maxwell–Bloch equations. Based
on these properties, the closed-form solutions of their equations are established. Thus, the Maxwell–
Bloch equations are reduced to a nonlinear differential equation depending on an auxiliary unknown
function. The approximate analytical solutions were built using the optimal homotopy asymptotic
method (OHAM). These represent the ε-approximate OHAM solutions. A good agreement between
the analytical and corresponding numerical results was found. The accuracy of the obtained results is
validated through the representative figures. This procedure is suitable to be applied for dynamical
systems with certain geometrical properties.

Keywords: Maxwell–Bloch equations; Hamilton–Poisson realization; periodical orbits; symmetries;
optimal homotopy asymptotic method

MSC: 65L60; 76A10; 76D05; 76D10; 76M55

1. Introduction

In the last period, the dynamical systems were studied related to their important
applications in electrical engineering, medicine and economics, such as complete synchro-
nization or optimization of nonlinear system performance, secure communications, and so
on. The stabilization of the T system via linear controls was explored in [1]. The Rikitake
two-disk dynamo system was studied by [2] and applied in [3,4]. Other geometrical prop-
erties of the dynamical systems, such as the Hamiltonian realization, the equilibria points,
and integrable deformations, were analyzed in [5–19].

The interaction between laser light and a material sample composed of two-level
atoms is described by Maxwell equations of the electric field and by Schrödinger equations
for the probability amplitudes of the atomic levels. The Maxwell–Bloch equations were
obtained by coupling the Maxwell equations with the Bloch equation, and their important
geometrical properties were explored in [20–30], and so on.

An important geometrical property of a dynamical system is the existence of symmetries.
The system considered here admits a symmetry with respect to the Oz-axis.
The paper is organized as follows: Section 2 provides a brief description of the geo-

metrical properties and the closed-form solutions of the Maxwell–Bloch system. The next
section emphasizes the OHAM method. The ε-approximate solutions are built in Section 4
using the OHAM technique. The corresponding numerical results and the presented solu-
tions are discussed in Section 5. The relevance of the method is highlighted in Tables and
Figures. The last section of this work is dedicated to the conclusions.
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2. The Maxwell–Bloch Equations
2.1. Hamilton–Poisson Realization

The real-valued Maxwell–Bloch equations are (see [11,23,24,31] ):
ẋ = y
ẏ = x · z
ż = −x · y

, (1)

where the unknown functions x, y and z depend on t > 0, and the dot symbol denotes a
derivative with respect to t.

In this section, we also recall [31] some geometrical properties of the system (1).
The considered system has a Hamilton–Poisson realization with the Hamiltonian

H(x, y, z) = 1
2 (y

2 + z2) and a Casimir given by C(x, y, z) = z + 1
2 x2.

Remark 1. For the initial conditions

x(0) = x0 , y(0) = y0 , z(0) = z0 , (2)

the phase curves of dynamics (1) are the intersections of the surfaces 1
2 (y

2 + z2) = 1
2 (y

2
0 + z2

0)

and z + 1
2 x2 = z0 +

1
2 x2

0.

2.2. Closed-Form Solutions

Using the results presented in Section 2.1, in the present section, the closed-form
solutions of the system Equation (1) are built.

For an unknown smooth function v(t), by performing the transformations:{
y = R ·

√
2 · sin(v(t))

z = R ·
√

2 · cos(v(t))
, R =

√
1
2
· (y2

0 + z2
0) , (3)

the second equation from Equation (1) becomes:

x = v̇(t). (4)

First equation from Equation (1) yields to:

v̈(t)− R ·
√

2 · sin(v(t)) = 0 . (5)

The initial conditions v(0) and v̇(0) are obtained from Equations (2), (3) and (4):

v(0) = arctan
y0

z0
, v̇(0) = x0, for z0 6= 0 . (6)

Remark 2. Equations (3) and (4) give a closed-form solution of the system Equation (1).

In the last decades, there have been several analytical methods for solving the nonlin-
ear differential problem given by Equations (5) and (6), such as the function method [32], the
multiple scales technique [33], the optimal homotopy perturbation method (OHPM) [34,35],
the least squares differential quadrature method [36], the polynomial least squares
method [37], the optimal iteration parametrization method (OIPM) [38], the optimal ho-
motopy asymptotic method (OHAM) [39], the homotopy analysis method (HAM) and the
homotopy perturbation method (HPM) [40], the variational iteration method (VIM) [41],
the optimal variational iteration method (OVIM) [42], the Fourier spectral method [43], and
the piecewise reproducing kernel method [44].

The nonlinear differential problem given by Equations (5) and (6) is analytically solved
using the optimal homotopy asymptotic method (OHAM).
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3. Basic Ideas of the OHAM Technique

In this section, we recall some mathematical tools to explain the approximate analytic
solution obtained via the OHAM technique.

Firstly, the general form for the nonlinear differential equation is chosen as [45]:

L
(

F(t)
)
+N

(
F(t)

)
= 0, (7)

with the initial conditions

B
(

F(t),
dF(t)

dt

)
= 0, (8)

where L is an arbitrary linear operator, N is the corresponding nonlinear operator, B is
an operator characterizing the boundary conditions, and F(t) is the unknown smooth
function.

Let F̃(t) be the approximate solution of Equation (7). The error obtained by replacing
the exact solution F(t) of Equation (7) with the approximate ones F̃(t) is given by the
remainder:

R(t, F̃) = L
(

F̃(t)
)
+N

(
F̃(t)

)
, t > 0 . (9)

If p ∈ [0, 1] is an embedding parameter, then the homotopic relation is given by:

H
[
L
(

Φ(t, p)
)

, H(t, Ci), N
(

Φ(t, p)
)]

=

= L
(

F0(t)
)
+ p

[
L
(

F1(t, Ci)
)
− H(t, Ci)N

(
F0(t)

)]
= 0,

(10)

where H(t, Ci) 6= 0 is an auxiliary convergence-control function depending on the variable
t and the unknown parameters C1, C2, . . . , Cs.

When p increases from 0 to 1, the solution Φ(t, p) of Equation (7) varies from Φ(t, 0) =
F0(t) to the solution Φ(t, 1) = F(t) of Equation (7).

If we consider the unknown function Φ(t, p) in the form:

Φ(t, p) = F0(t) + pF1(t, Ci), (11)

and equate the coefficients of p0 and p1, respectively, the deformations problems are
obtained.

These are called:

- The zeroth-order deformation problem

L
(

F0(t)
)
= 0, B

(
F0(t),

dF0(t)
dt

)
= 0, (12)

- The first-order deformation problem

L
(

F1(t, Ci)
)
= H(t, Ci)N

(
F0(t)

)
,

B
(

F1(t, Ci),
dF1(t,Ci)

dt

)
= 0, i = 1, 2, . . . , s.

(13)

By solving the linear Equation (12), the initial approximation can be obtained.
In order to compute F1(t, Ci) from Equation (13), the nonlinear operator N is consid-

ered to have the general form:

N (F0(t)) = ∑n
i=1 hi(t)gi(t), (14)
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where n is a positive integer, and hi(t) and gi(t) are known functions that depend on F0(t)
and N .

For m = 1, 2, , · · · let us consider the set Sm containing the functions

h1, h2, · · · , hm , (15)

chosen as linearly independent functions in the vector space of the continuous differentiable
functions on the interval I = (0, ∞), such that Sm−1 ⊆ Sm.

Following the procedure described in [45], the computation function F1(t, Ci) has the
form:

F1(t, Ci) = ∑m
i=1 Hi(t, hj(t), Cj)gi(t), j = 1, . . . , s, (16)

or
F1(t, Ci) = ∑m

i=1 Hi(t, gj(t), Cj)hi(t), j = 1, . . . , s,

B
(

F1(t, Ci),
dF1(t,Ci)

dt

)
= 0,

(17)

where Hi(t, hj(t), Cj) represents a linear combination of the functions hj, j = 1, . . . , s and
the parameters Cj, j = 1, . . . , s. The summation limit m is an arbitrary positive integer
number.

For p = 1, the first-order analytical approximate solution of Equations (7) and (8),
taking into account Equation (11), has the form:

F̃(t, Ci) = F(t, 1) = F0(t) + F1(t, Ci), (18)

where F̃(t, Ci) is a real linear combination of these functions hj.
The unknown parameters C1, C2, . . . , Cs can be optimally identified by means of

various methods, such as the least square method, the Kantorowich method, the collocation
method, the Galerkin method, or the weighted residual method.

The first-order approximate solution (18) is well-determined if the convergence-control
parameters are known.

Using the functions given by Equation (15), we recall some types of approximate
solutions of Equation (7) from [46].

Definition 1. A sequence of functions {sm(t)}m≥1 of the form

sm(t) =
m

∑
i=1

αi
m · hi(t) , m ≥ 1, αi

m ∈ R, (19)

is called an OHAM sequence of the Equation (7).
Functions of the OHAM sequences are called OHAM functions of Equation (7).
The OHAM sequences {sm(t)}m≥1 with the property

lim
m→∞

R(t, sm(t)) = 0

are called convergent to the solution of Equation (7).

Definition 2. The OHAM functions F̃ satisfying the conditions∣∣∣R(t, F̃(t))
∣∣∣ < ε, B

(
F̃(t, Ci),

dF̃(t, Ci)

3t

)
= 0 (20)

are called ε-approximate OHAM solutions of Equation (7).
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Definition 3. The OHAM functions F̃ satisfying the conditions

∞∫
0

R2(t, F̃(t)) dt ≤ ε, B
(

F̃(t, Ci),
dF̃(t, Ci)

dt

)
= 0 (21)

are called weak ε-approximate OHAM solutions of Equation (7) of the real interval (0, ∞).

Remark 3. It is easy to see that any ε-approximate OHAM solution of Equation (7) is also a weak
ε-approximate OHAM solution. It follows that the set of weak ε-approximate OHAM solutions of
Equation (7) also contains the approximate OHAM solutions of Equation (7).

The following theorem states the existence of weak ε-approximate OHAM solutions of
Equation (7) and furnishes the way to construct them.

Theorem 1. Equation (7) admits a sequence of weak ε-approximate OHAM solutions.

Proof. The first step of the proof is to construct the OHAM sequences {sm}m≥1.
Let us consider the approximate OHAM solutions of the type:

F̃(t) =
n

∑
i=1

Ci
m · hi(t) , where m ≥ 1 is fixed arbitrary.

In the following, the unknown parameters Ci
m, i ∈ {1, 2, · · · , n} will be determined.

Substituting the approximate solutions F̃ in Equation (7), one obtains the expression:

R(t, Ci
m) := R(t, F̃).

Attaching to Equation (7) the following real functional

J1(Ci
m) =

∞∫
0

R2(t, Ci
m) dt (22)

and imposing the initial conditions, we can determine l ∈ N, l ≤ m, such that C1
m, C2

m, · · · ,
Cl

m are computed as Cl+1
m , Cl+2

m , · · · , Cn
m.

Replacing C1
m, C2

m, · · · , Cl
m in Equation (22), the values of C̃l+1

m , C̃l+2
m , · · · , C̃n

m are
computed as the values, which give the minimum of the functional (22).

Using again the initial conditions, the values C̃1
m, C̃2

m, · · · , C̃l
m as functions of C̃l+1

m ,
C̃l+2

m , · · · , C̃n
m are determined.

Using the constants C̃1
m, C̃2

m, · · · , C̃n
m thus determined, the following OHAM functions

sm(t) =
n

∑
i=1

C̃i
m · hi(t) (23)

are constructed.
The second step of the proof is to show that the above OHAM functions sm(t) are

weak ε-approximate OHAM solutions of Equation (7).
Based on the way the OHAM functions sm(t) are computed and taking into account

that F̄ given by (18) are OHAM functions for Equation (7), it follows that:

0 ≤
∞∫

0

R2(t, sm(t)) dt ≤
∞∫

0

R2(t, F̃(t)) dt , ∀ m ≥ 1.
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Therefore,

0 ≤ lim
m→∞

∞∫
0

R2(t, sm(t)) dt ≤ lim
m→∞

∞∫
0

R2(t, F̃(t)) dt.

Since F̃(t) is convergent to the solution of Equation (7), we obtain:

lim
m→∞

∞∫
0

R2(t, sm(t)) dt = 0.

It follows that for all ε > 0, there exists m0 ≥ 1 such that for all m ≥ 1, m > m0, the
sequence sm(t) is a weak ε-approximate OHAM solution of Equation (7).

Remark 4. The proof of the above theorem gives us a way to determine a weak ε-approximate
OHAM solution of Equation (7), F̃. Moreover, taking into account Remark 1, if |R(t, F̃)| < ε, then
F̃ is also an ε-approximate OHAM solution of the considered equation.

4. Approximate Analytic Solutions via OHAM

For the unknown function v, the approximate solutions of Equation (5) with initial
conditions given by Equation (6) are obtained.

The linear operator L
(

v
)

has the following expression:

L
(

v
)
(t) = v̈ + ω2

0v, (24)

where ω0 > 0 is an unknown parameter at this moment. Therefore, the form of the nonlinear

operatorN
(

v
)

corresponding to the unknown function v is obtained from Equation (5) by:

N
(

v
)
(t) = −ω2

0v− R
√

2 · sin(v) . (25)

In Equation (25), we can use the approximate expansion

sin(v) '
Nmax

∑
i=0

(−1)i · v2i+1

(2i + 1)!
, (26)

where Nmax is an arbitrary integer number.
There are many possibilities to choose the auxiliary function H(t, Ci); one of them

could be
H(t, Ci) = C, (27)

or
H(t, Ci) = C1 cos(ω0t) + B1 sin(ω0t),

or
H(t, Ci) = C1 cos(ω0t) + B1 sin(ω0t) + C2 cos(3ω0t) + B2 sin(3ω0t),

or
H(t, Ci) = C1 cos(ω0t) + B1 sin(ω0t) + C2 cos(3ω0t) + B2 sin(3ω0t)+
C3 cos(5ω0t) + B3 sin(5ω0t),

and so on.

4.1. The Zeroth-Order Deformation Problem

For the initial approximation v0, Equation (12) becomes:

v̈ + ω2
0v = 0, v(0) = arctan

y0

z0
, v̇(0) = x0 (28)
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with the solution

v0(t) = v(0) cos(ω0t) +
v̇(0)
ω0

sin(ω0t). (29)

4.2. The First-Order Deformation Problem

For the initial approximation v0(t) given by Equation (29), using Equation (26), the
nonlinear operator Equation (25) becomes:

N (v0)(t) = −ω2
0

(
v(0) cos(ω0t) + v̇(0)

ω0
sin(ω0t)

)
+

Nmax

∑
i=1

(−1)i

(2i + 1)!
·
(

v(0) cos(ω0t) +
v̇(0)
ω0

sin(ω0t)
)2i+1

,
(30)

and depends on the elementary functions cos((2k+ 1)ω0t), sin((2k+ 1)ω0t), k = 1, 2, 3, · · · .
Hence, the OHAM sequences of the nonlinear Equation (5) have the form:

{cos((2k + 1)ω0t) , sin((2k + 1)ω0t)}k≥1 .

For H(t, Ci), choosing the expression given by Equation (27) for the first-order defor-
mation problem given by Equation (13) by integration with the first approximation v1(t, Di)
from Equation (16) becomes:

v1(t, Ci) =
Nmax

∑
k=1

Ck · cos((2k + 1)ω0t) + Bk · sin((2k + 1)ω0t), (31)

where Ci, Bi are unknown parameters, with
Nmax

∑
k=1

Ck = 0 and
Nmax

∑
k=1

(2k + 1) · Bk = 0,

respectively.

4.3. The First-Order Analytical Approximate Solution v̄

From Equations (29) and (31), the first-order approximate solution given by Equation (18)
is obtained:

v̄(t) = v0(t) + v1(t, Ci) = v(0) cos(ω0t) +
v̇(0)
ω0

sin(ω0t)+
Nmax

∑
k=1

Ck · cos((2k + 1)ω0t) + Bk · sin((2k + 1)ω0t) ,
(32)

where the unknown parameters Ci, Bi, i = 1, 2, 3, · · · , are optimally identified. This
represents an approximate OHAM solution of Equation (5).

5. Numerical Results and Discussions

In this section, we discuss the accuracy of this method by taking into consideration
the first-order approximate solution given by Equation (32), where Nmax ∈ {5, 10, 20, 25}.

By means of Equations (3), (4) and (32), the approximate closed-form solutions of the
Maxwell–Bloch equations are well-determined via the OHAM technique.

The accuracy of the obtained results is shown in Figures 1–4 and Tables A1 and A2 by
comparison of the above-obtained approximate solutions with the corresponding numerical
integration results, computed by means of the shooting method combined with the fourth-
order Runge–Kutta method using Wolfram Mathematica 9.0 software. The convergence-
control parameters Ci, Bi, i = 1, 2, 3, · · · Nmax, which appear in Equation (32), are
computed by the least square method for different values of the known parameter Nmax.
From these figures, we can notice that there is symmetry with respect to the Oz-axis, and
the periodicity is noticeable, which justified the choice of the time-limited value. Figure 5
highlights the symmetry of the 3D trajectory.
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In Table A3, the values of the relative errors are presented, taking into account the
index number Nmax. The better approximate analytical solution corresponds to the value
Nmax = 25. This value was chosen for the efficiency of the solution.

5 10 15 20
t

1

2

3

4

5

vHtL

Figure 1. The auxiliary function v̄(t) given by Equation (32) using the initial conditions x0 = 0.5,
y0 = 0.5, z0 = 0.5 for Nmax = 25: OHAM solution (with lines) and numerical solution (dashing lines),
respectively.

5 10 15 20
t

-5

-4

-3

-2

-1

vHtL

Figure 2. The auxiliary function v̄(t) given by Equation 32 using the initial conditions x0 = −0.5,
y0 = −0.5, z0 = 0.5 for Nmax = 25: OHAM solution (with lines) and numerical solution (dashed
lines), respectively.

yHtL

xHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 3. The set of solutions x(t), y(t), z(t) given by Equations (3) and (4) using Equation (32) with
the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 for Nmax = 25: OHAM solution (with lines) and
numerical solution (dashed lines), respectively.
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xHtL

yHtL

zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 4. The set of solutions x(t), y(t), z(t) given by Equations (3) and (4) using Equation (32) with
the initial conditions x0 = −0.5, y0 = −0.5, z0 = 0.5 for Nmax = 25: OHAM solution (with lines) and
numerical solution (dashed lines), respectively.

-1

0

1

x

-0.5

0.0

0.5

y

-0.5

0.0

0.5

z

Figure 5. The parametric 3D curve x = x(t), y = y(t), z = z(t) given by Equations (3) and (4) using
Equation (32) with the initial conditions x0 = 0.5, y0 = 0.5, z0 = 0.5 for Nmax = 25: OHAM solution
(with lines) and numerical solution (dashed lines), respectively.

6. Conclusions

In the present paper, some geometrical properties of the Maxwell–Bloch equations are
emphasized, and the ε-approximate OHAM solutions were established. These obtained
OHAM solutions, by comparison with the corresponding numerical solutions, lead to a
good agreement. Moreover, the accuracy of the obtained results is validated for symmetric
solutions with respect to the Oz-axis. The efficiency of the method is characterized by
suitable values of the parameter Nmax. The advantage is to obtain accurate solutions useful
in many applications of technological interest.
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Appendix A

If the initial conditions are x0 = 0.5, y0 = 0.5 and z0 = 0.5, for Nmax = 25, then the
approximate analytic solution v̄(t) given by Equation (32) becomes:

v̄(t) =
= 0.7853981633 · cos(0.1212240932 · t) + 1.1280863071 · cos(0.3636722796 · t)−
−0.3186517885 · cos(0.6061204660 · t)− 0.1996129808 · cos(0.8485686525 · t)−
−0.2710466357 · cos(1.0910168389 · t)− 0.3867642849 · cos(1.3334650253 · t)−
−0.1216474671 · cos(1.5759132118 · t)− 0.0507600546 · cos(1.8183613982 · t)+
+0.0304281386 · cos(2.0608095846 · t) + 0.0919966107 · cos(2.3032577711 · t)+
+0.0738209429 · cos(2.5457059575 · t) + 0.0500084445 · cos(2.7881541439 · t)+
+0.0184363947 · cos(3.0306023304 · t)− 0.0066048451 · cos(3.2730505168 · t)−
−0.0150894385 · cos(3.5154987033 · t)− 0.0141512709 · cos(3.7579468897 · t)−
−0.0084535676 · cos(4.0003950761 · t)− 0.0029454477 · cos(4.2428432626 · t)+
+0.0002250235 · cos(4.4852914490 · t) + 0.0011645562 · cos(4.7277396354 · t)+
+0.0009265341 · cos(4.9701878219 · t) + 0.0004806715 · cos(5.2126360083 · t)+
+0.0001433717 · cos(5.4550841947 · t) + 0.0000179080 · cos(5.6975323812 · t)−
−1.648949 · 10−6 · cos(5.9399805676 · t)− 5.473392 · 10−6 · cos(6.1824287540 · t)+
+4.1245926179 · sin(0.1212240932 · t) + 2.7393061280 · sin(0.3636722796 · t)−
−1.1826779715 · sin(0.6061204660 · t)− 0.4498691209 · sin(0.8485686525 · t)−
−0.2374141078 · sin(1.0910168389 · t)− 0.1295416348 · sin(1.3334650253 · t)+
+0.1043902163 · sin(1.5759132118 · t) + 0.1379494664 · sin(1.8183613982 · t)+
+0.1184346449 · sin(2.0608095846 · t) + 0.0614542793 · sin(2.3032577711 · t)+
+0.0090494940 · sin(2.5457059575 · t)− 0.0275951341 · sin(2.7881541439 · t)−
−0.0382993000 · sin(3.0306023304 · t)− 0.0282586504 · sin(3.2730505168 · t)−
−0.0149834811 · sin(3.5154987033 · t)− 0.0024357526 · sin(3.7579468897 · t)+
+0.0040036967 · sin(4.0003950761 · t) + 0.0046957002 · sin(4.2428432626 · t)+
+0.0033601120 · sin(4.4852914490 · t) + 0.0014744782 · sin(4.7277396354 · t)+
+0.0002834667 · sin(4.9701878219 · t)− 0.0001047061 · sin(5.2126360083 · t)−
−0.0001492280 · sin(5.4550841947 · t)− 0.0000740989 · sin(5.6975323812 · t)−
−0.0000204246 · sin(5.9399805676 · t)− 3.372839 · 10−6 · sin(6.1824287540 · t)

(A1)
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Table A1. Comparison between the obtained solutions v given by Equation (32) and numerical results
for x0 = 0.5, y0 = 0.5 and z0 = 0.5 (relative errors: εv = |vnumerical − v̄OHAM|).

t vnumerical v̄OH AM εv

0 0.7853981633 0.7853981633 1.110223 × 10−16

2 3.0048565944 3.0048564682 1.262252 × 10−7

4 5.4067162901 5.4067161112 1.789394 × 10−7

6 5.7469951320 5.7469952686 1.366081 × 10−7

8 4.3979496840 4.3979506058 9.217917 × 10−7

10 1.4842095296 1.4842108567 1.327083 × 10−6

12 0.4935555769 0.4935555528 2.405788 × 10−8

14 1.1089381894 1.1089371304 1.058989 × 10−6

16 3.8183645538 3.8183641247 4.291169 × 10−7

18 5.6402614592 5.6402619962 5.369389 × 10−7

20 5.6036661551 5.6036657121 4.429515 × 10−7

Table A2. Comparison between the obtained solutions v given by Equation (32) and numerical results
for x0 = −0.5, y0 = −0.5 and z0 = 0.5 (relative errors: εω = |vnumerical − v̄OHAM|).

t vnumerical v̄OH AM εv

0 −0.7853981633 −0.7853981633 1.110223 × 10−16

2 −3.0048565944 −3.0048564684 1.260096 × 10−7

4 −5.4067162901 −5.4067161110 1.790516 × 10−7

6 −5.7469951320 −5.7469952684 1.364679 × 10−7

8 −4.3979496840 −4.3979506057 9.216750 × 10−7

10 −1.4842095296 −1.4842108566 1.326997 × 10−6

12 −0.4935555769 −0.4935555528 2.408859 × 10−8

14 −1.1089381894 −1.1089371304 1.058966 × 10−6

16 −3.8183645538 −3.8183641248 4.290359 × 10−7

18 −5.6402614592 −5.6402619963 5.370392 × 10−7

20 −5.6036661551 −5.6036657119 4.431479 × 10−7

Table A3. Values of the relative errors εv = |vnumerical − v̄OHAM| for x0 = 0.5, y0 = 0.5, z0 = 0.5 and
different values of the index number Nmax.

t Nmax = 5 Nmax = 10 Nmax = 20 Nmax = 25

0 1.110223 × 10−16 8.881784 × 10−16 2.220446 × 10−16 1.110223 × 10−16

1/5 0.0057507451 0.0030455771 8.383820 × 10−4 1.313631 × 10−6

2/5 0.0227924915 0.0070594242 8.097412 × 10−4 1.229725 × 10−6

3/5 0.0494597939 0.0081429073 6.156841 × 10−5 3.482073 × 10−7

4/5 0.0825167222 0.0060042509 4.729830 × 10−4 6.687728 × 10−7

1 0.1176107773 0.0021559238 1.174198 × 10−4 5.808890 × 10−7

6/5 0.1499196854 0.0015691002 4.301057 × 10−4 3.152192 × 10−7

7/5 0.1749400518 0.0039327661 6.220876 × 10−4 4.754099 × 10−7

8/5 0.1892996460 0.0045783745 4.222215 × 10−4 1.913513 × 10−7

9/5 0.1914052506 0.0038272807 1.319308 × 10−4 2.917863 × 10−7

2 0.1817135046 0.0022665042 5.933946 × 10−6 1.262252 × 10−7
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