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Abstract: Surface defect detection systems, which have advanced beyond conventional defect detec-
tion methods, lower the risk of accidents and increase working efficiency and productivity. Most fault
detection techniques demand extra tools, such as ultrasonic sensors or lasers. With the advancements,
these techniques can be examined without additional tools. We propose a morphological attention
ensemble learning for surface defect detection called OASIS-Net, which can detect defects of three
kinds (crack, efflorescence, and spalling) at the bounding box level. Based on the morphological anal-
ysis of each defect, OASIS-Net offers specialized loss functions for each defect that can be examined.
Specifically, high-frequency image augmentation, connectivity attention, and penalty areas are used
to detect cracks. It also compares the colors of the sensing objects and analyzes the image histogram
peaks to improve the efflorescence-verification accuracy. Analyzing the ratio of the major and minor
axes of the spalling through morphological comparison reveals that the spalling-detection accuracy
improved. Defect images are challenging to obtain due to their properties. We labeled some data
provided by AI hub and some concrete crack datasets and used them as custom datasets. Finally, an
ensemble learning technique based on multi-task classification is suggested to learn and apply the
specialized loss of each class to the model. For the custom dataset, the accuracy of the crack detection
increased by 5%, the accuracy of the efflorescence detection increased by 4.4%, and the accuracy of
the spalling detection increased by 6.6%. The experimental results reveal that the proposed network
outperforms the previous state-of-the-art methods.

Keywords: surface defect detection; morphological attention; ensemble learning; crack; efflores-
cence; spalling

MSC: 68T45

1. Introduction

In most countries, maintenance is becoming a serious and complex problem as the
number of aging structures grows. Existing structures are rapidly aging and developing
flaws, raising concerns about public safety and the preservation of valuable assets. Defects
in structures endanger the operator’s health and productivity, and structural deterioration
can lead to various safety hazards, such as collapse and flooding. Thus, detecting structural
defects is critical for assessing structural risks and ensuring safety.

Traditional defect detection methods primarily rely on visual inspection or manually
captured images. Expensive work equipment may be required, and the results may include
subjective worker criteria. This traditional manual fault detection method is inefficient
and time-consuming, resulting in high costs, which are a significant burden for many
businesses. Automatic fault detection methods reduce the risk of exposing people to a
hazardous environment and result in increased fault analysis work speed and efficiency
and lower costs. That is why developed countries with a long history of urbanization are
very interested in automated defect detection.

Many researchers have been taking various approaches to automatically detecting
defects in order to address the shortcomings of manual detection. Advances in computer
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vision have broadened the applicability of various fields and made automation processing
possible.

Typical examples include image classification [1–5], detection [6–11], and mapping [12–21].
The image classification problem is a problem of classifying an input image into a label,
which is one of the predetermined categories. It is one of the key problems in the field of
computer vision with various potential uses. The object detection problem is a problem of
finding an instance of an object in an image. Not only can the object be identified in the
image, but the location is also identified. Image mapping is a problem of converting from
one coordinate system to another. Because of these methods, computer vision could replace
a person’s manual inspection and progress the development of automation. A defect image
of crack efflorescence and spalling is illustrated in Figure 1. A common flaw in concrete,
asphalt, and structures is cracking, as shown in Figure 1a. In general, most cracks do not
impair the stability or durability of the building, although they damage the structure’s
surface, causing moisture intrusion and rebar corrosion. Efflorescence in Figure 1b refers
to the white salt deposit that forms on the surface of stone or concrete. Most of the time,
efflorescence does not directly harm the structure but can result in additional flaws due to
water infiltration through the structure surface. The area where fractures have developed
on the surface of the structure and have peeled off the substrate is designated as spalling
(Figure 1c), which is caused by stress from the corrosion of the built-in reinforcement and
expansion of up to 10 times the original volume. The spalling can cause foreign substances
to fall and cause casualties. It also has an unstable structure and a propensity to spread.
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Figure 1. Example images of various defect classes of (a) cracks, (b) efflorescence, and (c) spalling.

These three defects are common types of defects that can be visually identified. They
can also result in future safety incidents and are a warning sign for the structures before
they are seriously damaged [22–24]. Therefore, this paper concentrates on efflorescence,
spalling, and cracks among the many defect types and proposes the deep learning-based
morphological attention ensemble learning for surface defect detection called OASIS-Net,
which can identify defects in a single image. In addition, OASIS-Net uses three loss types to
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analyze and give attention to the morphological characteristics of each defect. Additionally,
ensemble learning based on multi-task classification is used to learn loss accurately. Because
YOLO v5s [6] offers fast speed and high accuracy in object detection research, it is used as
the foundation of OASIS-Net.

The main contributions of this study can be summarized as follows:

• We propose a specialized loss for each defect: cracks, efflorescence, and spalling.
New morphological attention loss types are applied to demonstrate improved defect-
recognition accuracy.

• We use the deformable convolutional network (DCN) [25] layer feature and incor-
porate it into the network to adaptively extract defect features according to the fea-
ture shapes.

• We exploit multi-task ensemble learning techniques to apply the loss of each defect.
The inability of each model to selectively learn each loss is overcome using an overall
learning approach.

2. Related Work
2.1. Detection Methods Using Equipment or Sensors

Min-Koo et al. [26] proposed a technology to localize and quantify spalling defects on
concrete surfaces using terrestrial laser scanners. Vangui et al. [27] proposed the surface
defect noncontact of a metal plate through gas-coupled laser acoustic detection. In addition,
González-Jorge et al. [28] proposed the process of detecting efflorescence using geometric
and radiological measurement information from lidar data. Zhou et al. [29] proposed an
integrated approach based on laser strength and depth characteristics for the automatic
detection and quantification of concrete spalling. Furthermore, Hu et al. [30] proposed
an optical rail surface algorithm based on visual projections that detect spalling based
on defect images taken with line scan cameras. Beckman et al. [31] proposed a faster
region-based convolutional neural network (Faster R-CNN) concrete spalling detection
method, using depth sensors to quantify multiple simultaneous spalling defects on the
same side, individually, and to consider various sides of structural elements. Moreover,
Zhang et al. [32] proposed a new computational approach to detect and measure reinforced
concrete spalling damage. The proposed framework consists of a three-step calculation that
detects spalling semi-automatically in the reinforced concrete column of the point cloud
data and quantifies the key properties.

These methods demonstrate higher accuracy than past visual and manual inspec-
tions and enable accurate defect detection. However, traditional measurement methods
(e.g., [22–28]) require special or expensive equipment, such as laser, lidar, depth, and ultra-
sonic sensors. In addition, using these types of equipment has a more complex procedure
than a single-image detection method. Currently, deep learning technology is advanced
enough to replace these measuring devices, and defect detection is sufficient in a single
image. Detecting defects in a structure from a single image is more efficient, with lower
costs and faster speeds.

2.2. Detection Methods Using a Detection Model

Kim et al. [33] proposed a technique for automatically detecting concrete damage using
the Mask R-CNN, a deep learning framework developed for instance segmentation. It
detects cracks, efflorescence, rebar exposure, and spalling and successfully executes instance
segmentation. In addition, Shim et al. [34] proposed a method for detecting delamination
through deep learning-based image processing and through improving performance with
improved loss functions and data augmentation techniques. Huyan et al. [35] proposed a
network that detects cracks pixel-wise using deep convolution, pooling, convolution, and
connection operations.

Additionally, Ni et al. [36] proposed a CNN-based framework that automates tasks
through convolutional function fusion and pixel-level classification. Zhou et al. [37] pro-
posed a mixed pooling module for fusion and attention mechanisms and crack detection
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and a replacement for traditional spatial pooling. To improve the performance of concrete
crack detection, Wu et al. [38] introduced a multiscale patch generation method for deep
pixel distribution learning. Furthermore, Feng et al. [39] proposed crack detection methods
using deep convolutional networks to implement pixel-level crack detection. Bai et al. [40]
proposed an end-to-end deep learning approach that automatically detects cracks and
collapses in buildings and bridges. Fang et al. [41] proposed a novel hybrid approach using
fast R-CNN for crack patch detection, a DCNN for crack direction recognition, and the
Bayesian algorithm for integration.

Furthermore, Fang et al. proposed a novel framework combining deep learning
models and Bayesian analyses to solve challenging vision problems in which deep learning
approaches using simple end-to-end learning strategies may not succeed. Ren et al. [42]
proposed a deep learning-based fully convolutional network segmentation method for
concrete cracks in tunnels. In addition, Chen et al. [43] proposed an encoder–decoder
architecture model using a pavement and bridge crack segmentation network, referred
to as SegNet [44], which accepts arbitrary-sized images as input data, training them on a
pixel-by-pixel basis.

Li et al. [45] proposed SSENets consisting of the skip squeeze excitation module and
atrous spatial pyramid pooling modules. The SSE module uses a skip connection strategy
to improve the slope correlation between shallow and deep networks and to mitigate the
slope extinction due to network deepening. The ASPP module extracts multiscale context
information for images and reduces the complexity of separable convolutions by depth.

Dušan Isailović et al. [46] proposed an approach to integrating damage components
into building information modeling through the point cloud-based detection of spalling
damage and the semantic enhancement of the Industry Foundation Classes model. Ad-
ditionally, Chun et al. [47] proposed a system for inspecting concrete structures using
infrared thermal imaging. The system develops equipment that investigates whether an
object is at the appropriate temperature for proper photographing, and it uses a machine
learning-based method that automatically detects temperature irregularities due to floating
and spalling.

Li et al. [48] proposed coordinate attention and a self-interaction-based lightweight
network incorporating channel domains, spatial information, and self-interaction modules
to automatically identify six types of hot-rolled steel strip surface defects to improve
the efficiency and accuracy of surface defect detection. Furthermore, a self-interaction
module was proposed to improve classification accuracy by interactively fusing extracted
feature information.

Ju et al. [49] proposed a new method called the transformer-based multiscale fusion
model using an encoder module, a decoder module, and a fusion module for crack detection.
The convolutional block and Swin transformer block are combined in the encoder module
to model the long-distance dependencies of various components of a crack image from local
and global perspectives. The encoder and decoder modules are intended to be symmetrical.
The encoder and decoder module outputs from each layer, each of which has a different
scale, and can be combined into convolutional forms using the fusion module, improving
the correlation between the pertinent contexts to reduce background noise and enhance
crack detection. Finally, to achieve the goal of crack detection, the output of each layer of
the fusion module is connected.

However, the proposed [29–45] defect detection methods do not address the unique
morphological characteristics of each defect. Pixel-level detection models are unsuitable
for real-time defect detection because they have many parameters and low processing
speed. In addition, pixel-level defect detection-based models consume considerable human
resources for data classification and labeling tasks. For these reasons, we used box-level
object detection. We included DCN in the crack detection model to increase the performance
of the crack detection model. We analyze and use the unique morphological characteristic
information of each defect. Morphological attention loss analyzes the morphological
features of each defect with different characteristics and implements loss using various
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features. Ensemble learning based on multi-task classification is used to learn and apply
each of these. As a result, our proposed model showed higher accuracy than the base model.

3. Proposed Method
3.1. Overall Architecture of OASIS-Net

This section describes the structure of the proposed overall architecture and the
methods for each block. OASIS-Net has three necks and three head modules. Each neck
module, such as crack, efflorescence, and spalling, is independently trained with its own
dataset and losses. After that, the three pre-trained necks are combined to detect the three
defections with three heads. When inferencing the model, each neck predicts each output.
The voting methods are applied to the outputs. Thus, the highest confidence score output is
utilized as the final output. Figure 2 depicts the proposed overall architecture of OASIS-Net.
The head, neck, and backbone modules of OASIS-Net are its three components, and it
uses the backbone module of the object detection model [6]. In addition, CNNs, or the
“backbone”, aggregate and create image features at various granularities. When the defect
image is inputted into the backbone module, the focus layer converts the defect image from
the spatial domain into the depth domain. The convolution, batch normalization, and leaky
rectified linear unit (CBL) layer receive the transformed defect image as input. This CBL
layer increases the training speed by removing covariate shifts that slow the training. The
cross-stage partial layer improves detection performance while dividing the gradient flow
to reduce the number of inference computations. The spatial pyramid pooling (SPP) layer
gathers the input features, producing a fixed-length output. Fixed-sized input images are
not required owing to this SPP layer. The input feature map contains twice as many arrays
after being upsampled. In addition, B is the result of passing through the backbone module,
which enters the neck module.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 21 
 

 

speed. In addition, pixel-level defect detection-based models consume considerable hu-

man resources for data classification and labeling tasks. For these reasons, we used box-

level object detection. We included DCN in the crack detection model to increase the per-

formance of the crack detection model. We analyze and use the unique morphological 

characteristic information of each defect. Morphological attention loss analyzes the mor-

phological features of each defect with different characteristics and implements loss using 

various features. Ensemble learning based on multi-task classification is used to learn and 

apply each of these. As a result, our proposed model showed higher accuracy than the 

base model. 

3. Proposed Method 

3.1. Overall Architecture of OASIS-Net 

This section describes the structure of the proposed overall architecture and the 

methods for each block. OASIS-Net has three necks and three head modules. Each neck 

module, such as crack, efflorescence, and spalling, is independently trained with its own 

dataset and losses. After that, the three pre-trained necks are combined to detect the three 

defections with three heads. When inferencing the model, each neck predicts each output. 

The voting methods are applied to the outputs. Thus, the highest confidence score output 

is utilized as the final output. Figure 2 depicts the proposed overall architecture of OASIS-

Net. The head, neck, and backbone modules of OASIS-Net are its three components, and 

it uses the backbone module of the object detection model [6]. In addition, CNNs, or the 

“backbone”, aggregate and create image features at various granularities. When the defect 

image is inputted into the backbone module, the focus layer converts the defect image 

from the spatial domain into the depth domain. The convolution, batch normalization, 

and leaky rectified linear unit (CBL) layer receive the transformed defect image as input. 

This CBL layer increases the training speed by removing covariate shifts that slow the 

training. The cross-stage partial layer improves detection performance while dividing the 

gradient flow to reduce the number of inference computations. The spatial pyramid pool-

ing (SPP) layer gathers the input features, producing a fixed-length output. Fixed-sized 

input images are not required owing to this SPP layer. The input feature map contains 

twice as many arrays after being upsampled. In addition, 𝐵  is the result of passing 

through the backbone module, which enters the neck module. 

 

Figure 2. Overall architecture of OASIS-Net. Figure 2. Overall architecture of OASIS-Net.

Figures 3 and 4 present the proposed neck module of OASIS-Net, which has three
neck modules, one for each class, to learn different loss types depending on the results.
The neck module is a component of an object detection model that builds features using
the fundamental structure of CNNs. The neck module receives B1, B2, and B3 from the
backbone as input data, combines and mixes image functions, creates a feature pyramid,
and sends it to the head. The crack neck module is added with additional blocks to enhance
the high-frequency characteristics lost during the upsampling process. The resulting values,
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Nclass1, Nclass2, and Nclass3, that pass the neck module become the input values of the head
module. The value of the class is the same class as each neck.
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Figure 5 presents the head module of OASIS-Net, which is the last step of object
detection. The predictions are made in an object detector. The head module of the object
detector performs the class and box prediction steps using the Nclass1, Nclass2, and Nclass3
input from the neck module. Then, each prediction result is calculated. The confidence
comparison block compares the confidence of the predictions. Finally, the results of using
Hcra, He f f , and Hspa are compared in a defect classification block, and the resulting value
with the highest confidence is predicted as the result. The prediction value with the highest
confidence is determined as Pred. The Pred includes the bounding box of the defect and the
type of defect.
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3.2. OASIS-Net Crack Detection

Detecting cracks is challenging because they exhibit irregular line structures and
shapes. We improved AugmoCrack [50] in previous work, which was previously proposed
as a crack detection method. AugmoCrack increased the high frequency of cracks by pre-
serving the edges advantageous for recognition, detecting cracks using the morphological
characteristics of the area and connectivity. In this paper, “morphological” includes the
traditional image processing techniques and features of defects defined in the paper.

Cracks are irregular and have extensive morphological features; therefore, we added
the DCN to the AugmoCrack networks. Figure 6 presents a DCN. Due to the fixed geometry
of the building modules, CNNs [51] are restricted to modeling geometric transformations.
We employ deformable convolution to improve the CNN’s capacity for deformation mod-
eling. The regular modules of a conventional CNN can be easily replaced, and a DCN can
be easily trained end-to-end with conventional backpropagation. This process led to an
improvement in crack detection precision.
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Figure 6. Description image of the deformable convolutional network.

The frequency augmentation block (FA block) in Figure 3 is a block for enhancing
the high-frequency components of a defect. The processing process for the FA block is
presented in Figure 7. The discrete cosine transform (DCT) operation transforms the input
image into the spectral domain when the feature map is inputted into the FA block. The
high-frequency components are concentrated in the lower-right area of the feature map
during this process, whereas the low-frequency components are concentrated in the upper-
left area. The FA block reverses the DCT to produce a feature map with a high-frequency
extraction. Finally, the input feature map of the FA block is added to the feature map
with a high-frequency extraction. The edges, lines, and boundaries in the high-frequency
spectral domain, which are the critical indicators for precise crack detection, are enhanced
by the FA block using this operation. The FA block method makes it more advantageous in
detecting cracks.
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Figures 8 and 9 reveal the connectivity attention loss Lossca and the penalty-aware
loss Lossca. Iseg denotes a segmentation image obtained from the input image by using the
segmentation method [52]. The segmentation method uses the classifier to create a rough
crack localization map by using its class activation maps and a patch-based classification
approach and fuses these with a thresholding-based approach to segment the mostly darker
crack pixels. In addition, the localization map is created by GradCam [53], a technique for
producing “visual explanations” for decisions from a large class of CNN-based models,
making them more transparent. Iseg is generated by multiplying the original image by
the binarized image obtained using multi-Otsu and the localization map. In addition, Iseg
is converted into an equivalence table that contains details about the neighboring pixels,
and it is inputted into the morphological attention loss calculation block. Specifically, the
attention mechanism means that the network should focus more on the small but essential
parts of the data. In this paper, it is our contribution to the weighing of the morphological
features of defects for calculating specialized loss. We calculate the loss by attention to
morphological features such as the image segmentation mask Iseg. Using an equivalent
table to determine the Iseg pixels that are close, iterative searching is used to check the
connectivity of each adjacent Iseg pixel. Afterwards, the surrounding pixels are searched
for in the image. The purpose of Lossca is to ensure only one crack in each detected box by
preventing erroneous duplicate detections. In addition, Lossca is intended to prevent the
model from picking up small outliers, which cannot be regarded as genuine defects. The
crack detection model performance is increased by Lossca, which forces it to detect cracks
with the proper bounding box size. The formulas for Lossca are as follows:

Lossca =
∣∣∣Cpred − CGT

∣∣∣ (1)

where Cpred denotes the predicted number of connected components in the predicted
bounding box by the cv2.connectedComponents function [54–56]. CGT represents the
number of bounding box labels corresponding to the ground truth. As shown in Equation
(1), the Cpred and CGT are computed as a subtraction to compare the number of associated
objects in order to match the number of correct answers. In addition, Losspa prevents the
model from picking up extremely small outliers that cannot be taken seriously as defects,
and its value is defined with the following threshold:

Losspa =

{
0, i f (

Npred
h∗w > γ)

1, otherwise
, (2)

where h and w denote the height and width of Iseg, respectively, and Npred represents
the area of the connected components. In this situation, Losspa forces the crack detection
model to find cracks with an appropriate bounding box size, enhancing the crack detection
performance.
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Figure 9. Structure of penalty area loss computation.

Figure 10 depicts the process of calculating the loss of the crack image as an image. It
converts a defect image into a binary image and checks the connectivity. Adjacent pixels
with connectivity are displayed in the same color. Next, the pixels with a connection
area that is too small are considered noise and are removed. The loss is calculated by
comparing the area and number of remaining connected objects. Finally, the Losscra is
defined as follows:

Losscra = Lossca + Losspa (3)
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3.3. OASIS-Net Efflorescence Detection

Efflorescence is a defect that has a sizable morphological area and is white. When
analyzed from a histogram perspective, the image is divided into a white part and a
nonwhite part, resulting in two histogram peaks. It is also possible to use the characteristic
that the white part has a brighter color than the background. In addition, Lossbr analyzes
the histogram of the defect image and uses the brightness of the image as follows:

Lossbr =

{
Avgc1 − Avgc2, i f (Avgc2 < Avgc1)

0, otherwise
. (4)

Part of the efflorescence is brighter than the background, having a greater average
brightness value. In the image, Avgc1 means the brightness average of the widely cropped
part of the background, and Avgc2 means the brightness average of the part where only
the efflorescence part is cropped. Therefore, if Avgc2 < Avgc1, loss is determined by the
difference between the brightness values. Other cases are normal; so, no loss is granted. In
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addition, Losspe analyzes the histogram of the defect image and uses the number of peaks
as follows:

Gaussian(x, σ) =
1√
2πσ

e−
x2

2σ2 , (5)

Losspe =

0, i f
(

Npeak = 2 or 3
)

Gaussian
(

Npeak, 1
)

, otherwise
(6)

The number of histogram peaks obtained by analyzing the histogram of the defect
image is Npeak. As most histogram peaks in the defect have two or three peaks, a loss value
is not assigned. In other cases, the value according to the Gaussian distribution map is
obtained to consider the error in the number of histogram peaks. In Gaussian, x is the input
value, and x is the standard deviation. We used σ for 1.0. Figure 11 illustrates the histogram
peak analysis images of the efflorescence defect images.
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Analyzing the number of histogram peaks in most defective images results in two or
three peaks. Moreover, Losse f f refers to the final form of loss used in learning, as follows:

Losse f f = Lossbr + Losspe. (7)

Figure 12 describes the proposed efflorescence detection loss function. We used the
defect image and the prediction coordinate Predcoords to crop the defect prediction area of
the image. In this case, Ic1 represents a cropped image with a background wider than the
target, and Ic2 represents an image with a tight crop of the target part. We analyzed the
brightness histogram of the Ic1 and Ic2 images by cropping to calculate the brightness mean
Avgc1 and Avgc2. The loss calculation block was used to calculate Lossbr as in Equation (4).
We used the cut image Ic1 to perform the histogram analysis. We found the number of
peaks and calculated Losspe using a Gaussian distribution plot. Finally, we added Lossbr
and Losspe to output Losse f f .
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3.4. OASIS-Net Spalling Detection

Spalling has a morphologically closed figure with an oval shape. The proposed loss
produces an ellipse close to the defect. We calculated the ratio of the length of the major
and the minor axes of the ellipse and compared it with the length ratio of the GT major and
minor axes to calculate the loss. These functions can distinguish differences from other fault
classes. Additional information can improve learning accuracy. The Lossspa is calculated
as follows:

Predspa= Aminor/Amajor, (8)

Lossspa = (
m

∑
n

GTspa/m−
m

∑
n

Predspa/m)
2

, (9)

where Amajor denotes the major axis of the ellipse, and Aminor denotes the minor axis of
the ellipse. In addition, Predspa can be calculated by dividing Axisminor by Axismajor. We
calculated Predspa and compared the ratio of the major axis and minor axis of the GTspa.
The mean squared error is used for the comparison.

Figure 13 presents the structure of Lossspa. We used the input image and prediction
coordinate Predcoords to crop the defect prediction portion of the image and used the K-
means algorithm [57] to cluster the pixels of the cropped image to k = 2. We converted the
clustered images to binary images using the multi-Otsu threshold [58], as follows:

multi_Otsu(Ic) =

{
1, i f T1 ≤ Ic(x, y) < T2

0, otherwise
(10)

where Ic represents the input image, (x, y) represents the x and y coordinates of Ic, and
T1 and T2 denote two hyperparameters of multiple thresholds that can be adjusted. This
method detects the contours of the binarized image through cv2.findContours [59] and
extracts a convex shape that fits the detected contour. We calculated the ellipse that fits
the convex using cv2.fitEllipse [60] and calculated the loss using the ratio of the major axis
to the minor axis of the ellipse. In this paper, we utilized contour detection to weight the
morphological features for spalling detection. Figure 14 illustrates the processing example
image for Lossspa.

3.5. Ensemble Learning

Ensemble learning is a technique that produces multiple classifiers and combines
their predictions to produce more accurate predictions. Instead of using a single model,
this model combines several models to help make more accurate predictions. According
to [61,62], ensemble learning based on multi-tasking can be utilized with a multi-task
structure of different models for one input. As in [61,62], the proposed model uses multi-
task ensemble learning for surface defect detection. We used voting methods among several
ensemble learning methods. Ensemble learning is used by modules with different structures
to learn their own independent losses (Figure 2). The results of Hcra, He f f , and Hspa from
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each head module are calculated in a voting manner according to the confidence value. We
refer to the GTlabel value class and select the loss to be calculated among Losscra, Losse f f ,
and Lossspa. The calculated loss is combined with Lossyolo to become Losstotal . The Lossyolo
is calculated as follows:

Lossyolo = Lossbox + Lossobj + Losscls (11)

The value of Lossyolo [6] comprises the box loss Lossbox for precise bounding box
detection; the object loss Lossobj to determine whether an object is present in the detected
box; and the classification loss Losscls for the classification of the detected object. The
Losstotal is calculated as follows:

Losstotal = Lossyolo + Losssel (12)

where Losstotal is the final loss backpropagated to the model, and Losssel is the loss selected
by GTlabel in Losscra, Losse f f , and Lossspa. When performing backpropagation, the neck
module, such as GTlabel , learns the weights. Moreover, other neck modules are frozen; so,
the weight is not changed.
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4. Experiments and Analysis
4.1. Experimental Setup
Dataset

This study used a custom dataset for validation. Our OASIS-Net detects the three
defections: crack, efflorescence, and spalling. For crack detection, we utilized the concrete
crack dataset [63], which consists of 791 images with 227 × 227 pixels. We split 591 im-
ages for validation and 200 for training datasets. In addition, the concrete crack dataset
is a dataset with labels consisting of segmentation maps. As a preprocessing step, we
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just converted the segmentation map into a bounding box for box-level object detection.
For efflorescence and spalling detection, we utilized the AI Hub dataset. The AI Hub
dataset [64] consists of 300 images for efflorescence and 300 for spalling detection with
2560 × 1440 pixels. We split the efflorescence dataset into 200 images for training and
100 images for verification. The spalling dataset was split into 145 images for training and
96 images for verification.

4.2. Experimental Results

Yolov5 has shown strong performance with high accuracy and fast speed among
the state-of-the-art object detection methods. Faster R-CNN [9] object detection networks
depend on region algorithms to hypothesize object locations. EfficientDet [11] is an object
detection model that utilizes several optimizations and backbone tweaks, such as using a
BiFPN. We analyzed the visual results of how the proposed methods work. Moreover, we
compared the proposed model with various models of Yolov5 and other object detection
models using mean average precision (mAP). The mAP is a metric used to evaluate object
detection models [65–67] commonly. The area under the above precision-recall curve is
where the average precision (AP) is generally defined. The AP is averaged to calculate
mAP. The mAP value is calculated for call values from 0 to 1. We also conducted an
ablation study to demonstrate the effectiveness of the proposed methods. Additionally, we
compared the inference times of the box-level detection-based and pixel-level segmentation-
based methods.

4.2.1. Crack Detection Results

The results in Table 1 prove that the OASIS-Net crack detection method provides supe-
rior performance compared to other methods. The proposed model has higher accuracy in
crack detection than the basic model by 5% for mAP0.5 and 7% for mAP0.5:0.95. In addition,
we demonstrate how well the proposed module, frequency increase, and morphological
attention loss function. Figure 15 presents a visual comparison of the results obtained when
detecting the cracks in the image. Because of the proposed OASIS-Net to prevent false out-
lier detection, the bounding box region is detected more precisely than previously possible
with the baseline model YOLOv5. This result demonstrates that the proposed Losspa was
effective. Training using Lossca places a strong emphasis on connectivity, leading to this
result. The proposed DCN has increased effects, as displayed in the first and second rows
of Figure 15. While the baseline model incorrectly detects duplicate bounding boxes in the
third and fourth rows of Figure 15, the proposed OASIS-Net does not have this problem.
The baseline model inaccurately detects bounding boxes for wide cracks, but the proposed
model accurately detects these features. As shown in the third row of Figure 15, we note
that the proposed method also detects multiple cracks appropriately.

Table 1. Comparison of the mean average precision (mAP) for crack detection.

Method mAP0.5 mAP0.5:0.95

Base 0.603 0.382
Fast R-CNN 0.534 0.308
EfficientDet 0.621 0.395

Yolov5l 0.610 0.379
Yolov5x 0.609 0.416

AugMoCrack 0.648 0.402
OASIS-Net 0.673 0.434
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4.2.2. Efflorescence Detection Results

Efflorescence is a defect that is difficult to detect due to unclear edges and irregular
shapes. However, the proposed loss function minimizes detection errors and improves
the accuracy compared to the base model. The research results in Table 2 demonstrate that
the OASIS-Net efflorescence detection method offers higher performance when contrasted
with other approaches. Compared to the basic model, the proposed model demonstrates a
performance increase of 4.4% for mAP0.5 and 2.7% for mAP0.5:0.95. Through the histogram
analysis, brightness comparison, and histogram peak counts, we also demonstrate how
effectively the proposed morphological attention loss function operates. Figure 16 presents
a visual comparison of the results obtained from detecting efflorescence in the image. In the
first row, the bounding box accuracy is compared to that of the basic model by analyzing
the features that are lighter than the background, demonstrating the effectiveness of Lossbr.

Table 2. Comparison of the mean average precision (mAP) for efflorescence detection.

Method mAP0.5 mAP0.5:0.95

Basic 0.312 0.107
Faster R-CNN 0.282 0.112

EfficientDet 0.222 0.108
Yolov5l 0.336 0.116
Yolov5X 0.341 0.122

OASIS-Net 0.356 0.134
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In the second and third rows, there is an indistinct efflorescence with a shape and
color similar to the background. It is also challenging to detect due to its weak edges and
patterns which are similar to the surrounding background. In the image of the second row,
the proposed model detected a smaller box than the ground truth box area located in the
center. In the third row of images, the proposed model incorrectly detected a slight trace
in the lower right as an efflorescence. However, the proposed model minimized the error
compared to the base model.

4.2.3. Spalling Detection Results

The research results in Table 3 demonstrate that the OASIS-Net method for detecting
spalling offers a degree of accuracy that is superior to that offered by other methods. The
proposed model demonstrates a performance improvement of 6.6% for mAP0.5 and 5.7% for
mAP0.5:0.95 compared to the model that serves as the basis. We demonstrate the efficiency
of the contour detection method and long- and short-axis comparison loss function of
the ellipse with their respective methods. Figure 17 provides a visual comparison of the
findings obtained by identifying spalling in the image. In the first row, the existing model
identifies cracks incorrectly as spalling, whereas the proposed model does not make this
error. In the second row, the existing model inaccurately detects the bounding box, whereas
the proposed model accurately detects it. These findings result from the proposed elliptic
shape having a loss ratio greater on the major axis than on the minor axis.
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Table 3. Comparison of the mean average precision (mAP) of the spalling detection.

Method mAP0.5 mAP0.5:0.95

Basic 0.656 0.397
Faster R-CNN 0.540 0.296

EfficientDet 0.597 0.272
Yolov5l 0.680 0.436
Yolov5x 0.679 0.407

OASIS-Net 0.722 0.454
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4.2.4. Comparison of Inference Time

We used an Intel I7-10700K CPU and an Nvidia GeForce RTX3080 GPU. Table 4
details the mean inference times at which each method was conducted. The time unit uses
milliseconds (ms). The comparisons of the results include the basic and proposed models
and other box-level object detection models. The proposed model is more sluggish than
the model that serves as its foundation, but it is quicker or similar to other object detection
models. This outcome demonstrates that the suggested model can be processed in real time.
Additionally, Table 5 shows a comparison of several segmentation-based models [68–71].
The values were taken from the previous review paper [72]. As shown in Tables 4 and 5, the
proposed model demonstrates inference speeds significantly higher than those of the other
segmentation-based models, demonstrating that the box-level detection-based method is
superior to the pixel-level segmentation-based method for real-time processing.
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Table 4. Comparison of inference time of box-level detection-based methods.

Method ms

Basic 4.0
Faster R-CNN 63.6

EfficientDet 62.7
Yolov5l 5.9
Yolov5x 35.7

OASIS-Net 6.1

Table 5. Comparison of inference time of pixel-level detection-based methods.

Method ms

TensorMask 384.6
SharpMask 125.0

Mask-RCNN 94.3
CenterMask 75.7

4.2.5. Ablation Study

We conducted an ablation study to find out the effect of the proposed methods on
the overall model performance. This study presented low accuracy when the proposed
methods were eliminated from the complete model. Table 6 shows the results of an ablation
study of OASIS-Net for crack detection. In the crack detection section, the proposed Lossca,
Losspa, and DCN were eliminated one by one. When Lossca was eliminated, mAP0.5 was
0.13 higher than the base model. When Losspa was eliminated, mAP0.5 was 0.22 higher
than the base model, and when DCN was eliminated, mAP0.5 was 0.45 higher than the
base model. As a result, the biggest factor of accuracy increase was confirmed by Lossca.
Lossca increases crack-detection accuracy by attention to crack connections. The Losspa
treats objects that are too small as noise and removes them. DCN is effective in analyzing
the crack characteristics of irregular shapes. For this reason, the proposed model is more
accurate than other models.

Table 6. Ablation study results of OASIS-Net for crack detection.

Method mAP0.5 mAP0.5:0.95

OASIS-Net (w/o Lossca) 0.616 0.387
OASIS-Net (w/o Losspa) 0.625 0.396
OASIS-Net (w/o DCN) 0.648 0.402

OASIS-Net 0.673 0.434

Table 7 shows the results of an ablation study of OASIS-Net for efflorescence detection.
In the efflorescence detection section, the proposed Lossbr and Losspe were eliminated one
by one. When Lossbr was eliminated, mAP0.5 was 0.024 higher than the base model. When
Losspe was eliminated, mAP0.5 was 0.015 higher than the base model. When fully used,
mAP0.5 was 0.044 higher than the base model. The proposed methods had a higher accu-
racy increase effect when used together than when used separately. Lossbr is advantageous
in detecting efflorescence by comparing the brightness of the efflorescence with the bright-
ness of the surrounding background. The Losspe effectively detects efflorescence using the
characteristics of the color separating them from the background. For these reasons, the
proposed model is more accurate than the other models.
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Table 7. Ablation study results of OASIS-Net for efflorescence detection.

Method mAP0.5 mAP0.5:0.95

OASIS-Net (w/o Lossbr) 0.336 0.128
OASIS-Net (w/o Losspe) 0.327 0.121

OASIS-Net 0.356 0.134

Table 8 shows the results of an ablation study of OASIS-Net for spalling detection. In
the spalling detection section, the proposed Lossspa was eliminated. When the Lossspa was
eliminated, mAP0.5 was 0.656 and was similar to the base model. With Lossspa, mAP0.5
was 0.066 higher than the base model. As a result, it was confirmed that Lossspa had a
definite effect on spalling detection. The Lossspa uses the morphological features of the
spalling to effectively detect the spalling. Therefore, the proposed model is more accurate
than other models.

Table 8. Ablation study results of OASIS-Net for spalling detection.

Method mAP0.5 mAP0.5:0.95

OASIS-Net (w/o Lossspa) 0.656 0.397
OASIS-Net 0.722 0.454

5. Conclusions

This work proposes the OASIS-Net, which performs a defect detection function based
on an object detection model. The OASIS-Net is a model that learns important features
through morphological analysis, such as crack, efflorescence, and spalling. In addition,
OASIS-Net learns high-frequency augmentation, connectivity, and area as loss values to
detect cracks. It also uses a DCN to perform more accurate detection. To detect whiteness,
this method compares the brightness of the defect against the background and learns the
number of peaks calculated in a histogram analysis as loss values. To detect delamination,
we calculated the ellipse of the defect to learn the ratio of the major axis to the minor axis
as a loss value. Our OASIS-Net utilized the loss function, which consists of typical object
detection loss and the custom losses proposed for each defect network. For this reason,
even if the traditional image processing methods produce some errors, our OASIS-Net can
provide acceptable defect detection performance. We conducted ensemble learning based
on multi-task classification to learn these loss values in parallel. The proposed method
demonstrates a performance improvement in defect detection. The research contribution
of this paper improves the model in the field of existing defect detection and presents
new loss values. These capabilities can be useful in many industries, such as construction,
maintenance, and manufacturing.

Regarding the limitations of this study, it is difficult to detect defects other than cracks,
efflorescence, and spalling because they use customized characteristics. Future work could
detect defects in more diverse fields in the field of defect detection. In addition, it is expected
that various defects can be detected with higher accuracy by analyzing the characteristics
of these defects and suggesting new losses by analyzing the customized characteristics.
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46. Isailović, D.; Stojanovic, V.; Trapp, M.; Richter, R.; Hajdin, R.; Döllner, J. Bridge Damage: Detection, IFC-Based Semantic
Enrichment and Visualization. Autom. Constr. 2020, 112, 103088. [CrossRef]

47. Chun, P.; Hayashi, S. Development of a Concrete Floating and Delamination Detection System Using Infrared Thermography.
IEEE/ASME Trans. Mechatron. 2021, 26, 2835–2844. [CrossRef]

48. Li, Z.; Wu, C.; Han, Q.; Hou, M.; Chen, G.; Weng, T. CASI-Net: A Novel and Effect Steel Surface Defect Classification Method
Based on Coordinate Attention and Self-Interaction Mechanism. Mathematics 2022, 10, 963. [CrossRef]

49. Ju, X.; Zhao, X.; Qian, S. TransMF: Transformer-Based Multi-Scale Fusion Model for Crack Detection. Mathematics 2022, 10, 2354.
[CrossRef]

50. Hong, Y.; Lee, S.; Yoo, S.B. AugMoCrack: Augmented Morphological Attention Network for Weakly Supervised Crack Detection.
Electron. Lett. 2022, 58, 651–653. [CrossRef]

51. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

52. König, J.; Jenkins, M.; Mannion, M.; Barrie, P.; Morison, G. Weakly-Supervised Surface Crack Segmentation by Generating
Pseudo-Labels Using Localization with a Classifier and Thresholding. arXiv 2021, arXiv:2109.0045. [CrossRef]

53. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]

54. Wu, K.; Otoo, E.; Suzuki, K. Optimizing Two-Pass Connected-Component Labeling Algorithms. Pattern Anal. Appl. 2009, 12,
117–135. [CrossRef]

http://doi.org/10.1061/(ASCE)CP.1943-5487.0000415
http://doi.org/10.1088/1361-6501/abfced
http://doi.org/10.1016/j.optlastec.2013.06.023
http://doi.org/10.3390/s21175725
http://www.ncbi.nlm.nih.gov/pubmed/34502618
http://doi.org/10.1002/tee.22594
http://doi.org/10.1016/j.autcon.2018.12.006
http://doi.org/10.1007/s12205-022-0890-y
http://doi.org/10.3390/app10228008
http://doi.org/10.1002/stc.2551
http://doi.org/10.1002/stc.2286
http://doi.org/10.1016/j.patrec.2021.02.005
http://doi.org/10.3390/s20072069
http://www.ncbi.nlm.nih.gov/pubmed/32272652
http://doi.org/10.5194/isprs-annals-V-2-2021-161-2021
http://doi.org/10.1016/j.patcog.2020.107474
http://doi.org/10.1016/j.conbuildmat.2019.117367
http://doi.org/10.1016/j.jii.2020.100144
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.3390/app10124230
http://doi.org/10.1016/j.autcon.2020.103088
http://doi.org/10.1109/TMECH.2021.3106867
http://doi.org/10.3390/math10060963
http://doi.org/10.3390/math10132354
http://doi.org/10.1049/ell2.12562
http://doi.org/10.1162/neco.1989.1.4.541
http://doi.org/10.1109/TITS.2022.3204853
http://doi.org/10.1007/s11263-019-01228-7
http://doi.org/10.1007/s10044-008-0109-y


Mathematics 2022, 10, 4114 21 of 21

55. Grana, C.; Borghesani, D.; Cucchiara, R. Optimized Block-Based Connected Components Labeling with Decision Trees. IEEE
Trans. Image Process. 2010, 19, 1596–1609. [CrossRef]

56. Bolelli, F.; Allegretti, S.; Baraldi, L.; Grana, C. Spaghetti Labeling: Directed Acyclic Graphs for Block-Based Connected Components
Labeling. IEEE Trans. Image Process. 2020, 29, 1999–2012. [CrossRef]

57. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An Efficient K-Means Clustering Algorithm:
Analysis and Implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [CrossRef]

58. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [CrossRef]
59. Suzuki, S.; Abe, K. Topological Structural Analysis of Digitized Binary Images by Border Following. Comput. Vis. Graph Image

Process 1985, 29, 396. [CrossRef]
60. Fitzgibbon, A.; Fisher, R. A Buyer’s Guide to Conic Fitting. In Proceedings of the British Machine Vision Conference 1995,

Birmingham, UK, 24–26 September 1995; pp. 51.1–51.10.
61. Gjoreski, M.; Lustrek, M.; Gams, M. Multi-Task Ensemble Learning for Affect Recognition. In Proceedings of the 2018 ACM

International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers, Singapre, 8–12 October 2018; ACM: New York, NY, USA, 2018; pp. 553–558.

62. Wang, Q.; Zhang, L. Ensemble Learning Based on Multi-Task Class Labels. In Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 464–475.

63. Özgenel, Ç.F.; Sorguç, A.G. Performance Comparison of Pretrained Convolutional Neural Networks on Crack Detection in
Buildings. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction, Berlin, Germany,
22–25 July 2018.

64. AIhub. Available online: https://aihub.or.kr/ (accessed on 15 January 2022).
65. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
66. Everingham, M.; Eslami, S.M.A.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge:

A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
67. Everingham, M.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
68. Chen, X.; Girshick, R.; He, K.; Dollár, P. TensorMask: A Foundation for Dense Object Segmentation. In Proceedings of the 2019

IEEE/CVF International Conference Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019; pp. 2061–2069. [CrossRef]
69. Pinheiro, P.O.; Lin, T.-Y.; Collobert, R.; Dollàr, P. Learning to Refine Object Segments. In Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 2016; pp. 75–91.
70. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer

Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.
71. Lee, Y.; Park, J. CenterMask: Real-Time Anchor-Free Instance Segmentation. In Proceedings of the 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 13906–13915. [CrossRef]
72. Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A

Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [CrossRef]

http://doi.org/10.1109/TIP.2010.2044963
http://doi.org/10.1109/TIP.2019.2946979
http://doi.org/10.1109/TPAMI.2002.1017616
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1016/0734-189X(85)90136-7
https://aihub.or.kr/
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1007/s11263-014-0733-5
http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.1109/iccv.2019.00215
http://doi.org/10.1109/cvpr42600.2020.01392
http://doi.org/10.1109/TPAMI.2021.3059968

	Introduction 
	Related Work 
	Detection Methods Using Equipment or Sensors 
	Detection Methods Using a Detection Model 

	Proposed Method 
	Overall Architecture of OASIS-Net 
	OASIS-Net Crack Detection 
	OASIS-Net Efflorescence Detection 
	OASIS-Net Spalling Detection 
	Ensemble Learning 

	Experiments and Analysis 
	Experimental Setup 
	Experimental Results 
	Crack Detection Results 
	Efflorescence Detection Results 
	Spalling Detection Results 
	Comparison of Inference Time 
	Ablation Study 


	Conclusions 
	References

