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Abstract: The domain of Aspect Level Sentiment Classification, in which the sentiment toward a
given aspect is analyzed, attracts much attention in NLP. Recently, the state-of-the-art Aspect Level
Sentiment Classification methods are devised by using the Graph Convolutional Networks to deal
with both the semantics and the syntax of the sentence. Generally, the parsing of syntactic structure
inevitably incorporates irrelevant information toward the aspect. Besides, the syntactic and semantic
alignment and uniformity that contribute to the sentiment delivery is currently neglected during
processing. In this work, a Triplet Contrastive Learning Network is developed to coordinate the
syntactic information and the semantic information. To start with, the aspect-oriented sub-tree is
constructed to replace the syntactic adjacency matrix. Further, a sentence-level contrastive learning
scheme is proposed to highlight the features of sentiment words. Based on The Triple Contrastive
Learning, the syntactic information and the semantic information are thoroughly interacted and
coordinated whilst the global semantics and syntax can be exploited. Extensive experiments are
performed on three benchmark datasets and achieve accuracies (BERT-based) of 87.40, 82.80, 77.55 on
Rest14, Lap14, and Twitter datasets, which demonstrate that our approach achieves state-of-the-art
results in Aspect Level Sentiment Classification task.

Keywords: Aspect Level Sentiment Classification; Contrasitve Learning; Graph Convolutional
Networks

MSC: 18C50

1. Introduction

Aspect Level Sentiment Classification (ALSC) is a fundamental subtask of fine-grained
sentiment analysis, which currently receives a great deal of attention [1]. The main focus
of ALSC is to identify the sentiment polarity (e.g., positive, neutral or negative) of aspects
explicitly given in sentences. For example, in the sentence “The price is reasonable although
the service is poor” (Figure 1), the sentiment toward aspects price and service is positive and
negative, respectively.

Advances of deep neural networks bring paradigm shift to various tasks of NLP and
the ALSC is no different [2–4]. The attention-based network is a most common approach
that exploits the semantic information to capture the sentiment words of the given aspect.
In Figure 1, more attentive weights can be assigned to the sentiment words reasonable and
poor via attention mechanism. However, the use of semantic feature alone can result in
the misunderstanding of contextual words, especially for sentences of complex syntax
structure. More recently, the application of Graph Convolutional Networks (GCN) in ALSC
is both creative and practical [5]. For one thing, the encoding of syntactic information
using GCN mitigates the deficiencies of long-distance dependencies among words [6,7].
For another, not just the syntax, but also the semantic information can be processed by
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GCN, which gives rise to opportunities to the integration of semantic features. As such, the
state-of-the-art approaches work on developing multi-channel GCNs to deal with multiple
information [8,9].

The price is reasonable although the service is poor .

Aspect : price Polarity : Positive

Aspect : service Polarity : Negative

Figure 1. An example of ALSC.

Despite the progress of GCN-based method in ALSC, two main limitations are ob-
served. On the one hand, most syntactic parsing is performed on the whole sentence
without considering the importance of key phrases (e.g., aspect words, opinion words and
etc.) to sentiment determination. In such a manner, redundant information or even noise
can be incorporated during feature extraction. On the other hand, current methods set
the semantic information and syntactic information in two individual spaces for feature
extraction and fuse their features in a elementary way. But the alignment and uniformity of
these two categories of features are ignored [10].

Inspired by the methods reported by [8,11], a Triplet Contrastive Learning Network
(TCL) for ALSC is proposed to address the aforementioned issues. For the exploiting of
syntactic information, we start with reconstructing the syntax dependency tree by setting
the aspect as the root according to [12] (Figure 2). The dependencies between aspect word
and other words are explicitly established, which contributes to the capturing of opinions
words to the aspect and restricting the introduction of redundant information. As presented
in [13], the key phrase plays a pivot role in delivering the essence of texts. To further filter
the noise and highlight the key information, a contrastive learning scheme is proposed to
magnify the significance of sentiment-related words. In ALSC tasks, the key phrases are
either nouns, verbs, adjectives, or adverbs of degree [14]. With the application of masking
mechanism, both positive and negative examples are generated and fed into the contrastive
learning module to enhance the impacts of key phrases and distill the syntactic features.

The sauces used are also not exciting .
det acl

nsubj

advmod

neg

acomp
root

The sauces used are also not exciting .
det acl

nsubj

2:con

2:con

2:con

root

Figure 2. Reconstruction of aspect-oriented syntax dependency tree.

With respect to the integration of sentence syntax and semantics, recent publications
reveal that they are distinct and related [8,15]. Likewise, the features from both space,
conveying sentiment toward the aspect, also have a similar relationship between each other.
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For this reason, the alignment of both features can facilitate the information integration.
Concretely, the features, within either syntactic or semantic space, expressing the same
sentiment polarity can be aligned while those expressing different sentiment polarities
can be separated. With this, the interaction between syntactic information and semantic
information is carried out, based on which a dual-contrastive learning scheme is devised.
For each data within the mini-batch, the features of the same sentiment polarity are getting
closer based on dual-contrastive learning, and vice versa. In this way, features of both
categories are thoroughly interacted and aligned. We can thus leverage feature integration
to improve the ALSC performance.

The contributions of this paper are as follows:

• The syntactic adjacency matrix of the dual-channel graph convolutional neural net-
work is replaced with an aspect-oriented tree structure, which helps the model to
better capture the information of opinion words related to aspect words.

• A syntactic contrastive learning scheme is designed to encourage the model to focus
on keywords that are helpful for sentiment polarity classification, and to better learn
features related to aspect words.

• Constructing the dual contrastive learning module can make the semantic features
and syntactic features of sentences more fully interact and align.

• Experiments show that our method outperforms baseline models on three benchmark
datasets.

This work is organized as follows. Section 2 gives an overview of relevant work of
ALSC and contrastive learning. Section 3 describes the TCL model in details. In Section 4,
the experiment is depicted, as well as the presentation of result analysis. Concluding
remarks are given in Section 5.

2. Related Work
2.1. Aspect Level Sentiment Classification

Sentiment classification tasks mainly focus on capturing the sentiment information
from the given text [16,17]. ALSC aims to classify the sentiment polarity of a specific aspect
from given texts. Within ALSC, a more detailed analysis about the sentiment associated
with the aspect is performed by using the textual information. Early research focuses on
employing CNN- and RNN-based method, together with the integration of attention mech-
anisms or knowledge distillation [18,19], to obtain aspect-related information. As such, the
utilization of attention mechanism to precisely capture the aspect-aware contextual infor-
mation becomes a main topic [2,3]. In recent years, GCN-based models rise to prominence
in a variety of NLP tasks, which is capable of alleviating the defects of attention networks.
On the task of ALSC, Ref. [6] first apply GCN to tackle the syntax dependency and resolve
the long-term multi-word dependencies. Later work aims to establish the syntax structure
and extract aspect-related features [7]. Ref. [12] re-shape the syntax dependency tree into
an aspect-oriented sub-tree, in order to determine the connection between aspects and its
opinion words. Ref. [20], fuse the syntax dependency types into GCN, based on which
to highlight the syntax corresponds to sentiment classification. So far, there is an ongoing
trend to combine the sentence syntax and semantics [8,9,21]. Most approaches tend to
separately construct adjacency matrix for syntactic and semantic information, generate
corresponding feature representations, and concatenate the representations for sentiment
classification.

2.2. Contrastive Learning

A fundamental focus of contrastive learning is the learning of alignment and unifor-
mity of given data [10]. Comprehensively, alignment is taken to indicate the similarity
among positive examples while uniformity refers to informative-distribution of features, so
that negative examples are isolated from positive ones. In practical use, both alignment
and the uniformity are used as indexes to optimize the feature learning. That is, the cap-
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turing intra-class similarities and inter-class differences can benefit the performance in
downstream tasks.

Recently, a number of studies apply contrastive learning to NLP tasks and achieve
satisfying results [22–24]. Ref. [22] devise a simple contrastive sentence embedding frame-
work, which can produce superior sentence embeddings on semantic textual similarity
tasks. For the aspect words absent from the training set, Ref. [25] take contrastive learning
to capture aspect-invariant and aspect-dependent features to distinguish the roles of valu-
able sentiment features. Ref. [11] propose a novel contrastive-learning-based approach that
simultaneously learns the features of input samples and the parameters of classifiers in the
same space on the task of text classification.

3. Proposed Method

Figure 3 shows the framework of the TCL Network. Let X = {x1, x2, . . . , xa, . . . , xa+la ,
. . . , xN} be a N-word sentence with aspect A =

{
xa, . . . , xa+la

}
in it where a represents

the starting index of A and la is the length of A. We feed the sentence into GloVe [26]
or BERT [27] encoder for sentence embedding establishment. For GloVe-based model,
each word is mapped into a low-dimensional vector by looking up in a pretrained word
embedding matrix E ∈ R|V|×dE where |V| is the lexicon size and dE is the dimension of word
vector. The sentence embedding is given as x = {e1, e2, . . . , eN}. The hidden states of the
sentence are extracted via Bi-LSTM. The contextual feature vector is H = {h1, h2, . . . , hN}
with H ∈ RN×2d and d representing the hidden layer dimension. In addition, the sequence
[CLS]X[SEP]A[SEP] can also sent to BERT encoder to obtain the contextual feature vector
H. Subsequently, H is taken as the input of both semantic-learning GCN module and
syntactic-aware GCN module. A multi-layer Biaffine unit is proposed to integrate the
semantic features and syntactic features. To further align the features from both space,
the dual contrastive learning scheme is carried out. More details of each component are
presented as follows.
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Figure 3. The overall architecture of our Triplet Contrastive Learning Network.

3.1. Syntactic-Aware GCN Module

The architecture of syntactic-aware module is exhibited in Figure 4. As pointed out
in the Introduction, the syntactic-aware GCN in our model tends to precisely capture the
aspect-related context words and remove the redundant information. According to [12], a
relational graph attention network is devised. Specifically, we construct an aspect-oriented
dependency tree to replace the adjacency matrix of classical syntax dependency tree. Then,
the attention mechanism is applied to the reshape sub-tree to capture the aspect-specific
contextual features. Moreover, to resolve the long-dependencies among words, we set four
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categories of words as the key phrases that contributes to sentiment delivery, i.e., nouns,
verbs, adjectives, and adverbs of degree. As such, the contrastive learning is performed
to enhance the features of key phrases and effectively capture the word feature of long
dependency.

The wine is excellent .list

BiLSTM

𝐻!!"#𝐻!$%& 𝐻!

Reshape Dependency Tree

Dependency Embedding

𝐻

ℒ"#$#'$

BiaffineModule
Biaffine
Module

Relation Attention

𝑀%&$!"#

𝐻%&$!"#𝐻%&$$%& 𝐻%&$

𝑀%&$
𝑀%&$$%&

𝐻%'(

Keywords Contrastive Learning

Syntactic-aware GCN

AttentionRelation AttentionRelation Attention

Figure 4. Architecture of syntactic-aware GCN module

3.1.1. Relational Graph Attention Module

At this stage, the aspect A is taken as the central word to construct the aspect-oriented
dependency tree; see Algorithm 1 For words syntactically related to the central word of
one hop, the corresponding dependency types are established. Through iteration, for
words syntactically related to the central word of n hops(n ≥ 2), the dependency types are
characterized by (con : n). If the aspect contains multiple words, these words are considered
as a whole. In such a manner, we shall thus obtain the re-constructed dependency tree as
D = {dep1, dep1, . . . , depN} and map it into embedding space to generate the dependency
representation HD =

{
hD1 , hD2 , . . . , hDN

}
. Notably, the randomly initialized dependency

embedding ED ∈ R|Vd |×dD is employed with |Vd| standing for the number of dependency
types. For HD ∈ RN×dD , we have dD representing the dimension of dependency type
embeddings.

The relational attention between aspect and the dependency type representation is
computed. Specifically, the syntactic dependency of context toward the aspect is incor-
porated within HD. Thus, the attentive weight between HD and H is calculated using a
simplified inner product operation, which is:

att = f

(
(WD HD + bD)× (Wh H + bh)

T
√

dm

)
(1)

where WD ∈ RdD×dm and Wh ∈ R2d×dm are linear layer weights; bD and bh are bias terms;
f (·) stands for the softmax activation function; and dm is the hidden layer dimension of the
attention module.

Then, the syntactic representation is given as:

Hsyn = att ∗ H (2)
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Algorithm 1 Aspect-Oriented Dependency Tree

Input: sentence X = {x1, x2, . . . , xN}, aspectA =
{

xa, . . . , xa+la
}

, dependency tree T, and
dependency relations R.
Output: aspect-oriented dependency T̃.

1: Construct the aspect root R̃ for T̃
2: for a to a + la do
3: for j = 1 to n do

4: if xj /∈ A and xj
Rja−→ xa then

5: xj
Rja−→ R̃

6: else if xj /∈ A and xj
Rja←− xa then

7: xj
Rja←− R̃

8: else
9: n = distance(a, j)

10: xj
n:con−−−→ R̃

11: end if
12: end for
13: end for
14: return T̃

3.1.2. Syntactic Contrastive Learning Scheme

The effectiveness of key phrases (i.e., nouns, verbs, adjectives or adverbs of degree) is
highlighted by using based on a sentence-level key phrases contrastive learning module.
To be specific, a mask operation, based on the POS information of phrases in the sentence,
is performed. Only if the position mask 1 assigned to key phrase and mask 0 to others, can
this representation defined as a positive example, i.e., Mpos ∈ RN . Conversely, a negative
example indicates a key phrase with a position mask 0 while other words with a mask 1,
i.e., Mneg ∈ RN .

The dependency type can be integrated into both positive and negative examples. We
shall thus compute the positive example dependency type representation and the positive
example dependency type representation as:

HDpos = HD ∗Mpos (3)

HDneg = HD ∗Mneg (4)

Similar to Equation (1), the attention weights of HDpos and HDneg toward the con-
text representation are available, as presented in Equations (5) and (6). Thus, the syn-
tactic representation of both positive examples and negative examples can be obtained
(Equations (7) and (8)):

attpos = f


(

WDpos HDpos + bDpos

)
×
(

Whpos H + bhpos

)T

√
dm

 (5)

attneg = f


(

WDneg HDneg + bDneg

)
×
(

Whneg H + bhneg

)T

√
dm

 (6)

Hsynpos = attpos ∗ H (7)

Hsynneg = attneg ∗ H (8)

For every sentence, we have its syntactic representation Hsyn, the syntactic represen-
tation with key phrases Hsynpos and syntactic representation without key phrases Hsynneg .
Each of these syntactic representations is fed into a shared-weight biaffine unit to fuse with
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the semantic representation in following section. The final syntactic representations, with
the integration of semantic information, are presented as Msyn (derived from Equation (13)),
Msynpos and Msynneg , respectively.

Aiming to focus more on the key phrases, the contrastive learning scheme is carried
out with the loss function set as:

Lconsyn = − 1
B

B

∑
j=1

1
N

N

∑
i=1

log
esim(Mi

synpos ,Mi
syn)/τ1

∑N
t=1(e

sim
(

Mt
synpos ,Mi

syn

)
/τ1 + esim(Mt

synneg ,Mi
syn)/τ1)

(9)

where τ1 is the temperature coefficient, B is the batch size and N is sentence length men-
tioned above.

Distinguishing from the current contrastive learning approaches, in addition to the
positive example Mi

synpos , the other examples, containing N − 1 key-phrases-related syn-
tactic representations Mt

synpos(t 6= i) and N syntactic representations without key phrases
Msynneg , are all considered as negative examples. In other words, the negative examples of
each word in the sentence is 2N − 1.

3.2. Semantic-Learning GCN Module

The sentence semantics is also encoded via GCN to enhance the modelling of sentiment
information. Seeing that the self-attention mechanism is capable of extracting the semantic
relevance of other words and the given word, we use self-attention network to construct a
semantic adjacency matrix Asem ∈ RN×N :

Asem = f

QWq ×
(

KWk
)T

√
d

 (10)

where both Q and K equal the context representation H, Wq and Wk are trainable weighting
parameters and d is the hidden layer size of attention network.

The semantic representation is derived from graph convolution, which is:

Hsem = σ(AsemWH + b) (11)

where σ(·) stands for the linear activation function, such as ReLU function.

3.3. Biaffine Unit

The interaction of semantic information and syntactic information is conducted via
multi-layer mutual Biaffine transformation. In Equation (12), Hsyn and Hsem are first
multiplied to obtain a syntactic-related matrix containing the semantic information. Then,
the syntactic-related matrix is mapped via Softmax and multiplied by the original semantic
information to obtain the final syntactic feature representation with semantic information
integrated. Via multi-layers of Biaffine unit, the semantic features can be fused to the
syntactic representation for sentiment polarity classification. So is Equation (13).

H(l)
syn = f

(
H(l−1)

syn W(l−1)
1

(
H(l−1)

sem

)T
)

H(l−1)
sem (12)

H(l)
sem = f

(
H(l−1)

sem W(l−1)
2

(
H(l−1)

syn

)T
)

H(l−1)
syn (13)

where l(l = 1, 2, . . .) stands for the layer number of the biaffine unit; both W1 ∈ R2d×2d and
W2 ∈ R2d×2d are learnable parameters. Specifically, we take H(0)

sem and H(0)
sem to represent

Hsem ∈ RN×2d and Hsyn ∈ RN×2d, which are the inputs of biaffine unit.
With the mutual Biaffine transformation, we thus obtain the final semantic repre-

sentation with fused syntactic features H(l)
sem which also presented as Msem and the final
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syntactic representation with fused semantic features H(l)
syn which also presented as Msyn.

The average pooling is performed on the outcomes in relation to the aspect.

MA
sem = avgpool

(
Msema , . . . , Msema+la

)
(14)

MA
syn = avgpool

(
Msyna , . . . , Msyna+la

)
(15)

Then, both the semantic representation and the syntactic representation of the aspect
are concatenated and sent to the linear classifier to determine the sentiment polarity of the
given aspect:

Z = f
(

W
[

MA
sem; MA

syn

]
+ b
)

(16)

where [; ] stands for the vector concatenation, W and b are learnable parameters in the
linear layer.

3.4. Dual Contrastive Learning Scheme

In the proposed model, the main purpose of the dual contrastive learning is to com-
prehensively align the features of both syntactic space and semantic space. The global
syntactic features and semantic features can thus be captured. Notably, the output of the
biaffine unit (i.e., Msyn and Msem are taken as the input of the dual contrastive learning
module. For each input Xi, the sequence with the same sentiment polarity within the same
batch is considered as the positive example P , otherwise as negative example N . The loss
function of the dual contrastive learning is presented as:

Lsyn−sem = − 1
B

B

∑
i=1

1
|P| ∑

j∈P
log

esim(Msyni ,Msemj )/τ2

∑B
t=1 esim(Msyni ,Msemt )/τ2

(17)

Lsem−syn = − 1
B

B

∑
i=1

1
|P| ∑

j∈P
log

esim(Msemi ,Msynj )/τ3

∑B
t=1 esim(Msemi ,Msynt )/τ3

(18)

where τ2 and τ3 are the temperature coefficients of contrastive loss.

3.5. Loss Function

The loss function for model training is expressed:

L = LCE + αLo + β
(
Lsyn−sem + Lsem−syn

)
+ γLconsyn + λ‖Θ‖

(19)

with
Lo = ||Asem Asem T − I||F (20)

where α, β and γ are hyperparameters; LCE represents the cross-entropy loss for sentiment
polarity classification; Θ denotes the training parameter set; λ represents the coefficient of
L2 regularization. Inspired by [8], for each word in the sentence, its attention distribution
on every other word is distinguishing. In other words, the overlap of attentive weights
has to be minimized especially for the application of semantic graph adjacency matrix.
Therefore, an additional orthogonal regularized loss function Lo is thereby introduced.
The parameter I in Equation (20) is an identity matrix and the subscript F stands for the
Frobenius norm.

Since the contrastive learning loss results are derived from various weighting param-
eters, the back propagation can be applied to optimize these parameters during the loss
function optimizing.
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4. Experiments
4.1. Datasets and Settings

Datasets: We evaluate the working performance of TCL network on three benchmark
datasets, which are Rest14 and Lap14 from SemEval 2014 Task4 [28] and Twitter [29]. Each
sample in these datasets is either a product review or tweet sentence, which contains
explicit aspect words and the corresponding sentiment polarities. Each aspect from the
product reviews or tweets in our experiments is labeled as positive, neutral or negative.
Details of each dataset are exhibited in Table 1.

Experimental Settings: For GloVe-based model, we initialize the word embeddings
with 300-dimensional vectors pretrained by Glove [26]. The dimension of the dependent
syntactic embeddings is set to 30. The hidden layer dimension of BiLSTM is 50. All the
weights in the model are initialized by Xavier uniform distribution. The layer number of
biaffine unit is set as 2. For the contrastive learning scheme, the temperature coefficient
determines how much attention the contrastive learning loss assign to the outlier negative
samples. The larger the temperature coefficient is, the greater the tolerance to negative
samples, and vice versa. In the syntactic contrastive learning module, it is desirable that
more attention is given to key phrases with a certain tolerance to other words. Therefore,
τ1 of the syntactic contrastive learning is 1 while τ2 and τ3 of the dual contrastive learning
is set to 0.1. In addition, he Adam optimizer is adopted with a learning rate of 2× 10−3.
The batch size ranges from 16 to 64. The L2 regularization coefficient λ is set to 1× 10−4.
Notably, the values of α, β and γ vary in line with the datasets, which are 0.1, 0.5 and 0.5
for Rest14, 0.5, 0.7 and 0.8 for Lap14 and 0.2, 0.2 and 0.7 for Twitter.

Table 1. Statistics of datasets.

Dataset #Pos. #Neu. #Neg. Total

Rest14 Train 2164 637 807 3608
Test 728 196 196 1120

Lap14 Train 994 464 870 2328
Test 341 169 128 638

Twitter Train 1561 3127 1560 6248
Test 173 346 173 692

4.2. Baselines

In order to validate the effectiveness of the proposed model in ALSC, we take 10 state-
of-the-art methods for comparison:

1. ASGCN [6] The syntactical features are obtained using GCN via syntax depen-
dency tree while the aspect-specific attention is applied to extract the features related
to aspects.

2. CDT [30] The Bi-LSTM is taken to learn the sentence representations and the GCN
encodes the syntactic information and capture the aspect-related syntactic features.

3. RGAT [12] The aspect-oriented dependency tree is constructed, based on which the
relation graph attention network is developed to learn the dependencies between
aspect and other words.

4. BiGCN [31] A global lexical graph and a concept hierarchy graph are constructed,
which aims to integrate word pair co-occurrence and syntactic dependencies.

5. DualGCN [8] A dual-channel GCN method is proposed to extract both syntactic and
semantic information, and then fuse the two categories of information .

6. BERT-SPC [27] The sentence-aspect pair is sent to BERT model with its token [CLS]
used for sentiment classification.

7. T-GCN [20] A multilayer type-aware GCN is established to learn the relationship
among words.

8. BERT4GCN [32] The intermediate layers of BERT is employed to augment GCN
for ALSC.
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9. DR-BERT [33] The Dynamic Re-weighting Adapter is proposed to encourage model
to better understand aspect-aware sentiment through

4.3. Experimental Results and Analysis

We take two metrics, accuracy and Macro-F1, to evaluate the working performance
of the proposed model. The experimental results of 13 different methods are presented
in Table 2. Comparing with the state-of-the-arts, the TCL network is the best performing
method in most datasets. There is a considerable performance gap between the proposed
model and the baselines. According to Table 2, one can easily see that models using BERT-
based embeddings have a better performance than those of GloVe-based embeddings.
Indeed, the employment of GCN substantially contributes to the encoding of sentence
syntax and semantics. With respect to our model, the effectively use of syntactic information
highlights the contextual words related to the aspect. As a result, more attentive weights
are given to words that contribute to the sentiment delivery. In comparison with the single-
channel GCN (i.e., [6,12,30]), the dual-channel GCN methods (i.e., [8]), which deal with
both the syntactic information and the semantic information, shows their superiorities in
ALSC tasks. In this way, our model not just integrates different types of features, but also
exploits the global information to further optimize the sentiment classification results.

Table 2. Experimental results. Bold numbers represent the best results among methods of the
same type.

Models
Rest14 Lap14 Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

ASGCN [6] 80.77 72.02 75.55 71.05 72.15 70.40
CDT [30] 82.30 74.02 77.19 72.99 74.66 73.66

RGAT [12] 83.30 76.08 77.42 73.76 75.57 73.82
BiGCN [31] 81.97 73.48 74.59 71.84 74.16 73.35

DualGCN [8] 84.27 78.08 78.48 74.74 75.92 74.29

Our TCL 84.27 77.04 79.27 76.05 76.81 75.53

BERT-SPCBERT-SPC [27] 86.15 80.29 81.01 76.69 75.18 74.01
RGAT+BERT [12] 86.60 81.35 78.21 74.07 76.15 74.88

T-GCN [20] 86.16 77.11 77.49 73.01 74.73 73.76
DualGCN+BERT [8] 87.13 81.16 81.80 78.10 77.40 76.02

BERT4GCN [32] 84.75 77.11 77.49 73.01 74.73 73.36
DR-BERT [33] 87.72 82.31 81.45 78.16 77.24 76.10

Our TCL+BERT 87.40 82.12 81.80 78.96 77.55 76.57

However, the TCL network fails to overperform DR-BERT on the Rest14. A possible
explanation is that the samples of distinguishing sentiment occupy significantly different
proportion in the Rest14 dataset, which affects performance of contrastive learning scheme
as the generation of positive and negative samples is obtained by random sampling.

4.4. Ablation Study

An ablation study is carried out on three datasets to investigate the importance of the
contrastive learning losses; see Table 3. The dual contrastive learning scheme concerns the
syntactic-based semantic learning loss function Lsem−syn and the semantic-based syntactic
learning loss function Lsyn−sem. The results show that the ablating of both loss functions
leads to the most significant drop. The main reason is that the employment of global features
within the minibatch does benefit the sentiment delivery. We see that the contribution
of Lsem−syn is slightly higher than that of Lsyn−sem, which indicates the effectiveness of
semantic alignment. By contrast, the contribution of Lconsyn in the syntactic learning module
is relatively small, but its removal still results in an average decrease of 1.2% in accuracy.
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Table 3. Ablation study results. Bold numbers represent the best results.

Models
Rest14 Lap14 Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

TCL w/o Lsyn−sem 82.31 74.14 77.69 74.11 75.18 73.59
TCL w/o Lsem−syn 82.30 74.73 78.01 74.72 75.33 74.01

TCL w/o Lsyn−sem&Lsem−syn 81.94 74.17 77.53 74.57 74.00 72.76
TCL w/o Lconsyn 83.02 74.96 78.32 74.75 75.48 74.27

TCL 84.27 77.04 79.27 76.05 76.81 75.53

4.5. Case Study

Four examples of ALSC tasks are conducted and presented in Figure 5. The aspect
words in green, blue, and red represent the positive, neutral, and negative sentiment polari-
ties, respectively. The first case is a sentence of simple syntax and semantics. All the three
models are capable of identifying the sentiment as negative. Sentence 2 contains multiple
aspects. The ASGCN fails to determine the sentiment of aspect ‘disc drive’, because ‘disc
drive’ is syntactically close to the word negative word ‘not’. Similarly, in sentence 3, the
aspect ‘apple OS’ has a long distance dependency with its opinion word, which results in
the misunderstanding of the sentiment using ASGCN. By contrast, the DualGCN, which
integrates both syntactic and semantic information, can classify the sentiment toward
aspect ‘apple OS’ correctly. In the last sentence, despite the complexity in both the syntax
and semantics, the TCL network is capable of identifying the sentiment polarities of all as-
pects. The application of triplet contrastive learning effectively obtains alignment between
semantic and syntactic features, indicating its efficacy in ALSC of complex sentences.

Sentence ASGCN DualGCN Our TCL

but the mountain lion is just too slow . (✓) (✓) (✓)

the latest version does not have a disc drive . (✓, ✘) (✓, ✓) (✓, ✓)

Works well, and I am extremely happy to be back to an apple OS . (✓, ✘) (✓, ✓) (✓, ✓)

the power plug has to be connected to the power adaptor to 
charge the battery but won't stay connected . (✓, ✘, ✘) (✓, ✘, ✘) (✓, ✓, ✓)

Figure 5. Case study. ALSC results of TCL, ASGCN and DualGCN on testing examples, along
with their predictions and correspondingly, golden labels. The marker!and% indicate the correct
classification and incorrect classification, respectively

4.6. Visualization
4.6.1. Comparison of Syntactic and Semantic Vectors

The distribution of semantic and syntactic representations aims to verify the effective-
ness of the dual contrastive learning scheme. Figure 6 shows the visualization of semantic
and syntactic outputs of the dual contrastive learning module using t-SNE algorithm [34].
To facilitate the comparison, we only take the data with positive and negative sentiment
polarities for visualization. Apparently, both the basic TCL network and TCL without dual
contrastive learning can distinguish one type of representations. Notably, the proposed
model without dual contrastive learning fails to resolve the two types of vectors with the
same sentiment polarity, such as the distribution of red dots, which indicates the importance
of alignment between the semantic and syntactic spaces. Moreover, there are large amount
of overlapping for vectors with different sentiment polarities. The uniformity of syntax and
semantics is absent. In comparison, the TCL network considers both the alignment and
the uniformity of features. With the application of dual contrastive learning scheme, not
only the distribution of the same-polarity-representations is more concentrated, but also
the overlapping within different-polarities-representations are reduced to a large extent.
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Our TCL
Our TCL 𝑤/𝑜

ℒ$%&'$()&ℒ$()'$%&

Figure 6. Visualization of semantic and syntactic vectors. Triangle dots represent syntactic vectors;
round dots represent semantic vectors; dots in red represent positive samples; dots in green represent
negative samples.

4.6.2. Sentiment Classification Visualization

Similarly, the visualization of triplet contrastive learning is also performed; see
Figure 7. For the ASGCN that merely exploits the syntactic features, the neural sam-
ples can be distinguished from those of other two sentiment polarities. Whereas, the
classification between positive and negative samples is challenging, with large amount of
misunderstanding of the sentiment. Since DualGCN tackles both syntactic and semantic
information, the samples of three sentiment polarities can be better discriminated. The
distribution of neural samples is still not that distinctive, especially comparing with the
negative samples. By contrast, our model shows its dominance in sentiment classification.
It is clearly that a more concentrated distribution of samples with the same sentiment is
accessible. Due to the introduction of triple contrastive learning, a better performance of
feature learning and sentiment classification can be expected.

ASGCN DualGCN Our TCL

Figure 7. Visualization of sentiment classification results. The dots in green, red and blue respectively
represent the positive, neural and negative samples.

5. Conclusions

In this work, a TCL network is developed to deal with the ALSC tasks, which not
just exploits the global information, but also obtains the alignment of semantics and
syntax. To start with, an aspect-oriented dependency tree is constructed by reshaping
the syntactic adjacency matrix. Then, the sentence-level contrastive learning is applied
to highlight the effectiveness of key phrases toward sentiment delivery. Two GCNs are
employed to respectively encode the syntactic and semantic information. A dual contrastive
learning scheme is proposed to align the features from both syntactic and semantic spaces.
Experiments are carried out on three benchmark datasets. Our method produces results
considerably better than the state-of-the-art methods on the task of ALSC.



Mathematics 2022, 10, 4099 13 of 14

Author Contributions: Conceptualization, H.X. and Y.X.; methodology, H.X.; formal analysis, H.X.
and Z.Y.; writing—original draft preparation, H.X. and Z.Y.; writing—review and editing, Y.X. and
H.Z.; supervision, Y.X., Z.H. and H.Z.; funding acquisition H.Z. and Z.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Characteristic Innovation Projects of Guangdong Colleges
and Universities (Nos. 2018KTSCX049), the Science and Technology Plan Project of Guangzhou under
Grant Nos. 202102080258 and 201903010013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, D.; Qin, B.; Feng, X.; Liu, T. Effective LSTMs for target-dependent sentiment classification. arXiv 2015, arXiv:1512.01100.
2. Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive attention networks for aspect-level sentiment classification. arXiv 2017,

arXiv:1709.00893.
3. Chen, P.; Sun, Z.; Bing, L.; Yang, W. Recurrent attention network on memory for aspect sentiment analysis. In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017;
pp. 452–461.

4. Xu, G.; Zhang, Z.; Zhang, T.; Yu, S.; Meng, Y.; Chen, S. Aspect-level sentiment classification based on attention-BiLSTM model
and transfer learning. Knowl.-Based Syst. 2022, 245, 108586. [CrossRef]

5. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
6. Zhang, C.; Li, Q.; Song, D. Aspect-based sentiment classification with aspect-specific graph convolutional networks. arXiv 2019,

arXiv:1909.03477.
7. Xu, K.; Zhao, H.; Liu, T. Aspect-specific heterogeneous graph convolutional network for aspect-based sentiment classification.

IEEE Access 2020, 8, 139346–139355. [CrossRef]
8. Li, R.; Chen, H.; Feng, F.; Ma, Z.; Wang, X.; Hovy, E. Dual graph convolutional networks for aspect-based sentiment analysis.

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Bangkok, Thailand, 1–6 August 2021; pp. 6319–6329.

9. Pang, S.; Xue, Y.; Yan, Z.; Huang, W.; Feng, J. Dynamic and multi-channel graph convolutional networks for aspect-based
sentiment analysis. In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online,
1–6 August 2021; pp. 2627–2636.

10. Wang, T.; Isola, P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In
Proceedings of the International Conference on Machine Learning. PMLR, Virtual, 13–18 July 2020; pp. 9929–9939.

11. Chen, Q.; Zhang, R.; Zheng, Y.; Mao, Y. Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation.
arXiv 2022, arXiv:2201.08702.

12. Wang, K.; Shen, W.; Yang, Y.; Quan, X.; Wang, R. Relational graph attention network for aspect-based sentiment analysis. arXiv
2020, arXiv:2004.12362.

13. Hu, J.; Li, Z.; Chen, Z.; Li, Z.; Wan, X.; Chang, T.H. Graph Enhanced Contrastive Learning for Radiology Findings Summarization.
arXiv 2022, arXiv:2204.00203.

14. Karamibekr, M.; Ghorbani, A.A. Sentiment analysis of social issues. In Proceedings of the 2012 international conference on social
informatics, Alexandria, VA, USA, 14–16 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 215–221.

15. Pylkkänen, L. The neural basis of combinatory syntax and semantics. Science 2019, 366, 62–66. [CrossRef]
16. Shahi, T.; Sitaula, C.; Paudel, N. A Hybrid Feature Extraction Method for Nepali COVID-19-Related Tweets Classification.

Comput. Intell. Neurosci. 2022, 2022, 5681574. [PubMed]
17. Sitaula, C.; Basnet, A.; Mainali, A.; Shahi, T.B. Deep learning-based methods for sentiment analysis on Nepali covid-19-related

tweets. Comput. Intell. Neurosci. 2021, 2021, 2158184. [CrossRef] [PubMed]
18. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
19. Yang, M.; Jiang, Q.; Shen, Y.; Wu, Q.; Zhao, Z.; Zhou, W. Hierarchical human-like strategy for aspect-level sentiment classification

with sentiment linguistic knowledge and reinforcement learning. Neural Netw. 2019, 117, 240–248. [CrossRef]
20. Tian, Y.; Chen, G.; Song, Y. Aspect-based sentiment analysis with type-aware graph convolutional networks and layer ensemble.

In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Online, 6–11 June 2021; pp. 2910–2922.

21. Yan, Z.; Pang, S.; Xue, Y. Semantic Enhanced Dual-Channel Graph Communication Network for Aspect-Based Sentiment Analysis.
In Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing, Guilin, China,
24–25 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 531–543.

http://doi.org/10.1016/j.knosys.2022.108586
http://dx.doi.org/10.1109/ACCESS.2020.3012637
http://dx.doi.org/10.1126/science.aax0050
http://www.ncbi.nlm.nih.gov/pubmed/35281187
http://dx.doi.org/10.1155/2021/2158184
http://www.ncbi.nlm.nih.gov/pubmed/34737773
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1016/j.neunet.2019.05.021


Mathematics 2022, 10, 4099 14 of 14

22. Gao, T.; Yao, X.; Chen, D. Simcse: Simple contrastive learning of sentence embeddings. arXiv 2021, arXiv:2104.08821.
23. Xu, P.; Chen, X.; Ma, X.; Huang, Z.; Xiang, B. Contrastive Document Representation Learning with Graph Attention Networks.

arXiv 2021, arXiv:2110.10778.
24. Li, Z.; Xu, B.; Zhu, C.; Zhao, T. CLMLF: A Contrastive Learning and Multi-Layer Fusion Method for Multimodal Sentiment

Detection. arXiv 2022, arXiv:2204.05515.
25. Liang, B.; Luo, W.; Li, X.; Gui, L.; Yang, M.; Yu, X.; Xu, R. Enhancing aspect-based sentiment analysis with supervised contrastive

learning. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Online, 1–5
November 2021; pp. 3242–3247.

26. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational
Linguistics: Doha, Qatar, 2014; pp. 1532–1543. [CrossRef]

27. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

28. Pontiki, M.; Galanis, D.; Pavlopoulos, J.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S. SemEval-2014 Task 4: Aspect
Based Sentiment Analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin,
Ireland, 23–24 August 2014; Association for Computational Linguistics: Dublin, Ireland, 2014; pp. 27–35. [CrossRef]

29. Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; Xu, K. Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment
Classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), Baltimore, MD, USA, 22–27 June 2014; Association for Computational Linguistics: Baltimore, MD, USA, 2014; pp. 49–54.
[CrossRef]

30. Sun, K.; Zhang, R.; Mensah, S.; Mao, Y.; Liu, X. Aspect-level sentiment analysis via convolution over dependency tree. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 5679–5688.

31. Zhang, M.; Qian, T. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Punta Cana, Dominican Republic, 8–12
November 2020; pp. 3540–3549.

32. Xiao, Z.; Wu, J.; Chen, Q.; Deng, C. BERT4GCN: Using BERT Intermediate Layers to Augment GCN for Aspect-based Sentiment
Classification. arXiv 2021, arXiv:2110.00171.

33. Zhang, K.; Zhang, K.; Zhang, M.; Zhao, H.; Liu, Q.; Wu, W.; Chen, E. Incorporating Dynamic Semantics into Pre-Trained
Language Model for Aspect-based Sentiment Analysis. arXiv 2022, arXiv:2203.16369.

34. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/S14-2004
http://dx.doi.org/10.3115/v1/P14-2009

	Introduction
	Related Work
	Aspect Level Sentiment Classification
	Contrastive Learning

	Proposed Method
	Syntactic-Aware GCN Module
	Relational Graph Attention Module
	Syntactic Contrastive Learning Scheme

	Semantic-Learning GCN Module
	Biaffine Unit
	Dual Contrastive Learning Scheme
	Loss Function

	Experiments
	Datasets and Settings
	Baselines
	 Experimental Results and Analysis
	Ablation Study
	Case Study
	Visualization
	Comparison of Syntactic and Semantic Vectors
	Sentiment Classification Visualization


	Conclusions
	References

