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Abstract: In this paper, we consider a class of additive functionals of a finite or countable collection
of the group frequencies of an empirical point process that corresponds to, at most, a countable
partition of the sample space. Under broad conditions, it is shown that the asymptotic behavior
of the distributions of such functionals is similar to the behavior of the distributions of the same
functionals of the accompanying Poisson point process. However, the Poisson versions of the additive
functionals under consideration, unlike the original ones, have the structure of sums (finite or infinite)
of independent random variables that allows us to reduce the asymptotic analysis of the distributions
of additive functionals of an empirical point process to classical problems of the theory of summation
of independent random variables.
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1. Introduction

In this paper, we study a class of additive functionals (statistics) of a finite or countable
collection of group frequencies constructed by a sample of size n with a finite or countable
partition of the sample space. Under broad conditions, it is shown that, as n → ∞, the
asymptotic behavior of distributions of the additive functionals under consideration is com-
pletely similar to the behavior of distributions of the same functionals of the accompanying
Poisson point process. From here it is easy to establish that the above-mentioned weak
convergence is equivalent to that for the same additive functionals but with independent
group frequencies, which are constructed, respectively, using a finite or countable collection
of independent copies of the original sample, when we fix in the i-th partition element
only the points from the i-th independent copy of the original sample. In other words, in
the case under consideration, we remove the dependence of the initial group frequencies
with a multinomial distribution. This phenomenon makes it possible to directly use the
diverse tool of the summation theory of independent random variables to study the limiting
behavior of the additive statistics being considered.

The structure of this paper is as follows. In Section 2, we introduce the empirical
and accompanying Poisson vector point processes and formulate some important results
regarding their connection. In Section 3, we introduce a class of additive statistics and
give a number of examples. Section 4 contains the main result of the paper, i.e., a duality
theorem, which states that an original additive statistic with some normalizing and cen-
tering constants weakly converges to a limit if, and only if, their Poisson version with the
same normalizing and centering constants weakly converges to the same limit. In Section 5,
we discuss some applications of the duality theorem. In Section 6, we present moment
inequalities connecting the original additive statistics and their Poisson versions. Section 7
is devoted to asymptotic analysis of first two moments of additive statistics connected with
an infinite multinomial urn model. Section 8 contains proofs of all results of the paper.
Finally, in Section 9, we summarize the results and discuss some their extensions.
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2. Empirical and Poisson Point Processes

Let {X(k)
i , i ≥ 1}, k = 1, m be a finite set of independent copies of a sequence of

independent identically distributed random variables with values in an arbitrary measur-
able space (X,A) and distribution P. For any natural n1, . . . , nm, consider m independent
empirical point processes based on respective samples X(k)

1 , . . . , X(k)
nk , k = 1, m:

V(k)
nk (A) :=

nk

∑
i=1

IA(X(k)
i ), k = 1, m, A ∈ A.

Define the m independent accompanying Poisson point processes as

Π(k)
nk (A) :=

πk(nk)

∑
i=1

IA(X(k)
i ), k = 1, m, A ∈ A,

where πk(t), k = 1, m, are independent standard Poisson processes on the positive half-
line, which do not depend on all sequences {X(k)

i ; i ≥ 1}, k = 1, m. In other words,
Πnk (A) = Vπk(nk)

(A) for all k = 1, m. We consider the point processes Vnk (·) and Πnk (·) as
stochastic processes with trajectories from the measurable space (BA, C) of all bounded
functions indexed by the elements of the set A, with the σ-algebra C of all cylindrical
subsets of the space BA. The distributions of stochastic processes Vnk (·) and Πnk (·) on C
are defined in a standard way.

Now, we introduce the vector-valued empirical and accompanying Poisson point
processes

V n̄(A) := (V(1)
n1 (A), . . . , V(m)

nm (A)) ≡ V n̄,

Πn̄(A) := (Π(1)
n1 (A), . . . , Π(m)

nm (A)) ≡ Πn̄,

where n̄ = (n1, n2, . . . , nm). The vector-valued point processes V n̄ and Πn̄ are considered
as random elements with values in the measurable space ((BA)m, Cm).

Let A0 ∈ A with p := P(A0) ∈ (0, 1). Consider the restrictions of the vector point
processes V n̄ and Πn̄ to the set

A0 := {A ∈ A : A ⊆ A0}. (1)

These so-calledA0-restrictions are denoted by V0
n̄ and Π0

n̄, respectively. For the distributions
L(V0

n̄) and L(Π0
n̄) in the measurable space ((BA)m, Cm), there are the following three

assertions (some particular versions of these assertions have been proved in [1,2]).

Theorem 1. The following inequality is valid:

L(V0
n̄) ≤

1
(1− p)mL(Π

0
n̄). (2)

Corollary 1. For any non-negative measurable functional F defined on ((BA)m, Cm),

EF(V0
n̄) ≤

1
(1− p)m EF(Π0

n̄); (3)

the expectation on the right-hand side of (3) may be infinite at that.

The following result plays an essential role in proving the main result of the paper—a
duality limit theorem for the distributions L(V n̄) and L(Πn̄) (see Theorem 3 below).

Theorem 2. For each multi-index n̄, one can define some vector point processes V0∗
n̄ and Π0∗

n̄ on a
common probability space so that they coincide in distribution with the point processes V0

n̄ and Π0
n̄,

respectively, and
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sup
Ac⊆A0

P

(
sup

A∈Ac

∥∥∥V0∗
n̄ (A)−Π0∗

n̄ (A)
∥∥∥ 6= 0

)
≤ 1− (1− p)m < mp, (4)

where ‖(z1, . . . , zm)‖ := maxk≤m |zk|, and the outer supremum is taken over all at most countable
families Ac of sets from A0.

Remark 1. In Theorem 2, the sup-seminorm sup
A∈Ac

‖ · ‖ is obviously measurable with respect to the

cylindrical σ-algebra Cm. If instead of Ac we substitute the entire class A0 (possibly uncountable)
then this measurability may no longer exist (unless, of course, the point processes under consideration
do not have the separability property). Nevertheless, the assertion of Theorem 2 remains valid in
this case if the probability P is replaced by the outer probability P∗(No) := infN∈Cm :N⊇No P(N).
However, the outer probability has only the property of semiadditivity, which makes it difficult
to use.

Let measurable sets ∆1, ∆2, . . . form a finite or countable partition of the sample space under
the condition pi := P(∆i) > 0 for all i. Without loss of generality, we can assume that the sequence
{pi} is monotonically nonincreasing. Denoted by ν

(k)
nk1, ν

(k)
nk2, . . ., k = 1, m, the corresponding group

frequencies are defined by the sample X(k)
1 , . . . , X(k)

nk . Put

ν̄in̄ := V n̄(∆i) =
(

ν
(1)
n1i , . . . , ν

(m)
nmi

)
, i = 1, 2, . . . .

Let us agree that everywhere below the limit relation n̄→ ∞ will be understood as nk → ∞
for all k = 1, m.

3. Additive Statistics: Examples

In the paper, we consider a class of additive statistics of the form

Φ f (V n̄) := ∑
i≥1

fin̄(ν̄in̄), (5)

where f ≡ { fin̄} is an array of arbitrary finite functions defined on Zm
+ under the condition

∑
i≥1
| fin̄(0, . . . , 0)| < ∞ ∀n, (6)

which ensures the correct definition of the functional Φ f (V n̄) in the case of a countable
partition of the sample space, since the sum under consideration contains only a finite set of
nonzero random vectors ν̄in̄. In the case of a finite partition and m = 1, additive functionals
of the form (5) were considered in [3–5].

We now give some examples of such statistics.
(1) Consider a finite partition {∆i; i = 1, . . . , N} of the sample space. Put fin̄(x̄)

:= |x̄−n̄pi |2
|n̄pi |

, i = 1, . . . , N, where | · | is the standard Euclidean norm in Rm. Then the functional

Φχ2(V n̄) :=
N

∑
i=1

|ν̄in̄ − n̄pi|2
|n̄pi|

(7)

is an m-variate version of a well-known χ2-statistic. Note that, in the present paper, we are
primarily interested in the case where N ≡ N(n̄)→ ∞ as n̄→ ∞.

(2) Let now the sizes of all m samples be equal: nj = n, j = 1, . . . , m. In an equivalent
reformulation of the original problem, we consider a sample of m-dimensional observations
{(X1

i , . . . , Xm
i ); i ≤ n} under the main hypothesis that the sample vector coordinates are

independent and have the same N-atomic distribution with unknown masses p1, . . . , pN .
In this case, the log-likelihood function can be represented as the additive functional

Φlog(V n̄) :=
N

∑
i=1

(ν̄in̄, 1̄) log pi,
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where 1̄ is the unit vector in Rm and (·, ·) is the Euclidean inner product.
(3) Consider a finite or countable partition {∆i; i ≥ 1}. Let fin̄(x̄) ≡ f (x̄) := IB(x̄) be

the indicator function of some subset B ⊂ Zm
+ . Then the functional

ΦIB(V n̄) := ∑
i≥1

IB(ν̄in̄) (8)

counts the number of partition elements (cells) containing any number of vector sample
observations from the range B in a multinomial scheme (finite or infinite) of placing particles
into cells (see [6–12]). Note that in the case of an infinite multinomial scheme in (8), it is
additionally assumed that 0 /∈ B.

In the case m = 2 and B = {(x, y) ∈ Z2
+ : x = 0, y > 0}, the two-sample statistic (8)

counts the number of nonempty cells after second (“additional”) series of trials (“future”
sample), which were empty in the first series (“original” sample). Statistics of such a kind
play an important role in the theory of species sampling (for example, see [13,14]). In this
case the functional (8) is called the number of unseen species in the original sample.

(4) In the case m = 1, consider the joint distribution (see [10]) of the random variables

ΦIB(Vn1), ΦIB(Vn1+n2), . . . , ΦIB(Vn1+...+nm)

defined in (8) by the sample (X1, . . . , XN), with N = n1 + . . . + nm. It is clear that studying
the asymptotic behavior of the joint distribution of these random variables (for example,
proving the multidimensional central limit theorem) can be reduced to the study of the
limit distributions of the linear combinations of the form

a1ΦIB(Vn1) + a2ΦIB(Vn1+n2) + . . . + amΦIB(Vn1+...+nm)

for almost all vectors (a1, . . . , am) with respect to the Lebesgue measure on Rm. It is easy to
see that, for any natural j ≤ m,

Vn1+...+nj = V(1)
n1 + . . . + V(j)

nj ,

where the empirical point processes V(1)
n1 , . . . , V(j)

nj are defined by the above-mentioned in-
dependent subsamples. So, in this case, we deal with a functional of the form (5) defined by
m independent empirical point processes corresponding to the m independent subsamples
(X1, . . . , Xn1), (Xn1+1, . . . , Xn1+n2),. . . , (XN−nm+1, . . . , XN), and with the array of functions

fin̄(x̄) ≡ f (x1, . . . , xm) := a1 IB(x1) + a2 IB(x1 + x2) + . . . + am IB(x1 + . . . + xm). (9)

(5) Consider the stochastic process {ΦIB(V n̄); B ⊂ Zm
+} indexed by all subsets of Zm

+.
As was noted above, studying the asymptotic behavior of the joint distributions of this
process can be reduced to studying the asymptotic behavior of the distributions of any
linear combinations of corresponding one-dimensional projections of this process, i.e., to
studying the asymptotic behavior of the distributions of functionals of the form (5) for
m = 1 and the array of functions

fin̄(x) ≡ f (x) := a1 IB1(x) + a2 IB2(x) + . . . + ar IBr (x) (10)

for almost all vectors (a1, . . . , ar). For one-point sets, the asymptotic analysis of the above-
mentioned joint distributions can be found, for example, in [7–12].

(6) Consider the case m = 1 and the functional

Φ f (Vn) := ∑
i≥1

npi IB(νin), (11)

which counts the sampling ratio of the cells containing any number of particles from the
range B. For the one-point set B = {0}, such functional was considered in [9]. In general, if
instead of npi in (11) we consider arbitrary weights g(n, i) > 0 (under condition (6)) with
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one or another interpretation, the functional Φ f (Vn) in this case will be interpreted as the
total weight of the corresponding cells.

4. Poissonization: Duality Theorem

In this section, we present the main result of the paper—a duality theorem for additive
statistics under consideration. First of all, we explain the term “Poissonization”. It means
that studying the limit behavior of the original additive statistics, we reduce the problem to
studying the following “Poissonian version” of the functional (5) under condition (6):

Φ f (Πn̄) := ∑
i≥1

fin̄(π̄in̄), (12)

where π̄in̄ =
(

π
(1)
n1i , . . . , π

(m)
nmi

)
, π

(k)
nk i := Πnk (∆i), i ≥ 1, is a sequence of independent Poisson

random variables with respective parameters nk pi. It is clear that the functional (12) is
well defined with probability 1 since only a finite number of the vectors {π̄in̄} differ from
the zero vector. Independence of the summands is a crucial difference of the Poisson
version of an additive functional from the original one. Some elements of Poissonization
for additive functionals of the form (8) and (10) are contained, for example, in [9,12].
In [9], the author used the well-known representation of an empirical point process as
the conditional Poisson point process under the condition that the number of atoms of
the accompanying Poisson point process equals n. Moreover, in [9], the simple known
representation π(n) = n + Op(

√
n) was employed, where Op(

√
n) denotes a random

variable such that Op(
√

n)/
√

n is bounded in probability as n → ∞. In [12], proving the
multivariate central limit theorem for the above-mentioned joint distributions (in fact, for
functionals of the form (10) in the case of one-point subsets {Bi}), the authors applied
a reduction to the joint distributions of the Poissonian versions of additive functionals
using known upper bounds for a multivariate Poisson approximation to a multinomial
distribution (see also [15]). The main goal of the paper is to establish a duality theorem,
which demonstrates absolute identity of the asymptotic behavior of the distributions of the
additive functionals under consideration and their Poissonian versions.

First, we formulate a crucial auxiliary assertion in proving the main result.

Lemma 1. Let {∆n̄} be an arbitrary scalar array satisfying the condition fin̄(πin̄)∆n̄
p→ 0 as

n̄→ ∞ for every fixed i. Then, for each multiindex n̄, one can define on a common probability space
a pair of point processes V∗n̄,∆n̄ and Π∗n̄,∆n̄ such that L(V∗n̄,∆n̄) = L(V n̄), L(Π

∗
n̄,∆n̄) = L(Πn̄),

and for any ε > 0,

P
(
|∆n̄|

∣∣∣Φ f (V
∗
n̄,∆n̄)−Φ f (Π

∗
n̄,∆n̄)

∣∣∣ > ε
)
→ 0 as n̄→ ∞. (13)

Remark 2. Lemma 1 only asserts that the marginal distributions (that is, for each n̄ separately) of
the arrays {V∗n̄,∆n̄ , n̄ ∈ Zm

+} and {V n̄, n̄ ∈ Zm
+}, and also {Π∗n̄,∆n̄ , n̄ ∈ Zm

+} and {Πn̄, n̄ ∈ Zm
+}.

Note that the probability in (13) is precisely determined by the marginal distributions of the
mentioned random arrays, i.e., formally, it also depends on n̄. Without loss of generality, we can
assume that pairs of point processes (V∗n̄,∆n̄ , Π∗n̄,∆ barn

) are independent in n̄ , and on this extended
probability space, the universal probability measure P in (13) is given in the standard way, which no
longer depends on n̄. In this case it is correct to speak about the convergence to zero in probability of
the sequence of random variables in (13).

Lemma 1 gives the key to the proof of the following duality theorem, a criterion
for the weak convergence of distributions of functionals of the point processes under
consideration. The essence of this result is that the asymptotic behavior of the distributions
of additive functionals of the point processes V n̄ and Πn̄ is exactly the same. In addition,
one can also indicate a third class of additive functionals (under condition (6)) that has the
same property:
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Φ∗f := ∑
i≥1

fin̄(ν̄
∗
in̄),

where {ν̄∗in̄, i ≥ 1} is a sequence of independent random vectors such that L(ν̄∗in̄) = L(ν̄in̄)
for all i. The functional Φ∗f is well defined due to the Borel–Cantelli lemma and the simple
estimate P(ν̄∗in̄ 6= 0) = P(ν̄in̄ 6= 0) ≤ m‖n̄‖pi.

Let us agree that the symbol «=⇒» in what follows will denote the weak convergence
of distributions. The main result of the paper is as follows.

Theorem 3. Under the conditions of Lemma 1, the following three limit relations are equivalent as
n̄→ ∞:

(1) L
(

Φ f (V n̄)∆n̄ −Mn̄

)
=⇒ L(γ),

(2) L
(

Φ f (Πn̄)∆n̄ −Mn̄

)
=⇒ L(γ),

(3) L
(

Φ∗f ∆n̄ −Mn̄

)
=⇒ L(γ),

where Mn̄ and ∆n̄ are some scalar arrays and γ is some random variable.

5. Applications

Theorem 3 allows us to reduce the asymptotic analysis of the distributions of the
additive functionals under consideration to a similar analysis of their Poissonian versions,
i.e., to the asymptotic analysis of distributions of sums (finite or infinite) of independent
random variables, or to reduce the problem to studying the limit behavior of the distributi-
ons L

(
Φ f (V n̄

)
, absolutely ignoring the dependence of the random variables {ν̄in̄, i ≥ 1}.

Note also that, under some rather broad assumptions, the law L(γ) will be infinitely
divisible. A detailed analysis of such conditions and corresponding examples will be
considered in a separate paper. Here we present only a few of these corollaries, focusing
our attention on the equivalence of the first two relations of Theorem 3.

First of all, we note one useful property of the expectations of the functionals under
consideration as functions of n̄.

Lemma 2. Let maxn̄ supx̄ | fin̄(x̄)| ≤ Ci, ∑
i≥1

Ci pi < ∞, and

∑
i≥1

E| fin̄(π̄in̄)| < ∞ ∀n̄. (14)

Then the relations lim
n̄→∞

|EΦ f (V n̄)| = ∞ and lim
n̄→∞

|EΦ f (Πn̄)| = ∞ are equivalent. In the case of

infinite limits,
EΦ f (V n̄) ∼ EΦ f (Πn̄) as n̄→ ∞.

Remark 3. For functionals of the form (8) in an infinite multinomial scheme, the conditions of
Lemma 2 are typical. Let m = 1 and B := {j : j > k} for any k ≥ 0. Then

lim
n→∞

EΦ f (Vn) = lim
n→∞ ∑

i≥1
P(νin > k) = ∞

since, by virtue of the law of large numbers, lim
n→∞

P(νin > k) → 1 for every fixed i. Moreover,

in the case under consideration, obviously, EΦ f (Vn) ≤ n. Similarly, without any restrictions
on the probabilities {pi}, the infinite limits in Lemma 2 for functionals of the form (8) (and even
more so for (11)) also hold for the set B consisting of all odd natural numbers. Here the limit
relation lim

n→∞
EΦ f (Πn̄) ≡ lim

n→∞
∑

i ge1
P(πin ∈ B) = ∞ follows immediately from the equality

P(πin ∈ B) = 1
2 (1− e−2npi ).
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It is also worth noting that for some sets B the main contribution to the limit behavior
of the series ∑

i≥1
P(πin ∈ B) can be made not only by their initial segments but also tails.

For example, this will be the case for any one-point sets Bk := {k} for k > 0 if the group
probabilities are given as pi = Ci−1−b or pi = ce−Co iα for some constants c, C, Co, b > 0
and α ∈ (0, 1). In this case, for any subset B of natural numbers in the definition of the
functionals (8) and (11), the expectation limits indicated in Lemma 2 will be infinite (see
Section 7 and [9,12]). On the other hand, if pi = ce−Co i, then for any one-point set the
expectations mentioned will be bounded uniformly in n (see Section 7 and [9,12]). For
more complex functionals with kernels (9) or (10) for the above-mentioned distributions
{pi}, one can find sufficiently broad conditions that ensure unbounded increase in their
expectations and variances as n̄→ ∞ for almost all vectors (a1, . . . , ar) ∈ Rr (see Section 7).

Now we present one of the corollaries of Theorem 3, namely, the law of large numbers
for the additive functionals under consideration, setting in this theorem
∆n̄ := (EΦ f (Πn̄))−1, Mn̄ := 0, and γ := 1.

Corollary 2. Let the conditions of Lemma 2 be fulfilled. If |EΦ f (Πn̄)| → ∞ as n̄→ ∞ then the
following criterion holds:

Φ f (V n̄)

EΦ f (V n̄)

p−→ 1 iff
Φ f (Πn̄)

EΦ f (Πn̄)

p−→ 1;

in this case, the normalizations EΦ f (V n̄) and EΦ f (Πn̄) can be swapped.

Remark 4. In consideration of Chebyshev’s inequality, a sufficient condition for the limit relations
in Corollary 2 is as follows:

∑
i≥1

D fin̄(π̄in̄)(
∑

i≥1
E fin̄(π̄in̄)

)2 → 0.

For example, let fin̄(·) ≥ 0 and sup
x̄,i,n̄

fin̄(x̄) ≤ C0. Then D fin̄(π̄in̄) ≤ C0E fin̄(π̄in̄) and

∑
i≥1

D fin̄(π̄in̄)(
∑

i≥1
E fin̄(π̄in̄)

)2 ≤ C0

∣∣∣∣∣∑i≥1
E fin̄(π̄in̄)

∣∣∣∣∣
−1

→ 0.

In particular, this estimate is valid in the case fin̄(x̄) ≡ f (x̄) := IB(x̄), with 0 /∈ B, if only
EΦ f (Πn̄) = ∑

i≥1
P(π̄in̄ ∈ B)→ ∞.

We now formulate an analog of Lemma 2 for the variances of the functionals under
consideration.

Lemma 3. Under the conditions maxn̄ supx̄ | fin̄(x̄)| ≤ Ci ∀i and ∑
i≥1

C2
i pi < ∞ the limit relation

lim
n̄→∞

DΦ f (V n̄) = ∞ holds if and only if lim
n̄→∞

DΦ f (Πn̄) = ∞. In the case of infinite limit the

following equivalence is valid: DΦ f (V n̄) ∼ DΦ f (Πn̄) as n̄→ ∞.

Lemma 3 and Theorem 3 imply the following important criterion, which allows us to
reduce proving the central limit theorem for additive functionals Φ f (V n̄) to proving the
same assertion for the Poissonian version Φ f (Πn̄).

Corollary 3. Under the conditions of Lemma 3 and DΦ f (Πn̄)→ ∞ as n̄→ ∞ the limit relation
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L
(

Φ f (V n̄)− EΦ f (V n̄)

D1/2Φ f (V n̄)

)
=⇒ N(0, 1) as n̄→ ∞,

is valid if, and only if,

L
(

Φ f (Πn̄)− EΦ f (Πn̄)

D1/2Φ f (Πn̄)

)
=⇒ N (0, 1) as n̄→ ∞,

where N (0, 1) is the standard normal distribution. In this case, the normalizing and centering
sequences in these two limit relations can be, respectively, swapped.

In order to prove this corollary we should put in Theorem 3 ∆n̄ := D−1/2Φ f (Πn̄),
Mn̄ := EΦ f (V n̄)D−1/2Φ f (Πn̄), and L(γ) := N (0, 1). In this case, Lemma 3 allows us only
to replace the normalizing and centering sequences in Theorem 3 with some equivalent
sequences.

Remark 5. The validity of the central limit theorem for the sequence Φ f (Πn̄) in Theorem 3 will be
justified if, say, the third-order Lyapunov condition is met:

∑
i≥1

E| fin̄(π̄in̄)− E fin̄(π̄in̄)|3(
∑

i≥1
D fin̄(π̄in̄)

)3/2 → 0 as n̄→ ∞.

For example, let sup
x̄,i,n̄
| fin̄(x̄)| ≤ C0. Then it is easy to see that

∑
i≥1

E| fin̄(π̄in̄)− E fin̄(π̄in̄)|3 ≤ 2C0 ∑
i≥1

D fin̄(π̄in̄).

Thus, if DΦ f (Πn̄)→ ∞as n̄→ ∞, then the Lyapunov condition will be met and the approval
of the above investigation will take place. So an important special case fin̄(x̄) := IB(x̄) is included
in the scheme at issue if

DΦIB(Πn̄) = ∑
i≥1

P(π̄in̄ ∈ B)(1− P(π̄in̄ ∈ B))→ ∞ as n̄→ ∞.

Note that examples for which the specified variance property takes place or is violated are given,
for example, in [9].

Finally, here is another consequence of Theorem 3, relating to the asymptotic behavior of
χ2-statistics in (7) at m = 1 and N ≡ N(n)→ ∞. First of all, note that

EΦχ2(Πn) = N,

Dn := DΦχ2(Πn) = 2N +
N

∑
i=1

1
npi

.

Corollary 4. Let N ≡ N(n) → ∞ as n → ∞. Then the following two asymptotic relations
are equivalent:

L
(

Φχ2(Vn)− N

Dn
1/2

)
=⇒ N (0, 1), (15)

L
(

Φχ2(Πn)− N

Dn
1/2

)
=⇒ N (0, 1). (16)

Note that in the present case, the requirement of Lemma 1 is met, since each term
(νin−npi)

2

npi
(as a sequence of n) is bounded in probability due to Markov’s inequality, and
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therefore, with the normalizing sequence ∆n := D−1
n , this term will tend to zero in proba-

bility as n→ ∞.

Remark 6. In the relations (15) and (16) we can say just about the double limit when N, n→ ∞
because this assertion is missing restrictions on the rate of increase in the sequence N(n). The
proposed formulation in Corollary 4, equivalent to the one just mentioned, is more convenient to
refer to Theorem 3. Note that the centering sequence En can be replaced with its equivalent sequence
EΦχ2(Vn) = N − 1. Replacement in the normalization in (15) the variance Dn with the variance
of the χ2-statistic itself, i.e., by the term (for example, see [16])

DΦχ2(Vn) = 2N +
1
N

N

∑
i=1

1
npi
− 3N − 2

n
,

is possible only if these two variances are equivalent. For example, this would be the case if
mini≤N npi → ∞. This means that the growth rate of the sequence N ≡ N(n) is subject to
appropriate constraints, which is not the case in the above consequence. So, in this assertion we can
talk about a double limit as n, N → ∞.

The formulated criterion allows us to establish a fairly general sufficient condition for
the asymptotic normality of χ2-statistics with an increasing number of groups.

Theorem 4. Let N ≡ N(n)→ ∞ as n→ ∞. Then the asymptotic relation (15) is valid if

∑N
i=1(npi)

−2(
N + ∑N

i=1(npi)−1
)3/2 −→ 0 (17)

as n→ ∞.

The problem of finding more or less broad sufficient conditions for asymptotic nor-
mality χ2-statistics with a growing number of groups were studied by many authors in the
second half of the last century (for example, see [3–5,16–18]). Note that all known sufficient
conditions for the above weak convergence imply fulfillment of the asymptotic relation (17).
For example, the condition mini≤N npi → ∞ along with N → ∞ (see [17,18]), obviously
immediately entails relation (17). It is equally obvious that the requirement of the so-called
regularity of multinomial models (see [3–5]), i.e.,

0 < c1 ≤ min
i≤N

Npi, max
i≤N

Npi < c2 < ∞,

where the constants c1 and c2 are independent of N, also implies (17). On the other hand, it
is easy to construct examples in which the regularity requirement of the multinomial model
is violated but relation (17) is valid. For example, let pi := CN i−1−b, i = 1, . . . , N, where

b > 0 and CN :=
(

∑i≤N i−1−b
)−1

. It is easy to see that, as N → ∞, the sums ∑N
i=1 p−2

i and

∑N
i=1 p−1

i increase as N3+2b and N2+b, respectively. Therefore, as n, N → ∞, the ratio in (17)
is equivalent to

N3+2b
√

n(N2+b)3/2 =
Nb/2
√

n

up to a constant factor. So, here we already need to measure the growth rate N with
n. Obviously, in this case, in order to fulfill condition (17), you need to require that
N = o(n1/b). If the probabilities pi decrease exponentially then the growth rate zone
for N narrows to o(log n). It is worth to note that for the above-mentioned power-type
probabilities at issue the condition mini≤N npi → ∞ implies the asymptotic relation
N = o(n1/(b+1)) that is more restrictive than the above constraint.
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6. Probability and Moment Inequalities

The next theorem is related to estimation of the distribution tails of additive functionals.

Theorem 5. Let fin̄(·) ≥ 0 for all i. Then, for any x > 0,

P(Φ f (V n̄) ≥ x) ≤ 2C∗P(Φ f (Πn̄) ≥ x/2), (18)

where C∗ := min
j≥1

max{(∑i≤j pi)
−1, (∑i>j pi)

−1}. If additionally supx f1n̄(x) ≤ c0 then

P(Φ f (V n̄) ≥ x) ≤ p−1
1 P(Φ f (Πn̄) ≥ x− c0). (19)

Remark 7. In (19), the constant c0 may depend on n̄. What is more, we can use the truncation of
the random variable f1n̄(νin̄) at the level c0, while adding to the right-hand side of inequality (19)
the probability P( f1n̄(νin̄) > c0).

Corollary 5. Under the conditions of Theorem 5, let F be a continuous nondecreasing function
defined on R+, with F(0) = 0. If EF(2Φ f (Πn̄)) < ∞ then

EF(Φ f (V n̄)) ≤ 2C∗EF(2Φ f (Πn̄)). (20)

As an example, consider the functional ΦIB(V n̄) defined in (8). Then, as a consequence
of (19) and Chernoff’s upper bound [19] for the distribution tail of a sum of independent
nonidentically distributed Bernoulli random variables (the transition from finite sums to
series in this case is obvious), we obtain the following result.

Corollary 6. Put Mn(B) := EΦIB(Πn̄) = ∑i≥1 P(πin ∈ B). Then for any ε > (Mn(B))−1 the
following inequality holds:

P

(∣∣∣∣∣ΦIB(V n̄)

Mn(B)
− 1

∣∣∣∣∣ > ε

)
≤ 2p−1

1 e−
δ2 Mn(B)

2+δ , (21)

where δ := ε− 1
Mn(B) > 0.

Remark 8. one can replace the Poissonian mean Mn(B) in (21) with the mean EΦIB(V n̄), which
differs from Mn(B) by no more than 1 due to Barbour–Hall’s estimate of the Poisson approximation
to a binomial distribution (see [15,20]). Further, if the condition Mn(B) → ∞ is met as n → ∞
then from (21) we obtain not only the law of large numbers (already formulated in Corollary 2),
but at a certain growth rate of the sequence Mn(B), the strong law of large numbers (SLLN) (see
Section 7). If in the case m = 1 we consider the infinite intervals B ≡ Bk := {i : i > k} for any
k ∈ Z+ then the SLLN occurs at any speed of increasing the sequence Mn(B) to infinity. This
follows from estimate (21), the monotonicity of the functions IBk (x), and the simple technique in
proving SLLN in [9,21].

7. Asymptotic Analysis of the Means and Variances of Additive Statistics

In the previous section, it was noted that when proving certain limit theorems for the
introduced additive functionals, it is extremely important to have information about the
behavior of their means and variances. In this section, for additive statistics (8)–(11), we
demonstrate exactly how the asymptotic behavior of these moments is studied. To simplify
the notation, we will consider here the case m = 1. The subsequent asymptotic analysis is
based on the following elementary assertion, which is presented in one way or another in
many papers on this topic.

Lemma 4. Let fn(x) be a sequence of non-negative, integrable, and piecewise monotonic functions
defined on R+. Suppose that each fn(x) has M monotonicity intervals, where M is independent of
n. Finally, assume that, as n→ ∞,
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∞∫
0

fn(x)dx → ∞, sup
x≥0

fn(x) = o

 ∞∫
0

fn(x)dx

.

Then, as n→ ∞,

∑
j>0

fn(j) ∼
∞∫

0

fn(x)dx.

We now give a few examples of calculating the asymptotics we need.
(1) Let Bk := {i : i > k} for any k ∈ Z+. In Remark 3 it was already noted that

Mn(Bk)→ ∞ due to the strong law of large numbers for binomially distributed random
variables. However, for specific classes of distributions {pi}, one can estimate the growth
rate of the sequence {Mn(Bk)}. For example, let pi := Ci−1−b, where b > 0, i = 1, 2, . . ..
Then, using Lemma 4 and the well-known connection between the tail of a Poisson distri-
bution and the corresponding gamma distribution, we obtain after integration by parts and
a change of the integration variable:

Mn(Bk) ≡ ∑
i≥1

P(πin > k) = ∑
i≥1

γk+1,1(npi)

∼ (Cn)
1

1+b

∞∫
0

γk+1,1(y−1−b)dy =
(Cn)

1
1+b

k!
Γ
(

k +
b

1 + b

)
, (22)

where γk+1,1(z) :=
z∫

0

tk

k! e−tdt, Γ(z) :=
∞∫
0

tz−1e−tdt, z > 0, are the distribution function of

the gamma-distribution with parameters (k + 1, 1), and the gamma-function, , respectively.
For example, if k = 0 then the asymptotics of the expectation of the number of nonempty
cells is as follows (see [6,9]):

Mn(B0) ∼ (Cn)
1

1+b

∞∫
0

(1− e−y−1−b
)dy = (Cn)

1
1+b Γ

(
b

1 + b

)
. (23)

By analogy to the arguments in proving (22), after an appropriate change of the integration
variable, we obtain for the one-point sets the following asymptotics:

Mn({k}) ∼ (Cn)
1

1+b

∞∫
0

y−k(1+b)

k!
e−y−1−b

dy

=
(Cn)

1
1+b

(1 + b)k!

∞∫
0

xk−1− 1
1+b e−xdx =

(Cn)
1

1+b

(1 + b)k!
Γ
(

k− 1
1 + b

)
. (24)

Thus, from (24) it follows that for any subset B of the natural series in the case under
consideration of a power-law decrease in {pi} the following asymptotic representation
is true:

Mn(B) ∼ (Cn)
1

1+b

(1 + b) ∑
k∈B

1
k!

Γ
(

k− 1
1 + b

)
. (25)

Note that, due to the countable additivity of the finite measure Mn(·) and the relations (22)–(24),
the sum (possibly infinite) in (25) will always be finite.

Remark 9. Inequality (21), relation (25), and the Borel–Cantelli lemma guarantee that the strong
law of large numbers holds for the sequence {Mn(B)} for any subsets B of the natural series in the
case of a power-law decrease in the probabilities {pi}. Moreover, what has been said and the above
asymptotics are also preserved for probabilities of the form pi := C(i)i−1−b, where C(x) is a slowly
varying function under certain minimal constraints (see [9,12]). In this case, in the asymptotic
relations (22)–(25) instead of C one should substitute C(n).
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Asymptotic behavior of the variances of the functionals ΦIB(Πn) for some B and
broad conditions on the rate of decrease in the sequence {pi} is given in [9]. Here we
only demonstrate how this variance is calculated for arbitrary subsets B of the natural
series under the above conditions on {pi}. Analogously with (22) we have for the infinite
intervals Bk:

Dn(Bk) := DΦIBk
(Πn) = ∑

i≥1
P(πin > k)−∑

i≥1
P2(πin > k)

= ∑
i≥1

γk+1,1(npi)−∑
i≥1

γ2
k+1,1(npi) ∼ (Cn)

1
1+b

∞∫
0

(
γk+1,1(y−1−b)− γ2

k+1,1(y
−1−b)

)
dy. (26)

Similarly to proving (24), we derive the asymptotics of the variance for the one-point sets:

Dn({k}) = ∑
i≥1

P(πin = k)−∑
i≥1

P2(πin = k)

=
(Cn)

1
1+b

(1 + b)

 ∞∫
0

1
k!

xk−1− 1
1+b e−xdx−

∞∫
0

1
(k!)2 x2k−1− 1

1+b e−2xdx


=

(Cn)
1

1+b

(1 + b)k!

(
Γ
(

k− 1
1 + b

)
− 2

1
1+b−2k

k!
Γ
(

2k− 1
1 + b

))
. (27)

Although the set function Dn(·) is not additive, the extension to arbitrary subsets B of
the natural series of computing the asymptotics of Dn(B) presents no difficulty. Along
with formula (25), which gives one term in the resulting asymptotics, we use the following
representation for the second sum:

∑
i≥1

P2(πin ∈ B) ∼ (Cn)
1

1+b

1 + b

∞∫
0

(
∑
k∈B

xk

k!

)2

x−1− 1
1+b e−2xdx

=
(Cn)

1
1+b

1 + b ∑
k,l∈B

2
1

1+b−k−l

k!l!
Γ
(

k + l − 1
1 + b

)
. (28)

Thus, the difference between the right-hand sides of (25) and (28) determines the asymptotic
of Dn(B) for any subset of the natural series.

(2) The asymptotics of the first two moments for the functionals (10) for pairwise dis-
joint sets {Bj} is derived in exactly the same way. In the case of one-point sets
Bj := {k j}, the asymptotic behavior of the first moment immediately follows from the pre-
vious calculations. As for the variance, we should first note that, due to the orthogonality
of the indicator random variables under consideration, we have

D
r

∑
s=1

as IBs(πin) =
r

∑
s=1

a2
s P(πin = ks)−

(
r

∑
s=1

asP(πin = ks)

)2

=
r

∑
s=1

a2
s P(πin = ks)−

r

∑
j,s=1

asajP(πin = ks)P(πin = k j).

Summation over i of the resulting expression and the previous calculations give the desired
asymptotics:

DΦ f (Πn) ∼
(Cn)

1
1+b

b + 1

r

∑
s,j=1

 a2
s

rks!
Γ
(

ks −
1

b + 1

)
−

2
1

b+1−ks−kj asaj

ks!k j!
Γ
(

ks + k j −
1

b + 1

).
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We note the resulting representation can vanish on the set of vectors (a1, . . . , ar) of zero

Lebesgue measure in Rr, i.e., on the surface defined by the relation
r
∑

s,j=1
Bs,jasaj = 0 for

some coefficients {Bs,j}.
For infinite intervals of the form Bj := {i : i > k j}, the variance is studied in a similar

way. We assume without loss of generality that k1 ≤ k2 ≤ . . . ≤ kr. To calculate the variance
of this functional, it suffices for us to restrict ourselves to the second moment, since the
asymptotics of the first one has already been studied. We have

E

(
r

∑
s=1

as I(πin > ks)

)2

=
r

∑
s=1

a2
s P(πin > ks) + 2E

r−1

∑
j=1

aj I
(
πin > k j

) r

∑
s>j

as I(πin > ks)

=
r

∑
s=1

a2
s P(πin > ks) + 2E

r−1

∑
j=1

aj

r

∑
s>j

as I(πin > ks)

=
r

∑
s=1

a2
s P(πin > ks) + 2

r−1

∑
j=1

aj

r

∑
s>j

asP(πin > ks).

Further calculations in essence have already been made earlier. So, finally we obtain

DΦ f (Πn) ∼ (Cn)
1

1+b
r

∑
s,j=1

 a2
s
r

∞∫
0

Γks+1,1(v−1−b)dv− asaj

∞∫
0

Γks+1,1(v−1−b)Γkj+1,1(v−1−b)dv


with comments similar to the above regarding the zeroing of the double sum.

To conclude this section, we give an example where the above-mentioned moments of
the functional under consideration do not tend to infinity as n grows. We put pj = e−Cj,
with C := log 2. Let us show that

sup
n

∑
j≥1

P(πnj = k) < ∞.

This estimate obviously implies that the first two moments of the functional ΦIB(Πn) are
uniformly bounded in n for B := {k}. Indeed, one has

∑
j≥1

P(πnj = k) =
nk

k! ∑
j≥1

e−ne−Cj
e−Ckj ≤ eCknk

k!

∞∫
1

e−ne−Cx
e−Ckxdx

=
eCknk

Ck!

e−C∫
0

e−nttk−1dt =
eCk

Ck!

ne−C∫
0

e−uuk−1du;

here we used the estimate e−ne−Cj
e−Ckj ≤ eCke−ne−Cx

e−Ckx for all x ∈ [j, j + 1], also rep-
resenting the integral over the semiaxis [0, ∞) as a series of integrals over the indicated
segments of unit length. If n→ ∞ then the integral in the last expression converges mono-
tonically to the quantity Γ(k), which proves our assertion. Note also that a similar example
is given in [9].

8. Proofs

Proof of Theorem 1. The assertion of the theorem is essentially a consequence of some
results from [1,2,22,23] . First we introduce the necessary notation and recall the assertions
from [22,23] we need.

Let {Yi} be a sequence of independent identically distributed random elements taking
values in a measurable Abelian group (G,A) with measurable operation «+». Assume
that the zero (neutral) element 0, as a one-point set, belongs to σ-algebra A and p := P
(Y1 6= 0) ∈ (0, 1). Denote by {Y0

i } a sequence of independent identically distributed
random variables with marginal distribution
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L(Y0
1 ) = L(Y1|Y1 6= 0),

and also put Sn := Σn
i=1Yi and S0

n := Σn
i=1Y0

i . In [1,2,22], the following assertion
was obtained.

Lemma 5. For any natural n, the following representations are valid:

L(Sn) = L(S0
ν(n,p)), L(Sπ(n)) = L(S0

π(np)), (29)

where L(ν(n, p)) ≡ Bn,p, is the binomial distribution with parameters n and p, π(t) is a standard
Poisson process; wherein the pair (ν(n, p), π(np)) does not depend on the sequence {X0

i }.

The second important assertion gives an estimate for the Radon–Nikodim derivative
of the binomial distribution with respect to the accompanying Poisson law (see [23]).

Lemma 6. For all p ∈ (0, 1) and natural n, the following estimate holds:

sup
k≥0

Bn,p(k)
L(π(np))(k)

≤ 1
1− p

. (30)

Remark 10. There are other estimates for this Radon–Nikodim derivative. For example, in [24], it
was established that

sup
k≥0

Bn,p(k)
L(π(np))(k)

≤ 2√
1− p

for any n and p ∈ (0, 1). Note that for p ≥ 3/4 this estimate is more accurate than (30).

It is clear that it is enough to prove the assertion for m = 1. A proof of the general case
is carried out by induction on m and immediately follows from the total probability formula
and an estimate for the conditional probability when m− 1 coordinates of the vector V n̄
are fixed. From (29) and (30) and the total probability formula (when the sequence {Y0

i } is
fixed) we obtain the inequality

L(Sn) ≤
1

1− p
L(Sπ(n)). (31)

Now we put Yi := IA(X(1)
i ), A ∈ A0, where A0 is defined in (1). Consider the

Abelian group

G :=

{
k

∑
i=1

ei IA(zi), A ∈ A0; ∀k ≥ 1, ∀zi ∈ X, ∀ei = −1, 1

}

and equip this group with the cylindric σ-algebra. It is clear that Yi ∈ G and the following
is true: P(Y1 6= 0) = P(A0) = p ∈ (0, 1). So, inequality (2) follows from (31) and the
above-mentioned induction on m.

Proof of Theorem 2. We will carry out our reasoning in the generality and notation of
the proof of Theorem 1. Both relations (29) will be the basis of construction where the
sequence {Y0

i } is assumed to be the same in constructing the sums S0
n and S0

π(n) on a
common probability space. So, to prove the first two assertion of the theorem, we only need
to construct on the common probability space the random variables ν(n, p) and πnp so that
they would be as close as possible to each other. The resulting probability space will be the
direct product of the two probability spaces where are, respectively, defined the sequence
of independent identically distributed random variables {Y0

i } and the above-mentioned
pair of scalar indices. For the optimal definition of random indices ν(n, p) and πnp on a
common probability space, we use Dobrushin’s theorem (see [25]), which guarantees the
existence of marginal copies ν∗(n, p) and π∗np of the mentioned random indices defined on
a common probability space so that
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P(ν∗(n, p) 6= π∗np) = dTV(L(ν(n, p),L(πnp)), (32)

where dTV(·, ·) is the total variation distance between distributions. Now we use the
well-known estimate of Poisson approximation to a binomial distribution (see [15,20]):

dTV(L(ν(n, p),L(πnp)) ≤ p ∧ (np2) ≤ p. (33)

Using the described construction to each of the m independent coordinates of the vector
point processes under consideration, we easily obtain from (32) and (33) the assertion of
the theorem.

Proof of Lemma 1. Fix a multi-index n̄. Let us assume that the point processes V n̄ and Πn̄
are defined on the same probability space in one way or another. Then for any natural k we
have the estimate

|Φ f (V n̄)−Φ f (Πn̄)| ≤ ∑
i≥k
| fin̄(ν̄in̄)− fin̄(π̄in̄)|+ ζkn̄, (34)

where ζkn̄ := ∑
i<k
| fin̄(ν̄in̄)|+ ∑

i<k
| fin̄(π̄in̄)|. Put A0 :=

⋃
i≥k

∆i, p(k) := P(A0) = ∑
i≥k

pi. Note

that the tail of the series on the right-hand side of inequality (34) is a functional of the
A0-restrictions of the studied vector point processes defined on common probability space.
So we can use Theorem 2, which guarantees the existence of an absolute coupling (de-
pending on k) of the mentioned A0-restrictions with the following lower bound for the
coincidence probability (see (4); here, in order not to clutter up the notation, we omit the
upper symbol «*»):

P


(ν

(1)
n1k, ν

(1)
n1k+1, . . .) = (π

(1)
n1k, π

(1)
n1k+1, . . .)

(ν
(2)
n2k, ν

(2)
n2k+1, . . .) = (π

(2)
n2k, π

(2)
n2k+1, . . .)

. . . . . . . . .
(ν

(m)
nmk, ν

(m)
nmk+1, . . .) = (π

(m)
nmk, π

(m)
nmk+1, . . .)



= P

 sup
∆j , j≥k

∥∥∥V0
n̄ (∆j, . . . , ∆j)−Π0

n̄(∆j, . . . , ∆j)
∥∥∥ = 0

 ≥ (1− p(k))m. (35)

Hence, the coupling method of Theorem 2 vanishes the first term on the right-hand side of
(34) with a probability no less than (1− p(k))m.

Further, by virtue of estimate (2) we conclude that L(ν̄in̄)) ≤ 1
(1−pi)mL(π̄in̄) for any i.

Therefore, by virtue of the conditions of the theorem, we have ∆n̄ fin̄(νin̄)
p→ 0 for any i for

n̄→ ∞. So, for any given (obviously, such construction exists) random variable ζkn̄ on the
same probability space with the A0-restrictions of the point processes mentioned above,

there is the relation ∆n̄ζkn̄
p→ 0 for n̄ → ∞ for any fixed k. Therefore, using the diagonal

method, one can choose k ≡ k(n̄) → ∞ for n̄ → ∞, for which ∆n̄ζkn̄
p→ 0 as n̄ → ∞.

After constructing the point processes under consideration on a common probability space
by the method of Theorem 2 for each n̄ and already chosen k(n̄) (in this case, obviously,
p(k(n))→ 0), the limit relation (13) will hold. Lemma 1 is proved.

Proof of Theorem 3. The equivalence of items 1 and 2 directly follows from Lemma 1 and
the evident two-sided estimate

P(ξ ≤ x− ε)− P(|ξ − η| > ε) ≤ P(η ≤ x) ≤ P(ξ ≤ x + ε) + P(|ξ − η| > ε)

for any x ∈ R, ε > 0, and arbitrary random variables ξ and η defined on a common
probability space. It remains to put

ξ := Φ f (V
∗
n̄,∆n̄)∆n̄ −Mn̄, η := Φ f (Π

∗
n̄,∆n̄)∆n̄ −Mn̄,
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where the point processes V∗n̄,∆n̄
and Π∗n̄,∆n̄ are defined in Lemma 1.

We now prove the equivalence of items 2 and 3 of the theorem. To this end we need to
reformulate the assertion in Lemma 1 where we substitute Φ∗f for the functional Φ f (V n̄).
As the resulting probability space in this assertion, we consider the direct product of the
probability spaces where νni and πni are defined by Dobrushin’s theorem. We only note
that, after such construction,

P({ν̄∗in̄, i ≥ k} ≡ {π̄in̄, i ≥ k}) ≥ 1−m ∑
i≥k

pi ∼ 1

if only k → ∞. Further, we repeat the corresponding reasoning in the proof of Lemma 1
(using the corresponding analog of (34)) as well as the above-mentioned arguments in
proving the equivalence of items 1 and 2.

Proof of Lemma 2. We restrict ourselves to the case m = 2. For an arbitrary m, the assertion
can be easily proved by induction on m using analogues of the estimates that will be given
below. So we have

EΦ f (V n̄) = ∑
i≥1

∑
k1,k2≥0

fin̄(k1, k2)P(ν
(1)
in1

= k1)P(ν
(2)
in2

= k2),

EΦ f (Πn̄) = ∑
i≥1

∑
k1,k2≥0

fin̄(k1, k2)P(π
(1)
in1

= k1)P(π
(2)
in2

= k2);

here the introduction of the operator E under the summation sign in the second formula is
legal due to (14) and Fubini’s theorem. Now, estimate the total variation distance between
the distributions of the vectors (ν(1)in1

, ν
(2)
in2

) and (π
(1)
in1

, π
(2)
in2

):

∑
k1,k2≥0

|P(ν(1)in1
= k1)P(ν

(2)
in2

= k2)− P(π(1)
in1

= k1)P(π
(2)
in2

= k2)|

≤ ∑
k1,k2≥0

|P(ν(1)in1
= k1)− P(π(1)

in1
= k1)|P(ν

(2)
in2

= k2)

+ ∑
k1,k2≥0

|P(ν(2)in2
= k2)− P(π(2)

in2
= k2)|P(π

(1)
in1

= k1)

= ∑
k1≥0
|P(ν(1)in1

= k1)− P(π(1)
in1

= k1)|+ ∑
k2≥0
|P(ν(2)in2

= k2)− P(π(2)
in2

= k2)|.

We now use once more Barbour–Hall’s upper bound (see [15,20]) for the total variation
distance between the distributions L

(
ν
(j)
inj

)
and L

(
π
(j)
inj

)
:

∑
kj≥0
|P(ν(j)

inj
= k j)− P(π(j)

inj
= k j)| < 2pi, j = 1, m.

Then the total variation distance between the distributions of the bivariate vectors under
consideration is estimated as follows:

∑
k1,k2≥0

|P(ν(1)in1
= k1)P(ν

(2)
in2

= k2)− P(π(1)
in1

= k1)P(π
(2)
in2

= k2)| ≤ 4pi.

Therefore,
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∣∣∣∣∣∑i≥1
∑

k1,k2≥0
fin̄(k1, k2)P(ν

(1)
in1

= k1)P(ν
(2)
in2

= k2)

− ∑
i≥1

∑
k1,k2≥0

fin̄(k1, k2)P(π
(1)
in1

= k1)P(π
(2)
in2

= k2)

∣∣∣∣∣
≤ ∑

i≥1
Ci ∑

k1,k2≥0

∣∣∣P(ν(1)in1
= k1)P(ν

(2)
in2

= k2)− P(π(1)
in1

= k1)P(π
(2)
in2

= k2)
∣∣∣ ≤ 4 ∑

i≥1
Ci pi

or
|EΦ f (V n̄)− EΦ f (Πn̄)| ≤ 4 ∑

i≥1
Ci pi.

From here we obtain the assertion we need.

Proof of Lemma 3. As in the proof of Lemma 2, we restrict ourselves to the case m = 2. It
is clear that we need to examine two series

S1(V n̄) := ∑
i≥1

∑
k1,k2≥0

f 2
in̄(k1, k2)P(ν

(1)
in1

= k1)P(ν
(2)
in2

= k2),

S2(V n̄) := ∑
i≥1

(
∑

k1,k2≥0
fin̄(k1, k2)P(ν

(1)
in1

= k1)P(ν
(2)
in2

= k2)

)2

,

In the same way as in the proof of Lemma 1, we obtain

|S1(V n̄)− S1(Πn̄)| ≤ 4 ∑
i≥1

C2
i pi.

Similarly,

|S2(V n̄)− S2(Πn̄)|

≤ ∑
i≥1

2Ci ∑
k1,k2≥0

| fin̄(k1, k2)|
∣∣∣P(ν(1)in1

= k1)P(ν
(2)
in2

= k2)− P(π(1)
in1

= k1)P(π
(2)
in2

= k2)
∣∣∣

≤ 4 ∑
i≥1

C2
i pi.

From these estimates it follows that

|DΦ f (Πn̄)−DΦ f (V n̄)| ≤ 8 ∑
i≥1

C2
i pi,

whence we obtain the assertion of Lemma 2.

Proof of Theorem 4. By Corollary 4, it suffices to present conditions for the asymptotic
normality of the Poisson version of the χ2-statistic, i.e., conditions for the feasibility of
relation (16). As such, we take the Lyapunov condition of third order. Indeed, consider the
following scheme of series of independent in each series of centered random variables:

ξin :=
(πin − npi)

2

npi
− 1, i = 1, . . . , N(n), n ≥ 1.

The Lyapunov condition of third order, which guarantees the fulfillment of the central limit
theorem (16), is as follows:

D−3/2
n

N(n)

∑
i=1

E|ξin|3 → 0 as n→ ∞. (36)

In order to estimate the absolute third moment in (36), we need the well-known recurrence
relation for the central moments of the Poisson distribution:
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E(πλ − λ)n = λ
n−2

∑
k=0

Ck
n−1E(πλ − λ)k, n ≥ 2,

where πλ is a Poisson random variable with parameter λ. From here it follows that

E(πλ − λ)6 = 15λ3 + 25λ2 + λ,

and using the elementary estimate |a2 − 1|3 ≤ 4(a6 + 1), we obtain

E|ξin|3 ≤
4

(npi)3

(
15(npi)

3 + 25(npi)
2 + npi

)
+ 4 = 64 +

100
npi

+
4

(npi)2 .

It is clear that, to prove relation (36) it suffices to verify that, under the conditions of the
theorem, 64N + 100 ∑N

i=1
1

npi
+ 4 ∑N

i=1
1

(npi)2(
2N + ∑N

i=1
1

npi

)3/2

≤ 100

(
2N +

N

∑
i=1

1
npi

)−1/2

+
4 ∑N

i=1
1

(npi)2(
N + ∑N

i=1
1

npi

)3/2 → 0,

that is true in virtue of (17).

Proof of Theorem 5. For any natural k, denote

Φ(k)
f (V n̄) := ∑

i≤k
fin̄(ν̄in̄).

P
(

Φ f (V n̄) ≥ x
)
≤ P

(
Φ(k)

f (V n̄) ≥
x
2

)
+ P

(
Φ f (V n̄)−Φ(k)

f (V n̄) ≥
x
2

)
. (37)

In the notation of Theorem 1, let V0
n̄ be the restriction of the point process V n̄ to the set

A0 :=
⋃

i≤k
∆i with hit probability p := ∑

i≤k
pi. Under the sign of the first probability of

the right-hand side of inequality (37), instead of the point process V n̄, we can substitute
V0

n̄ and use inequality (2) for the distributions of the restrictions of the corresponding
point processes.

The difference
Φ f (V n̄)−Φ(k)

f (V n̄) = ∑
i>k

fin̄(ν̄in̄)

is also an additive functional of the restriction of the point process V n̄ to the additional set
A0 :=

⋃
i>k

∆i with hit probability p := ∑
i>k

pi. For this functional, we also use estimate (2).

As a result, from (37) and Theorem 1, taking into account the non-negativity of the terms
fin̄(·), we obtain

P
(

Φ f (V n̄) ≥ x
)
≤
(

∑
i>k

pi

)−m

P
(

Φ(k)
f (Πn̄) ≥

x
2

)

+

(
∑
i≤k

pi

)−m

P
(

Φ f (Πn̄)−Φ(k)
f (Πn̄) ≥

x
2

)
≤ 2C∗P

(
Φ f (Πn̄) ≥

x
2

)
.

The theorem is proved.

Proof of Corollary 5. is based on the following well-known equality. If ζ is a non-negative
random variable with finite mean then

Eζ =

∞∫
0

P(ζ ≥ x)dx.
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Using successively this equality for ζ equal to Φ f (V n̄) or 2Φ f (Πn̄), we easily obtain from
(18) the moment inequality (20).

9. Conclusions

In this paper, we discuss a remarkable asymptotic property of a wide class of addi-
tive statistics that allows us to ignore the dependence of the summands in the additive
structure of the statistics under consideration and to reduce asymptotic analysis of their
distributions to the classical theory of the central limit problem. As consequences, we
obtain refinements of certain results concerning the limit behavior of some known classes
of additive statistics. Although we limited ourselves only to the law of large numbers and
the central limit theorem for the statistics at issue, in the model under consideration it
is possible to study sufficient conditions for the weak convergence of their distributions
to other infinitely divisible laws as well. In fact, we deal here with a variant of Poisson
approximation of empirical point processes, or in other words, with a compound Poisson ap-
proximation of an n-th partial sum of independent random variables taking values in some
function space. So, in the present paper we deal with the classical subject of Probability
Theory and the Poisson approximation of sums of independent multivariate random
variables (for example, see [1,12,22,23]).

Moreover, one can reformulate the above-mentioned Poissonization duality theorem
for more general U-statistic-type functionals

U f (Vn) := ∑
i1≤...≤im

fn̄,i1,...,im(νn̄,i1 , . . . , νn̄,im),

where f ≡ { fn̄,i1,...,im(·)} is an array of finite functions defined on Zd
+, with d := ∑k≤m nk,

satisfying only the restriction

∑
i1≤...≤im

| fn̄,i1,...,im(0, . . . , 0)| < ∞ ∀n̄.

For example, in this more general setting, one can study the limit behavior of the functionals

UI(Vn) := ∑
i≥1

IĀ(νi−1,n)IA(νi,n) · · · IA(νi+m−1,n)IĀ(νi+m,n),

where Ā is the complement of an arbitrary subset A ⊂ Z+, with 0 /∈ A, and ν0n := 0. These
functionals count the number of success chains of length m in the dependent (finite or
infinite) Bernoulli trials {IA(νi,n); i ≥ 1}.
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