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Abstract: Hybrid nanofluids combine two or more nano properties with a base fluid such as water
ethylene. Usually, this helps enhance the heat transfer rate; in this article, using new similarity
transformations created by Lie group analysis, the governing nonlinear partial differential equations
are transformed into a system of connected nonlinear ordinary differential equations. The resulting
design is numerically solved using a BVP4C solver with the shooting method (MATLAB). The
magneto hydrodynamic flow of an incompressible fluid and the rate of heat and mass transfer were
investigated for two cases, with various nanoparticle shapes including cylindrical, spherical, and
platelet. Case 1 was CNT (1%), graphene (1%), and aluminum oxide (1%), and Case 2 was copper
(1%), silver (1%), and cobalt ferrite (1%). When the Hartmann number rises, velocity and temperature
exhibit inverse behavior: the velocity profile increases, and the temperature profile decreases. When
the suction rises, the velocity and temperature profiles both increase. Optimization techniques were
used from response surface methodology (RSM) to set factorial variables so that the response met
the desired maximum or minimum value. Factorial methods like ANOVA were used to model the
response, but they were expanded to simulate the effects in terms of extrapolation.

Keywords: hybrid nanofluids; suction; Lie group transformations; nanoparticles with different shapes

MSC: 37N10; 76D05

1. Introduction

A potent, comprehensive, and systematic approach to obtaining group-invariant so-
lutions, also known as self-similarity transformations, is provided by Lie group methods
and associated invariants. The independent variable numbers of a group of partial differ-
ential equations were reduced using self-similarity transformations, which resulted in the
change of the non-linear controlling partial differential equations into ordinary differential
equations. The fundamental instrument for this investigation was the application of the
matching ‘infinitesimal’ Lie algebra representations. Continual series of transformations
applied to a more extensive set of variables, including an equation’s parameters and inde-
pendent and dependent variables, is what we mean when we refer to a group of developed
Lie transformations of partial differential equations. Recent studies on the Lie group trans-
formations theory and its uses in other disciplines are established in [1–4]. When the
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temperature and concentration gradients are significant, the impact of thermal-diffusion
spread in chemical reactions becomes more effective. The convective transport in porous
material examined by Li et al. [5] also significantly benefits from the dispersion, inertial,
and injection/suction effects. For a hydromagnetic flow, i.e., an electrically conducting fluid
over an expanding vertical sheet with a chemical reaction at varying stream conditions, Kan-
daswamy et al. [6] employed the scaling group of transformation. To evaluate the increase
of the steady border layer flow, nanoparticle volume fraction, and heat transmitted over a
porous expanding surface in a nanofluid for different parameters, Abdul et al. [7] used a
scaling group of changes. Using the Lie symmetry group of transformations, Siva et al. [8]
examined the continuous border layer flow and heat transmission evolution for different
parameters using a porous wedge sheet in a nanofluid. Kandasamy et al. [9] explored
the border layer fluid flow of seawater and water-based nano-sized particles through
a porous wedge under the uniform transverse thermal energy radiation and magnetic
field. Alessa et al. [10] explored the mixed effects of radiative heat transmission and a
non-Newtonian fluid with viscous and elastic properties through a channel with a porous
media for optically thin liquid.

Hybrid nanofluids that are useful in cooling, microelectronics, temperature enhance-
ment and reduction, vehicle thermal management, and pharmaceutical processes have
been identified. Through a rigorous investigation of the liquid above, a base fluid with two
different nanosized particles has been found (i.e., the mixture of nanofluid). The dynamic
viscosity of aluminium-based nanofluids varies according to the morphologies of nanopar-
ticles at various temperatures, as shown in Timofeeva et al. [11]. Depending on the surface
charge, different types of nanoparticles (cylinders, blades, bricks, and platelets) collect
and interact with the base fluid differently. This is supported by Sahu and Sarkar’s [12]
finding that “Nanoparticle shapes affect both the energy and energetic performance”. The
dynamics of nanofluids produced by thermal-capillary consecutiveness caused by five
different nanoparticle morphologies were characterized by Jiang et al. [13] (brick, platelet,
sphere, cylinder, and blade). The proper operation of numerous industrial components
depends on heat transmission. The natural convection of a nanofluid composed of mag-
netized carbon nanotubes in a curved cage has not been thoroughly studied, according to
researchers. Research conducted by Izadi et al. [14] took a variety of flow and geometric
factors into account when analyzing the natural convection of a nanofluid interior space.
Nayak [15] concluded that thermal radiation and viscous dissipation are to blame for
the decrease in heat transmission after considering the impact of thermal radiative on
the depth of molecules. Rasool et al. [16] explored the numerical investigation of EMHD
nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-
Forchheimer porous medium: Application of passive control strategy and generalized
transfer laws. Hassan et al. [17] tested the Buongiorno model by increasing the thermal
conduction of the Falkner–Skan magnetic nanofluid while microorganisms were present.
Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous microp-
olar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide
nanomaterials (CuO) was studied by Shah et al. [18]. Using slip boundary conditions and
convection, Khilap et al. [19] investigated the rate-of-momentum profile and the thermal
heat energy transfer in the flow of a micropolar fluid on a diminishing porous surface.
Sowmya et al. [20] studied the impact of perpendicular shapes on the flow of hybrid
kerosene/Fe3O4–Ag and water/Fe3O4–Ag nanofluids under slip conditions and nonlinear
thermal radiation circumstances. Lou et al. [21] studied micropolar dusty fluid: Coriolis
force effects on dynamics of MHD rotating fluid when Lorentz force is significant.

In the present article, we employed the Lie group scaling transformations to convert
from dimensional to non-dimensional equations and analyzed the heat and velocity transfer
rate under the effect of magneto-hydrodynamics, suction, and nanoparticles with different
shapes such as spherical, cylindrical, and platelet.
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2. Mathematical Formulation

An incompressible tangent hyperbolic fluid flows in a continuous, two-dimensional
flow. We suppose that the liquid is perpendicular to the plane at y = 0, limiting the
flow to the region at y > 0. We also suppose that linear stretching is responsible for
fluid production. The liquid’s governing equation is given by the following equation, as
described in [22]:

τ =
[
µ∞ + (µ0 + µ∞)tanh

(
Γ

.
γ
)n] .

γ. (1)

The excess stress tensor, “infinite shear rate viscosity” and “zero shear rate viscosity”,
time-dependent material fixed value, and flow behavior index are denoted by τ, µ0, µ∞, Γ,
and n.

.
γ is defined by

.
γ =

√
1
2∑ i∑ j

.
γij

.
γji =

√
1
2

Π (2)

in collaboration with Π = 1
2 tr
(

gradV + (gradVT)
)2. We will limit ourselves to the case

µ∞ = 0 in the following, because we are dealing with infinite shear rate viscosity difficulties.
We must assume that Γ

.
γ < 1, because the fluid under investigation is described as shear

thinning.
Then, Equation (1) becomes

τ = µ0

[(
Γ

.
γ
)] .

γ = µ0

[(
1 + Γ

.
γ− 1

)n] .
γ,

= µ0

[
1 + n

(
Γ

.
γ− 1

)] .
γ.

(3)

The suggested model’s governing equations for continuity, energy, and momentum
are as described in Ullah et al. [22].

In the equations below, subscripts denote PDE.

∂u
∂x

+
∂v
∂y

= 0 (4)

ρhn f

(
u

∂u
∂x

+ v
∂v
∂y

)
= µhn f

∂2u

∂y2 − σB2u (5)

(
ρcp
)

hn f

(
u

∂T
∂x

+ v
∂T
∂y

)
= Khn f Tyy

∂2T

∂y2 + θ0(T − T∞) (6)

The velocity ingredient u, v is in the direction x, y, while the symbols υ and ρ stand for
fluid density and kinematic fluid viscosity, respectively. The term σ denotes the fluid’s elec-
trical conductivity, i.e., the applied uniform magnetic field. T and T∞ stand for free stream
temperature and temperature, respectively. cp, k, and Q0 stand for thermal conductivity,
the specific heat of the fluid, and volumetric appraise of generating heat, respectively.

The temperature and velocity components associative boundary conditions are
given by

T = Tw, v = f0, u = ax, for y = 0. (7)

T → T∞, u→ 0, for y→ ∞. (8)

Here, the stretching rate is a.
The first step is to prepare a non-dimensional transform of the system that we have

been provided. We introduce the dimensionless quantities below for this purpose.

θ =
T − T∞

Tw − T∞
, u = u

√
aν, v = v

√
aν, y =

√
ν

a
y, x =

√
ν

a
x. (9)
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When the momentum, continuity, and energy equations are applied to the system
given by Equations (4)–(6) and the bars are dropped, the continuity, speed, and energy
equations become

∂u
∂x

+
∂v
∂y

= 0 (10)

ρhn f

(
u

∂u
∂x

+ v
∂v
∂y

)
= µhn f

∂2u
∂y2 −

σB2

a
u (11)

(
ρcp
)

hn f

(
u

∂T
∂x

+ v
∂T
∂y

)
= Khn f

∂2T
∂y2 + θ0(T − T∞) (12)

The boundary conditions (7) and (8) in the scaling scenario described in (9) are
as follows:

u = x, v =
f0√
νa

, θ = 1 for y = 0. (13)

θ → 0 , u→ ∞ for y→ ∞. (14)

The stream function v = − ∂ψ
∂x , u = ∂ψ

∂y is then used to decrease the dependent variables
and equations. The continuity Equation (10) is naturally satisfied, as are Equations (12) and
(11), which are expressed in terms of the stream function ψ, and have the form

ρhn f

(
∂2ψ

∂x∂y
∂ψ

∂y
− ∂2ψ

∂y2
∂ψ

∂x

)
= µhn f

∂3ψ

∂y3 −
σB2

a
∂ψ

∂y
(15)

(
∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y

)
=

Khn f(
µcp
)

hn f

∂2θ

∂y2 +
Q0θ(

ρcp
)

hn f a
(16)

The stream function’s induction translates the boundary conditions (13) and (14) to

θ = 1,
∂ψ

∂x
= − f0√

νa
,

∂ψ

∂y
= x for y = 0. (17)

θ → 0 ,
∂ψ

∂y
→ 0 for y→ ∞. (18)

3. Analysis

We use Lie group analysis in this section to develop novel similarity conventions for
Equations (15) and (16). The nonlinear PDE will be reduced to nonlinear ODE. We evaluate
the following transformation scaling group for this purpose.

Γ : Γ∗ = Γeεγ5 , θ∗ = θeεγ4 , ψ∗ = ψeεγ3 , x∗ = xeεγ1 , y∗ = yeεγ2 . (19)

Then, Group Γ and γi, (i = 1, 2, 3, 4, 5) in terms of the parameter, and ε are the actual
numbers to be determined. The coordinates are transformed by point transformation
(x, y, ψ, θ, Γ) to (x∗, y∗, ψ∗, θ∗, Γ∗) by (19).

By plugging (19) into Equations (15) and (16), we obtain

ρhn f eε(γ1+2γ2−2γ3)

(
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗
− ∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

)
= µhn f eε(3γ2−γ3)

∂3ψ

∂y∗3 − eε(γ2−γ3)
σB2

a
∂ψ∗

∂y∗
(20)

eε(γ1+γ2−γ3−γ4)

(
∂ψ∗

∂y∗
∂θ∗

∂x∗
− ∂ψ∗

∂x∗
∂θ∗

∂y∗

)
=

Khn f(
µcp
)

hn f
eε(2γ2−γ4)

∂2θ

∂y∗2 + e−εγ4
Q0θ∗(

ρcp
)

hn f a
(21)
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If the coefficients of the above equations are equal, the changed systems (20) and (21)
will remain invariant under the group of transformations.

γ1 + 2γ2 − 2γ3 = 3γ2 − γ3 = γ2 − γ3 (22)

γ1 + γ2 − γ3 − γ4 = 2γ2 − γ4 = −γ4 (23)

We have, from the border condition, the following:

γ4 = 0 (24)

To obtain, we solve Equations (22) and (23) together.

γ1 = γ3, γ2 = 0, γ3 = γ1, γ4 = 0. (25)

The transformations are transformed into the following one-parameter group of
changes by embedding (25) into the scaling (19).

Γ : x∗ = xeεγ1 , y∗ = y, ψ∗ = ψeεγ1 , θ = 0. (26)

The following simplified version is obtained by expanding the one-parameter group
of (26) with Taylor’s series and maintaining terms up to first-order ε.

θ∗ − θ = 0, ψ∗ − ψ = xεγ1, y∗ − y = 0, x∗ − x = xεγ1. (27)

The collection of transformations can readily be represented as characteristic equations
using Equation (27).

dx
xγ1

=
dy
0

=
dψ

xγ1
=

dθ

0
(28)

The similarity transformations can be found in Equation (28). We obtain dx
xγ1

= dy
0

from the first two terms in Equation (28), which we can integrate to obtain

y =constant = ζ(say). (29)

From Equation (28), using 1,3 terms yields dx
xγ1

= dψ
xγ1

.

ψ

x
=constant = f (ζ)(say), then ψ = x f (ζ). (30)

By integrating both sides of Equation (28) and equating the first and fourth terms,
we obtain

θ = θ(ζ). (31)

As a result, the new similarity transformations can be written as

ζ = y, ψ = x f (ζ), θ = θ(ζ). (32)

We obtain the following nonlinear ODE by substituting Equation (32) into Equations (15)
and (16):

µhn f

ρhn f
f ′′′ (ζ)−M2 f (ζ) + f (ζ) f ′′ (ζ)−

(
f ′(ζ)

)2
= 0 (33)

(
khn f(

µcp
)

hn f

)
θ′′ (ζ) + f (ζ)θ′(ζ) + Qθ(ζ) = 0 (34)

The Hartmann number is M2 = σB2

ρa , the heat source/sink parameter is Q = Q0
ρcpa , and

the Prandtl number is Pr = µcp
k .
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Primes are used to represent differentials using ζ. Subject to the boundary conditions,
we solve the system by Equations (33) and (34).

θ(0) = 1, f (0) = fw, f ′(0) = 1. for ζ → 0. (35)

θ(∞)→ 0, f ′(∞)→ 0 at ζ → ∞. (36)

where f (ζ) = fw, fw = f0√
νa , fw � 0 corresponds to suction-permeable, and fw ≺ 0

corresponds to injection-permeable.
The skin friction coefficient C f and the local Nusselt number Nux are defined

as follows:
C f =

τw

ρ(ax)2 , Nux =
xqw

k(Tw − T∞)
(37)

where τw represents skin friction, and qw represents heat transfer from the plate:

τw = µhn f

(
∂u
∂y

)
ζ=0

, qw = −khn f

(
∂T
∂y

)
ζ=0

. (38)

When we plug Equations (9) and (32) into (37), the skin friction and local Nusselt
become dimensionless:

Re
1
2 C f =

µhn f

µ f
f ′′ (0), Re−

1
2 Nux = −

khn f

k f
θ′(0).

where Re is the Reynolds number.
Next, we apply the hybrid nanofluid thermophysical properties.
ϕ1,ϕ2, and ϕ3 represent the volume fraction of solid particles for Case 1 (Platelet

(Al2O3), Cylindrical (GNT), and Spherical (CNT)) and solid particles for Case 2 (Spherical
(copper), Cylindrical (silver), Platelet (cobalt ferrite)) nanoparticles. The ternary hybrid
nanoparticles with different shapes have platelet, cylindrical and spherical shapes.

Thermal conductivity and viscosity are

µhn f = ϕ−1(µn f 3ϕ3 + µn f 2ϕ2 + µn f 1ϕ1) (39)

khn f = ϕ−1(kn f 3ϕ3 + kn f 2ϕ2 + kn f 1ϕ1) (40)

The ρhn f density of ternary hybrid nanoparticles (platelet, cylindrical, and spherical
form) is given by

ρhn f = (1−ϕ1 −ϕ2 −ϕ3)ρb f +ϕ1ρsp1 +ϕ2ρsp2 +ϕ3ρsp3 (41)

The (ρcp)hn f heat capacity of ternary hybrid nanoparticles (platelet, cylindrical, spher-
ical, and shape) is calculated as follows:

(ρcp)hn f = (1−ϕ1 −ϕ2 −ϕ3)(ρcp)b f +ϕ1(ρcp)sp1 +ϕ2(ρcp)sp2 +ϕ3(ρcp)sp3 (42)

Thermal conductivity and viscosity for spherical nanoparticles are expressed by

µn f 1 =
(

µb f

)(
1 + 2.5ϕ+ 6.2ϕ2

)
(43)

kn f 1

kb f
=

[
ksp1 + 2kb f − 2ϕ(kb f − ksp1)

ksp1 + 2kb f +ϕ(kb f − ksp1)

]
(44)

For cylindrical nanoparticles, the thermal conductivity and viscosity are expressed by

µn f 2

µb f
=
(

1 + 13.5ϕ+ 904.4ϕ2
)

(45)
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kn f 2

kb f
=

[
ksp2 + 3.9kb f − 3.9ϕ(kb f − ksp2)

ksp2 + 3.9kb f +ϕ(kb f − ksp2)

]
(46)

Platelet nanoparticles have the following thermal conductivity and thermal viscosity:

µn f 3

µb f
=
(

1 + 37.1ϕ+ 612.6ϕ2
)

(47)

kn f 3

kb f
=

[
ksp3 + 4.7kb f − 4.7ϕ(kb f − ksp3)

ksp3 + 4.7kb f +ϕ(kb f − ksp3)

]
(48)

The above properties for Equations (33) and (34) are as follows:(
A1

A2ϕ

)
f ′′′ (ζ)−

(
f ′(ζ)

)2 −M2 f (ζ) + f (ζ) f ′′ (ζ) = 0 (49)

(
A4

A3

)
(Prϕ)θ′′ (ζ) + f (ζ)θ′(ζ) + Qθ(ζ) = 0 (50)

In the above equations, the transformations are as follows:

A1 = B3ϕ3 + B2ϕ2 + B1ϕ1

A2 = 1−ϕ1 −ϕ2 −ϕ3 +ϕ1
ρsp1

ρb f
+ϕ2

ρsp2

ρb f
+ϕ3

ρsp3

ρb f

A3 = B4ϕ1 + B5ϕ2 + B6ϕ3

A4 = 1−ϕ1 −ϕ2 −ϕ3 +ϕ1

(ρcp)sp1

(ρcp)b f
+ϕ2

(ρcp)sp2

(ρcp)b f
+ϕ3

(ρcp)sp3

(ρcp)b f

A5 = (1−ϕ1 −ϕ2 −ϕ3) +ϕ1
(ρβ0)sp1

(ρβ0)b f
+ϕ2

(ρβ0)sp2

(ρβ0)b f
+ϕ3

(ρβ0)sp3

(ρβ0)b f

A6 = (1−ϕ1 −ϕ2 −ϕ3) +ϕ1
(ρβ1)sp1

(ρβ1)b f
+ϕ2

(ρβ1)sp2

(ρβ1)b f
+ϕ3

(ρβ1)sp3

(ρβ1)b f

B1 = 1 + 2.5ϕ+ 6.2ϕ2

B2 = 1 + 13.5ϕ+ 904.4ϕ2

B3 = 1 + 37.1ϕ+ 612.6ϕ2

B4 =
ksp1 + 2kb f − 2ϕ(kb f − ksp1)

ksp1 + 2kb f +ϕ(kb f − ksp1)

B5 =
ksp2 + 3.9kb f − 3.9ϕ(kb f − ksp2)

ksp2 + 3.9kb f +ϕ(kb f − ksp2)

B6 =
ksp3 + 4.7kb f − 4.7ϕ(kb f − ksp3)

ksp3 + 4.7kb f +ϕ(kb f − ksp3)

4. Numerical Procedure

The changed Equations (49) and (50) with the given circumstances can be solved using
bvp4c (35–36), a built-in function in MATLAB. In this problem, we used the bvp4c solver
because it is a built-in function, informed by Mamatha and Raju [23].

We utilized the bvp4c solver via the Runge–Kutta approach.
We used the following assumptions as a preprocedural before coding:

f = J1, f ′ = J2, f ′′ = J3,θ = J4, θ′ = J5.
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Then, using the Equations (49) and (50) and conditions (35–36), we may construct a
first-order system of ODEs:

J′1 = J2
J′2 = J3

J′3 = ϕ
(

A2
A1

)[
(J′(ζ))2 − J(ζ)J ′′ (ζ) + M2 J′(ζ)

]
J′4 = J5

J′5 = Prϕ
(

A4
A3

)
[−J(ζ)θ′(ζ)−Qθ(ζ)]


with the circumstances

fa(1) = fw
fa(2) = 1
fa(4) = 1
fb(2) = 0
fb(4) = 0


5. Results and Discussion

The obtained findings show how non-dimensional parameters like Prandtl number
(Pr), Hartmann number (M), heat sink/source (Q), and suction ( fw) affect non-dimensional
velocity and temperature profiles (see Figures 1–10). fw = 0.2, Pr = 6.2, M = 0.5, Q = 0.5
are the same parameter values used in the simulations; these numbers were consistent
throughout the inquiry, except for the various discounts given in the tables and figures. In
Table 1 mentioned the thermophysical properties of nanoparticles for each case (Case 1:
aluminum oxide/CNT/graphene; Case 2: copper/silver/cobalt ferrite), using water as the
base fluid with different nanoparticle shapes such as spherical, cylindrical, and platelet.
Table 2 shows skin friction and the Nusselt number for the local area.
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Table 1. Thermophysical properties of a hybrid nanofluid.

Nomenclature of
Solid Particles and Base Fluid

ρ

(kg/m3)
Cp
(J/kgK)

K
(W/mK)

Nanoparticle
Shapes

Base fluid Water H2O 997.1 4.179 0.623

Ternary hybrid
nanofluid 1 Graphene (1%) 2200 5000 790 Platelet

Carbon nanotubes (1%) 5100 410 3007 Cylindrical

Aluminum oxide (Al2O3) (1%) 3970 765 40 Spherical

Ternary hybrid
nanofluid 2 Copper (1%) 10,500 235 429 Spherical

Silver (1%) 8933 385 400 Cylindrical

Cobalt ferrite (1%) 4907 700 3.7 Platelet

Figures 1–10 depict the differences in the profiles for various fw = 0.2, Pr = 6.2,
M = 0.5, Q = 0.3. values. From Figures 1 and 2, we can observe the effect of the suction on
temperature and velocity profiles: when the suction rises, the temperature and velocity of
both profiles increase. From Figures 3 and 4, we can observe the effect of the Hartmann
number on temperature and velocity profiles: when the Hartmann number rises, the
velocity increases, and the temperature profile decreases. From Figures 5 and 6, we can
observe the effect of the volume fraction on temperature and velocity profiles: when
the volume fraction rises, the temperature and velocity of both profiles increase. From
Figures 7 and 8, we can observe the effect of the Prandtl number on temperature and
velocity profiles: when the Prandtl number rises, the temperature and velocity of both
profiles increase. From Figures 9 and 10, we can observe the effect of the heat source/sink
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on temperature and velocity profiles: when the heat source/sink rises, the temperature and
velocity of both profiles decrease.

Table 2. The values of the skin friction coefficient and the local Nusselt number as a physical
parameter.

Skin Friction Nusselt Number

Q M ϕ Pr fw Case-1 Case-2 Case-1 Case-2

0.2 2.402399 2.540362 3.314880 3.292131
0.4 2.402398 2.540362 2.613102 2.575383
0.6 2.402399 2.540362 1.709249 1.639159
0.8 2.402399 2.540362 0.366501 0.198966

0.6 2.489423 2.633932 2.160871 2.106608
1.2 3.239851 3.436586 1.827122 1.732227
1.8 4.220439 4.478802 1.252630 1.070368
2.4 5.297751 5.621093 0.303402 0.084177

0.002 6.215759 6.569464 3.003631 2.818563
0.004 4.367599 4.631485 2.512344 2.370365
0.006 3.578756 3.798511 2.284544 2.174230
0.008 3.112536 3.305193 2.142240 2.052131

0.7 2.797875 2.971118 0.184786 0.159446
1.4 2.797877 2.971122 0.025169 0.117266
2.1 2.797877 2.971122 0.094425 0.065792
2.8 2.797877 2.971122 0.456514 0.289438

1 3.295625 3.466278 2.173269 2.172145
2 3.959843 4.225607 4.089725 4.095232
3 4.702199 5.079428 6.032918 6.044240
4 5.513988 6.015086 7.987920 8.004670

From Table 2, when the heat source/sink rises, skin friction is steady in both Cases 1
and 2, and we can observe that Case 2 has a greater skin friction transfer rate than Case 1.
When the heat source/sink rises, the Nusselt number transfer rate decreases in both Cases
1 and 2, and we can observe that Case 1 has a greater Nusselt number transfer rate than
Case 2.

When the Hartmann number rises, the skin friction transfer rate decreases in both
Cases 1 and 2, and we can see that Case 2 has a greater skin friction transfer rate than
Case 1. When the Hartmann number increases, the Nusselt number transfer rate decreases
in both Cases 1 and 2, and we can observe that Case 1 has a greater Nusselt number transfer
rate than Case 2.

When the volume fraction rises, the skin friction transfer rate decreases in both Cases
1 and 2, and we can see that Case 2 has a greater skin friction transfer rate than Case-1.
When the volume fraction increases, the Nusselt number transfer rate decreases in both
Cases 1 and 2, and we can observe that Case 1 has a greater Nusselt number transfer rate
than Case 2.

When the Prandtl number rises, the skin friction transfer rate is steady in both Cases 1
and 2, and we can see that Case 2 has a greater skin friction transfer rate than Case 1. When
the Prandtl number increases, the Nusselt number transfer rate has mixed behavior in
both Cases 1 and 2, even though we can observe that Case 1 has a greater Nusselt number
transfer rate compared to Case 2.

When suction values rise in both Cases 1 and 2, the skin friction transfer rate also
increases, and we can observe that Case 2 has a greater skin friction transfer rate than
Case 1. When suction values rise, the Nusselt number transfer rate also grows in both Cases
1 and 2, and we can see that Case 2 has a greater Nusselt number transfer rate than Case 1.

It can be observed that, in the coefficients of the models, Case 1 M and Pr have a
positive impact on Nus1, but the reverse was true with fw; in Case 2, Nus2 showed the
same trend. Surfaces were used to illustrate the interactive influence of the important
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factors on the response variable, as seen in Figures 11–16. In Case 1, low-level values of
M and high-level values of Pr enhance the heat transfer rate, medium values of Pr and
high-level values of fw also enhance the heat transfer rate, but low-level values of M and
fw decrement the heat transfer rate.
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6. RSM: Response Surface Methodology

To review, Case 1 consisted of aluminum oxide, CNT, and graphene particles, while
Case 2 consisted of copper, silver, and cobalt ferrite particles. In both cases, particles
exhibited different shapes such as sphere, cylindrical, and platelet.

The RSM was utilized to investigate the continual impacts of important parameters
(i.e., independent parameters) on the dependent-variable response variables and to identify
the key parameter’s ideal levels. Additionally, the approach is consistent with an observed
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relationship for the (independent-variable) response variables, which is useful for forecast-
ing and optimization. Due to its computing efficiency, this approach was first introduced by
Box and Wilson [24] and has since been applied in other disciplines. For accurate modeling,
a suitable experimental design was selected. The experimental design made use of the
(FC-CCD) face-cantered central composite design described in [25]. A fractional factorial or
factorial design with center points, enhanced with a collection of axial points that permit
curvature estimation, is known as a central composite design.

Central composite design (CCD) can be used to estimate 1st- and 2nd-order terms
and to model a (dependent-variable) response variable with curvature by including center
and axial points to a prior factorial design. Having more degrees of freedom and less
error than other designs, the FC-CCD design is preferable. Also taken into account in this
design are the high levels of the factors. Using F + 2N + 2N , where F is the number of
faces in the design and N is the number of independent variables, the number of runs for
the experimental design using CCD can be obtained. The following equation gives the
complete quadratic model for three variables that include the interactional, linear, and
square terms of the important factors:

Z = b0 + b1Y1 + b2Y2 + b3Y3 + b4Y1Y2 + b5Y1Y3 + b6Y2Y3 + b7Y2
1 + b8Y2

2 + b9Y2
3 (51)

where the regression coefficients bi are indicated. The RSM analysis, which is focused
on the goal of maximizing attractiveness, is used to optimize multiple replies. The value
of desirability ranges from 0 to 1. Although greater desirability values are preferable,
simultaneous optimization of various factors may result in lower desirability values. The
following relationship is used to determine the desirability, as described in [26]:

d = 0, Z ≤ ZL

d =
[

Z−ZL
ZH−ZL

]
, ZL ≤ Z ≤ ZH

d = 1, Z ≥ ZH

(52)

Here, ZH, and ZL stand for, respectively, the highest and lowest response value.

6.1. RSM and Optimization Outcomes

The study’s three main components include the Hartmann number (M), Prandtl
number (Pr), and a suction parameter ( fw) to investigate the ideal amounts of these elements
to improve the rate of heat transmission. They are chosen based on three levels (medium
(0), high (+1), low (−1)); the key variables, their levels, and their codes values are listed
in Table 3. In accordance with Table 4, this design requires 20 runs, using the formula
F + 2N + 2N .

Table 3. Key RSM parameters, their levels, and their symbols.

Key Factors Symbols

Levels

−1
(Low)

0
(Medium)

1
(High)

M X1 1.2 1.8 2.4
Pr X2 1.4 2.1 2.8
fw X3 2 3 4
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Table 4. Design and results of heat transfer rate experiments (Nur).

Runs
Coded Values Real Values Response

X1 X2 X3 M Pr fw Nus-1 Nus-2

1 −1 −1 −1 1.2 1.4 2 2.516313 2.716616
2 1 −1 −1 2.4 1.4 2 2.701862 2.534297
3 −1 1 −1 1.2 2.8 2 5.711829 5.744885
4 1 1 −1 2.4 2.8 2 5.567382 5.602613
5 −1 −1 1 1.2 1.4 4 5.550822 5.586327
6 1 −1 1 2.4 1.4 4 5.495897 5.532817
7 −1 1 1 1.2 2.8 4 11.197125 11.270286
8 1 1 1 2.4 2.8 4 11.15152 11.225642
9 −1 0 0 1.2 2.1 3 6.321479 6.360699
10 1 0 0 2.4 2.1 3 6.238506 6.279378
11 0 −1 0 1.8 1.4 3 4.103701 4.130272
12 0 1 0 1.8 2.8 3 8.420175 8.474129
13 0 0 −1 1.8 2.1 2 5.639609 5.673726
14 0 0 1 1.8 2.1 4 11.175048 11.248695
15 0 0 0 1.8 2.1 3 8.420175 8.474129
16 0 0 0 1.8 2.1 3 8.420175 8.474129
17 0 0 0 1.8 2.1 3 8.420175 8.474129
18 0 0 0 1.8 2.1 3 8.420175 8.474129
19 0 0 0 1.8 2.1 3 8.420175 8.474129
20 0 0 0 1.8 2.1 3 8.420175 8.474129

Analysis of variance, shown in Table 5, is used to determine the precision of the
estimated RSM model. The coefficient of determination (R2 = 97.85%) quantifies the
amount of variation in the (dependent-variable) response variable that is evaluated by
the important variables. It also serves as a gauge for the model’s degree of accuracy.
R2 = 97.85% is considered high and indicates the precision of the model. The model’s
correctness is further confirmed by the residual plots in Figures 17 and 18. The data points
in the normal probability plot along the straight line indicate the residuals’ normality, and
the residuals’ histogram has a bell-shaped distribution. All of these results indicate the
model’s correctness. According to the coded coefficients (X1, X2, and X3), the quadratic
model for Nus for two cases is as follows, in accordance with the Taguchi model [27]:

Nus1 = −17.62 + 13.93M + 12.33Pr− 4.23 fw − 3.796M2 − 2.826Pr2 + 0.761 f 2
w

−0.095MPr− 0.030M fw + 0.936Pr fw.
Nus2 = −16.78 + 13.50M + 12.20Pr− 4.40 fw − 3.820M2 − 2.843Pr2

+0.766 f 2
w + 0.015MPr + 0.047M fw + 0.943Pr fw.

 (53)

Table 5. For Nus, the variance was examined.

Source
Degrees
of
Freedom

Adjusted
Sum of
Squares

Adjusted
Mean
Square

F-Value p-Value

Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2

Model 9 121.385 123.026 13.4872 13.6695 50.34 50.64 0 0
Linear 3 12.507 11.961 4.169 3.9869 15.56 14.77 0 0
M 1 4.524 4.248 4.5241 4.2476 16.89 15.73 0.002 0.003
Pr 1 4.823 4.726 4.8234 4.7261 18 17.51 0.002 0.002
fw 1 1.161 1.254 1.161 1.2542 4.33 4.65 0.064 0.057
Square 3 20.608 20.871 6.8695 6.9571 25.64 25.77 0 0
M ∗M 1 5.135 5.202 5.135 5.202 19.17 19.27 0.001 0.001
Pr ∗ Pr 1 5.272 5.338 5.2716 5.3378 19.67 19.77 0.001 0.001
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Table 5. Cont.

Source
Degrees
of
Freedom

Adjusted
Sum of
Squares

Adjusted
Mean
Square

F-Value p-Value

Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2

fw ∗ fw 1 1.592 1.613 1.592 1.6128 5.94 5.97 0.035 0.035
2-Way Interaction 3 3.449 3.492 1.1496 1.1639 4.29 4.31 0.034 0.034
M ∗ Pr 1 0.013 0 0.0129 0.0003 0.05 0 0.831 0.974
Pr ∗ fw 1 0.003 0.006 0.0025 0.0064 0.01 0.002 0.925 0.881
fw ∗M 1 3.433 3.485 3.4334 3.4851 12.81 12.91 0.005 0.005
Error 10 2.679 2.7 0.2679 0.27
Lack of Fit 5 2.679 2.7 0.5359 0.5399
Pure Error 5 0 0 0 0
Total 19 124.064 125.725
R2 = 97.85%
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In Case 2, low-level values of M and high-level values of Pr enhance the heat transfer
rate, medium-level values of Pr and high-level values fw also enhance the heat transfer
rate, but low-level values of M and fw decrement the heat transfer rate.

The curvature in the surface plots also amply demonstrates the non-linear link between
the important elements. To increase process efficiency, it is crucial to identify the critical
variables’ ideal values that maximize the rate of heat transfer. RSM estimates the maximal
heat transfer at this ideal state to be Nus1 = 11.197125 and Nus2 = 11.270286.
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6.2. Sensitivity Analysis

The sensitivity of the heat transmission rate is evaluated in this subsection. The
sensitivity analysis gives details about how the primary factors’ increments affect the
response variable. Designers and engineers can learn about the relative influence of the
important elements by looking at the proportions of sensitivity values at particular value
levels for the parameters. A positive correlation follows from a positive sensitivity, and
the reverse from a negative sensitivity. The following calculations represent the heat
transmission rate’s sensitivity functions:

∂Nus
∂M = 13.93− 7.592 ∗M− 0.095 ∗ Pr− 0.030 ∗ f w

∂Nus
∂Pr = 12.33− 5.652 ∗ Pr− 0.095 ∗M + 0.936 ∗ f w

∂Nus
∂ f w = −4.23 + 1.522 ∗ f w− 0.030 ∗M + 0.936 ∗ Pr

 (54)

∂Nus
∂M = 13.50− 7.64 ∗M + 0.015 ∗ Pr + 0.047 ∗ f w

∂Nus
∂Pr = 12.20− 5.686 ∗ Pr + 0.015 ∗M + 0.943 ∗ f w

∂Nus
∂ f w = −4.40 + 1.532 ∗ f w + 0.047 ∗M + 0.943 ∗ Pr

 (55)

The sensitivity values for each level of the significant components are listed in Table 6.
The Nusselt number’s sensitivity is shown in Table 6, where ∂Nus

∂M showed a mixed nature
in Case 1 and Case 2, ∂Nus

∂Pr showed a positive nature in Case 1 and Case 2, and ∂Nus
∂ f w showed

a positive nature in Case 1 and Case 2.
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Table 6. Sensitivity values at all levels of the key factors.

∂Nus
∂M

∂Nus
∂Pr

∂Nus
∂fw

X1 X2 X3 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2

−1 −1 −1 4.6266 4.447 6.1752 6.1436 0.0884 0.0406
−1 −1 0 4.5966 4.494 7.1112 7.0866 1.6104 1.5726
−1 −1 1 4.5666 4.541 8.0742 8.0296 3.1324 3.1046
−1 0 −1 4.5601 4.4575 2.2188 2.1634 0.7436 0.7707
−1 0 0 4.5301 4.5045 3.1548 3.1064 2.2656 2.2327
−1 0 1 4.5001 4.5515 4.0908 4.0494 3.7876 3.7647
−1 1 −1 4.4936 4.468 −1.7376 −1.8168 1.3988 1.0608
−1 1 0 4.4636 4.515 −0.8016 −0.8738 2.9208 2.8928
−1 1 1 4.4336 4.562 0.1344 6.822 4.4428 4.4248
0 −1 −1 0.0714 −0.137 6.1182 6.1526 0.0704 0.0688
0 −1 0 0.0414 −0.09 7.0542 7.0956 1.5924 1.6008
0 −1 1 0.0114 −0.043 7.9902 8.0386 3.1144 3.1328
0 0 −1 0.0049 −0.1265 2.1618 2.1724 0.7256 0.7289
0 0 0 −0.0251 −0.0795 3.0978 3.1154 2.2476 2.2609
0 0 1 −0.0551 −0.0325 4.0338 4.0584 3.7696 3.7929
0 1 −1 −0.0616 −0.116 −1.7946 −1.8078 1.3808 1.389
0 1 0 −0.0916 −0.069 −0.8586 −0.8648 0.9028 2.921
0 1 1 −0.1216 −0.022 0.0774 0.0782 4.4248 4.453
1 −1 −1 −4.4838 −4.721 6.0612 6.1616 0.0524 0.097
1 −1 0 −4.5138 −4.674 6.9972 7.1046 1.5744 1.629
1 −1 1 −4.5438 −4.627 7.9332 8.0476 3.0964 3.161
1 0 −1 −4.5503 −4.7105 2.1048 2.1814 0.7076 0.7571
1 0 0 −4.5803 −4.6635 3.0408 3.1244 2.2296 2.2891
1 0 1 −4.6103 −4.6165 3.9768 4.0674 3.7516 3.8211
1 1 −1 −4.6168 −4.7 −1.8516 −1.7988 1.3628 1.4172
1 1 0 −4.6468 −4.653 −0.9516 −0.8558 2.8848 2.9492

The following outcomes are produced by an increase in the key factor levels:

• Raising M levels (from −1 to 1) results in decreased sensitivity for the Case 1 ∂Nus
∂M and

the same sensitivity nature for Case 2.
• Raising Pr levels (from −1 to 1) results in mixed sensitivity in both Case 1 and Case 2.
• Raising fw levels (from −1 to 1) results in mixed sensitivity in Case 1 and increased

sensitivity in Case 2.

7. Conclusions

Hybrid nanofluids are generally employed as coolants in heat transfer equipment such
as electronic cooling, heat exchange systems (such as flat-panel systems), and radiators due
to their improved thermal characteristics.

Here, the effects of MHD and suction were studied for two hybrid nanofluids (Case 1:
CNT/aluminum oxide/graphene; Case 2: copper/silver/cobalt ferrite), using water as
a base fluid and nanoparticles with different shapes such as spherical, cylindrical, and
platelet. The effects of four parameters (Pr, M, Q, fw) on heat and velocity transfer rate were
also analyzed. The scaling group of transformations was used to convert from dimensional
to non-dimensional equations to conduct the analysis.

This research yielded the following conclusions:

• When suction rises, the velocity and temperature profiles both increase.
• When the Hartmann number rises, velocity and temperature exhibit inverse behaviors:

the velocity profile increases, while the temperature profile decreases.
• When the volume fraction rises, the temperature and velocity profiles both increase.
• When the Prandtl number rises, the temperature and velocity profiles both increase.
• When the heat source/sink rises, the temperature and velocity profiles both decrease.
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