
Citation: Abdel-Basset, M.;

Mohamed, R.; Abd Elkhalik, W.;

Sharawi, M.; Sallam, K.M. Task

Scheduling Approach in Cloud

Computing Environment Using

Hybrid Differential Evolution.

Mathematics 2022, 10, 4049. https://

doi.org/10.3390/math10214049

Academic Editors: Wanquan Liu,

Xuefang Li and Xianchao Xiu

Received: 3 September 2022

Accepted: 27 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Task Scheduling Approach in Cloud Computing Environment
Using Hybrid Differential Evolution
Mohamed Abdel-Basset 1, Reda Mohamed 1, Waleed Abd Elkhalik 1 , Marwa Sharawi 2

and Karam M. Sallam 3,*

1 Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Sharqiyah, Egypt
2 College of Engineering and Applied Sciences, American University of Kuwait, Salmiya 20002, Kuwait
3 School of IT and Systems, University of Canberra, Canberra, ACT 2601, Australia
* Correspondence: karam.sallam@canberra.edu.au

Abstract: Task scheduling is one of the most significant challenges in the cloud computing envi-
ronment and has attracted the attention of various researchers over the last decades, in order to
achieve cost-effective execution and improve resource utilization. The challenge of task scheduling is
categorized as a nondeterministic polynomial time (NP)-hard problem, which cannot be tackled with
the classical methods, due to their inability to find a near-optimal solution within a reasonable time.
Therefore, metaheuristic algorithms have recently been employed to overcome this problem, but these
algorithms still suffer from falling into a local minima and from a low convergence speed. Therefore,
in this study, a new task scheduler, known as hybrid differential evolution (HDE), is presented as
a solution to the challenge of task scheduling in the cloud computing environment. This scheduler is
based on two proposed enhancements to the traditional differential evolution. The first improvement
is based on improving the scaling factor, to include numerical values generated dynamically and
based on the current iteration, in order to improve both the exploration and exploitation operators;
the second improvement is intended to improve the exploitation operator of the classical DE, in order
to achieve better results in fewer iterations. Multiple tests utilizing randomly generated datasets and
the CloudSim simulator were conducted, to demonstrate the efficacy of HDE. In addition, HDE was
compared to a variety of heuristic and metaheuristic algorithms, including the slime mold algorithm
(SMA), equilibrium optimizer (EO), sine cosine algorithm (SCA), whale optimization algorithm
(WOA), grey wolf optimizer (GWO), classical DE, first come first served (FCFS), round robin (RR)
algorithm, and shortest job first (SJF) scheduler. During trials, makespan and total execution time
values were acquired for various task sizes, ranging from 100 to 3000. Compared to the other meta-
heuristic and heuristic algorithms considered, the results of the studies indicated that HDE generated
superior outcomes. Consequently, HDE was found to be the most efficient metaheuristic scheduling
algorithm among the numerous methods researched.

Keywords: differential evolution; hybridization; makespan; cloud computing

MSC: 68W50; 90B36; 90C27

1. Introduction

Healthcare services (HCS) based on cloud computing and IoT are now seen as one
of the most significant medical fields, due to the spread of epidemics and health crises,
where the best use of HCS can save many lives [1]. Through the use of cloud computing,
HCS users can gain access to online computing resources, such as software, hardware, and
applications that are managed in accordance with their needs. As a result, cloud computing
in the context of the Internet of Things has greatly benefited all users, especially those in the
healthcare services industry who wish to deliver medical services via the Internet [2]. The
rapid adoption and ease of use in all industries, the proliferation of the Internet of Things

Mathematics 2022, 10, 4049. https://doi.org/10.3390/math10214049 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214049
https://doi.org/10.3390/math10214049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0766-2651
https://orcid.org/0000-0002-8411-1941
https://orcid.org/0000-0001-5767-2818
https://doi.org/10.3390/math10214049
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214049?type=check_update&version=2

Mathematics 2022, 10, 4049 2 of 26

concept, and the continued advancement of infrastructure and technology will all increase
user demand for cloud computing, doubling the volume of data and requests from users.
Task scheduling becomes a more challenging issue. Delivering resources in accordance
with user requests and upholding quality of service (QoS) requirements for the end-user is
a demanding task [3].

Broadly speaking, cloud computing is made up of a large number of datacenters that
house numerous physical machines (host). Each host runs several virtual machines (VMs)
that are in charge of executing user tasks with varying quality of services (QoS). Users
are able to gain access to cloud resources on a pay-as-you-go basis, through the use of
cloud service providers [4]. An IoT environment connected to a cloud computing paradigm
makes efficient use of the physical resources already available, thanks to virtualization
technology. Thus, multiple users of healthcare services (HCS) can store and access a variety
of medical resources using a single physical infrastructure, which includes both hardware
and software. One of the most significant issues with healthcare services is the task
scheduling problem (TSP), which causes users of healthcare services in a cloud computing
environment to experience delays in receiving medical requests. The waiting period, the
turnaround time for medical requests, CPU waste, and resource waste are some of the
factors that contribute to the delay in processing medical requests. TSP is a NP-hard
problem responsible for allocating computing resources to application tasks in an effective
manner [2].

When the size of the tasks and the number of VMs both increase, the amount of
computing time required to select the best scheduling for those tasks to the VMs increases
exponentially. Some classic scheduling techniques, such as first come first served (FCFS),
round-robin (RR), and shortest job first (SJF), are able to provide solutions to scheduling,
but cannot fulfil the demands of cloud computing because its scheduling problem is NP-
hard [5,6]. As traditional scheduling algorithms are unable to solve NP-hard optimization
problems, more recently, modern optimization algorithms, also known as metaheuristic
algorithms, have been used instead. These algorithms can produce optimal or near-optimal
solutions in a reasonable amount of time compared to traditional scheduling algorithms.

Several metaheuristic algorithms have been employed for tackling task scheduling in
cloud computing environments; for example, in [6], a new variant of the classic particle
swarm optimization (PSO), namely ranging function and tuning function based PSO
(RTPSO), was proposed, to achieve better task scheduling. In RTPSO, the inertia weight
factors were improved to generate small and large values, for better local search and
global search. In addition, RTPSO was integrated with the bat algorithm for further
improvements; this variant was named RTPSO-B. Both RTPSO and RTPSO have been
compared with various well-established algorithms, such as the genetic algorithm (GA),
ant-colony optimization algorithm (ACO), and classical PSO. This comparison showed the
efficiency of RTPSO-B in terms of its makespan, cost, and the utilization of resources.

The flower pollination algorithm (FPA) was also applied to tackle the task scheduling
in cloud computing. Bezdan, T. et al. [7] improved the exploration operator of the classical
FPA by replacing the worst individuals with new ones generated randomly within the
search space, to avoid becoming stuck in local minima at the start of the optimization
process. This improved FPA was called EEFPA and employed to find the best scheduling
of tasks in cloud computing environments, which will minimize the makespan as a ma-
jor objective. EEFPA was the best scheduler, compared to the other similar approaches
considered in the study. Choudhary et al. [8] developed a task scheduling algorithm for
bi-objective workflow scheduling in cloud computing that is based on hybridizing the
gravitational search algorithm (GSA) and heterogeneous earliest finish time (HEFT); this
algorithm was named as HGSA. This algorithm was developed in an effort to shorten the
makespan and the computational cost. However, it is possible that GSA may not perform
accurately for more complicated tasks.

Raghavan et al. [9] adapted the bat algorithm (BA) to tackle the task scheduling
problem in cloud computing, with an objective function for reducing the total cost of the

Mathematics 2022, 10, 4049 3 of 26

workflow. On the other hand, BA had a subpar performance in the high dimension [6].
Tawfeek et al. [10] devised ant colony optimization to deal with task scheduling in cloud
computing, with the goal of reducing the makespan. This algorithm was compared to
two traditional algorithms, such as FCFS and RR, and it performed better than both of
them. The problem with this algorithm is that it converges slowly, and hence will take
several iterations to obtain feasible solutions. Hamad and Omara [11] proposed a task
scheduling algorithm based on the genetic algorithm (GA), to find the optimal assignment
of tasks in cloud computing, which will optimize the makespan and cost, as well as the
resource utilization.

The grey wolf optimizer (GWO) was proposed, to schedule the tasks in cloud comput-
ing to utilize the resources more efficiently and minimize the total completion time [12].
This algorithm was compared with several scheduling methods, such as the FCFS, ACO,
performance budget ACO (PBACO), and min-max algorithms. The experimental findings
showed that GWO was the best-performing scheduler and PBACO was the second best.
However, the performance of GWO at large scale was not evaluated and, hence, it is not
preferable when the number of tasks is at a large scale. Chen, X. et al. [13] presented a task
scheduler based on the improved whale optimization algorithm (IWOA). The standard
WOA was improved in IWOA using two factors, namely the nonlinear convergence factor
and adaptive population size. IWOA was better than the compared algorithms in terms of
accuracy and convergence speed when scheduling small-scale tasks or large-scale tasks in
cloud computing environments.

Alsaidy, S.A. et al. [14] proposed two variants of PSO: The first, named LJFP-PSO,
is based on initializing a population using a heuristic algorithm known as longest job
to fastest processor (LJFP); while the second variant, known as MCT-PSO, is based on
employing the minimum completion time (MCT) algorithm to initialize the population
and to achieve a better makespan, total execution time, degree of imbalance, and total
energy consumption when tackling the task scheduling problem in cloud computing. The
glowworm swarm optimization (GSO) was used to solve the problem of task scheduling
in cloud computing. The goal of this solution was to minimize the overall execution cost
of jobs, while keeping the total completion time within the deadline [15]. According to
the findings of a simulation, the GSO based task scheduling (GSOTS) algorithm achieved
better results than the shortest task first (STF), the largest task first (LTF), and the particle
swarm optimization (PSO) algorithms in terms of lowering the total completion time and
the cost of executing tasks. There are several other metaheuristics-based task scheduling
algorithms in the cloud computing environment, including the cuckoo search algorithm
(CSA) [16], electromagnetism optimization (EMO) algorithm [17], sea lion optimization
(SLO) algorithm [18], adaptive symbiotic organisms search (ASOS) [19], hybrid whale
optimization algorithm (HWOA) [20], artificial flora optimization algorithm (AFOA) [21],
modified particle swarm optimization (MPSO) [22], and differential evolution (DE) [23–30].

As mentioned, the task scheduling problem is classified as a nondeterministic poly-
nomial time (NP)-hard problem and cannot be solved using traditional methods due to
their inability to find a near-optimal solution in a reasonable time. Although, metaheuristic
algorithms could have a significant effect when tackling these problems, they still suffer
from falling into local minima and from a low convergence speed. As a result, a new task
scheduler, known as hybrid differential evolution (HDE), is presented in this study, as a so-
lution to the task scheduling challenge in the cloud computing environment. This scheduler
is based on two proposed improvements to differential evolution. The first improvement is
based on expanding the scaling factor to include dynamically generated numerical values
based on the current iteration, in order to improve both the exploration and exploitation
operators; the second improvement is intended to improve the exploitation operator of
the classical DE, in order to achieve better results in fewer iterations. To demonstrate the
efficacy of HDE, multiple tests were performed using randomly generated datasets and the
CloudSim simulator. HDE was compared to a number of heuristic and metaheuristic algo-

Mathematics 2022, 10, 4049 4 of 26

rithms, to show that it is a strong alternative for overcoming the task scheduling problem
in cloud computing. The main contributions of this study are as follows:

• Improving the scaling factor and the exploitation operator of the classical DE, to
propose a new task scheduler known as hybrid differential evolution for the challenge
of task scheduling in the cloud computing environment.

• Conducting several experiments using randomly generated datasets and the CloudSim
simulator, to verify the efficiency of HDE.

• The experimental findings show that HDE was the most effective metaheuristic
scheduling algorithm among the compared approaches.

The remaining sections of this work are structured as follows: Section 2 describes
the classical differential evolution, Section 3 presents the objective function formulation,
Section 4 details the steps of the proposed algorithm, Section 5 depicts the results of the
experiments and performance comparison, and Section 6 presents the conclusions drawn
from this study, as well as observations regarding future research.

2. Task Scheduling in the Cloud Computing Environment

Cloud computing is made up of a large number of datacenters that house numerous
physical machines (host). Each host runs several virtual machines (VMs) that are in charge
of executing user tasks with varying quality of services (QoS). Figure 1 depicts the task
scheduling in a cloud computing environment [4]. Supposing that there are n cloudlets
(Tasks), T = T1, T2, T3, . . . , Tn, which are executed using m virtual machines (VMs),
VM = VM1, VM2, VM3, . . . , VMm. These tasks have various lengths and the VMs
are heterogonous in terms of bandwidth, RAM, and CPU time. The cloud broker makes
a request to the cloud information service, to obtain details about the services needed to
carry out the tasks it has been given, and then schedules the tasks on the services that have
been found. The numerous variables and QoS criteria of the broker influence the choice of
the tasks to be provided. The cloud broker is the key element of the task scheduling process,
it mediates talks between the user and the provider and decides when to schedule tasks for
certain resources. However, there are several issues that need to be considered. The tasks
that users submit are first added to the top queue in the system and must wait while the
resources are employed. As a result, the system’s queue grows longer, which lengthens the
waiting period. However, a more effective approach than the first come first served (FCFS)
principle should be used to manage this queue. Second, when the service provider manages
the tasks, numerous parameters can be taken into account as multiobjective optimization
or single objective optimization, such as the makespan, which directly affects resource
consumption [4]. Therefore, a strong task scheduling algorithm should be created and
implemented in the cloud broker, to not only meet the QoS requirements imposed by cloud
users, but also to achieve good load balancing between the virtual machines, in order to
improve resource utilization [4].

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 28

Figure 1. Task scheduling process in the cloud computing environment [4].

3. Differential Evolution

Storn [31] presented a population-based optimization method dubbed differential

evolution (DE). DE is comparable to genetic algorithms, in terms of its mutation,

crossover, and selection operators. Before commencing the process of optimization, the

differential evolution generates a set of solutions, referred to as individuals, each of which

has D dimensions and is randomly dispersed within the search space of the optimization

problem. This takes place before the optimization procedure begins. After that, as will

become clear in the following paragraphs, the mutation and crossover operators are

applied, in order to search through the space available in an effort to locate more effective

solutions.

3.1. Mutation Operator

This operator is applied to generate a mutant vector 𝑣⃗𝑖
𝑡 for each solution in the

population. There are several updating schemes that can be applied to generate the

mutant vector, one of the most common schemes generates the mutant vector according

to the following formula:

𝑣⃗𝑖
𝑡 = 𝑋𝑎

⃗⃗ ⃗⃗ ⃗(𝑡) + 𝐹 ∗ (𝑋𝑘
⃗⃗ ⃗⃗ ⃗(𝑡) − 𝑋𝑗

⃗⃗⃗⃗ (𝑡)) (1)

where 𝑎, k, and j stand for the indices of three individuals picked randomly from the

population at the current iteration t. F is a positive scaling factor that involves a constant

value greater than 0.

3.2. Crossover Operator

After generating the mutant vector 𝑣⃗𝑖
𝑡 using the crossover operator under a

crossover probability (CR), the trial vector 𝑢⃗⃗𝑖
𝑡 is generated using both the mutant vector

and the solution of the 𝑖𝑡ℎ individual, according to the following equation:

𝑢𝑖,𝑗
𝑡 = {

𝑣𝑖,𝑗
𝑡 𝑖𝑓 (𝑟1 ≤ 𝐶𝑅)|| (𝑗 = 𝑗𝑟)

𝑋𝑖,𝑗(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

where 𝑗𝑟 is a random integer generated between 1 and D, 𝑗 indicates the current

dimension, and 𝐶𝑅 is a constant value between 0 and 1, which specifies the percentage

of dimensions copied from the mutant vector to the trial vector.

3.3. Selection Operator

Finally, this operator is presented to compare the vector 𝑢⃗⃗𝑖
𝑡 to vector 𝑋𝑖

⃗⃗⃗⃗ (𝑡), with the

fittest being used in the next iteration. Generally, the selection operator for a minimization

problem is mathematically formulated as follows:

Figure 1. Task scheduling process in the cloud computing environment [4].

Mathematics 2022, 10, 4049 5 of 26

3. Differential Evolution

Storn [31] presented a population-based optimization method dubbed differential
evolution (DE). DE is comparable to genetic algorithms, in terms of its mutation, crossover,
and selection operators. Before commencing the process of optimization, the differential
evolution generates a set of solutions, referred to as individuals, each of which has D
dimensions and is randomly dispersed within the search space of the optimization problem.
This takes place before the optimization procedure begins. After that, as will become clear
in the following paragraphs, the mutation and crossover operators are applied, in order to
search through the space available in an effort to locate more effective solutions.

3.1. Mutation Operator

This operator is applied to generate a mutant vector
→
v

t
i for each solution in the

population. There are several updating schemes that can be applied to generate the mutant
vector, one of the most common schemes generates the mutant vector according to the
following formula:

→
v

t
i =

→
Xa(t) + F ∗

(→
Xk(t)−

→
Xj(t)

)
(1)

where a, k, and j stand for the indices of three individuals picked randomly from the
population at the current iteration t. F is a positive scaling factor that involves a constant
value greater than 0.

3.2. Crossover Operator

After generating the mutant vector
→
v

t
i using the crossover operator under a crossover

probability (CR), the trial vector
→
u

t
i is generated using both the mutant vector and the

solution of the ith individual, according to the following equation:

ut
i, j =

{
vt

i, j i f (r1 ≤ CR‖)‖ (j = jr)

Xi, j(t) otherwise
(2)

where jr is a random integer generated between 1 and D, j indicates the current dimension,
and CR is a constant value between 0 and 1, which specifies the percentage of dimensions
copied from the mutant vector to the trial vector.

3.3. Selection Operator

Finally, this operator is presented to compare the vector
→
u

t
i to vector

→
Xi(t), with the

fittest being used in the next iteration. Generally, the selection operator for a minimization
problem is mathematically formulated as follows:

→
Xi(t + 1) =

{ →
u

t
i i f (f (

→
u

t
i) < f (

→
Xi(t)))

→
Xi(t) otherwise

(3)

4. Objective Function Formulation

Supposing that there are n cloudlets (Tasks), T = T1, T2, T3, . . . , Tn, which are
executed using m virtual machines (VMs), VM = VM1, VM2, VM3, . . . , VMm. Then,
the solutions obtained by a scheduler represent the assignment process of the tasks to the
VMs in the order that will minimize the two objectives: makespan, and total execution
time. Problems that have two or three objectives are classified as multiobjective. There
are two methods, namely a priori or a posteriori, suggested to deal with multiobjective
problems [32,33]. In the priori method, the multiobjective problems are treated as a single
objective problem, by assigning a weight to each objective, based on the significance of
each objective for the decision-makers. On the other hand, the posteriori method proposes
that all objectives have the same significance, so it generates a set of solutions, namely

Mathematics 2022, 10, 4049 6 of 26

non-dominated solutions, that trade off between different objectives. In this study, the
priori approach was employed to convert the multiobjective problem into single objective
using a weighting variable τ that includes a constant value generated between 0 and 1,
to determine the importance of an objective, for example, the makespan, in the fitness
function, and the complement of this variable (1− τ) indicates the weight of the other
objective. For instance, the objective function under this weighting variable is formulated
as follows:

f = (1− τ)× η + τ × β (4)

where β represents the makespan objective, and η stands for the total execution time.
τ stands for the weighting variable, which is employed to convert this problem from
multi-objective to single-objective, to become solvable using the met heuristic algorithms
designed for single-objective problems, such as differential evolution. In the future, the
posteriori approach will be applied to this problem, in an attempt to achieve better results
for all objectives at the same time.

After describing the main components of the objective function, let us describe each
one carefully. Starting with the makespan objective, at the beginning time, each VMj has
a variable Etj assigned a value of 0, and then the tasks are distributed using a scheduler to
those VMs. Each VM executes their assigned tasks and the execution time needed by each
task to be executed under the jth VM is added to the variable Etj. Finally, after finishing the
tasks assigned to all VMs, the values stored in the variable Et for each VM are compared
with each other, and the maximum value represents the makespan. Finally, the makespan,
defined as the maximum of Et of all VMs, can be computed using the following expression:

β = max(
→
Et) (5)

The second objective η is the total execution time consumed to complete the tasks
assigned to all the VMs and can be computed according to the following formula:

η =
m

∑
j=1

Etj (6)

Finally, the proposed algorithm described in the next section is employed to minimize
the objective function described in Equation (4), to find the near-optimal scheduling of
tasks that minimizes both the makespan and total execution time, hence providing a better
quality of service to the users.

5. The Proposed Algorithm

This section presents the main steps employed to adapt the differential evolution for
tackling the task scheduling problem in cloud computing; these steps are listed as follows:
initialization, evaluation, adaptive mutation factor, and additional exploitation operator.

5.1. Initialization

Before starting the optimization process with any metaheuristic algorithm, a number
N of solutions with n dimensions (each dimension represents a task in the scheduling
problem) for each solution are defined and randomly initialized between 0 and m, to
assign each task to a virtual machine. For example, Figure 2 presents a simple example, to
illustrate how to represent a solution for the task scheduling problem. In this figure, we
create a solution with 10 tasks, where n is 10, and randomly assign a VM to each task in
this solution, where the number of available VMs is up to 7. From this figure, it is obvious
that the virtual machine with an index of 2 will execute tasks 2 and 9, and the VM with
an index of 0 will be assigned to execute tasks 1 and 5, while the other tasks, in order, will

Mathematics 2022, 10, 4049 7 of 26

be assigned to the VMs: 1, 4, 3, 5, 6, and 5, respectively. In brief, the mathematical formula
of the initialization step is defined as follows:

→
Xi =

→
r ∗ m| i = 0, 2, 3, 4, . . . , (N − 1) (7)

where
→
r stands for a vector involving decimal numbers generated randomly between 0

and 1, and ∗ indicates the multiplication operator. Following that step, the evaluation stage
commences, to evaluate the quality of each solution and determine the best so-far solution
that can reach the lowest value for the objective function described in Equation (4).

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 28

5. The Proposed Algorithm

This section presents the main steps employed to adapt the differential evolution for

tackling the task scheduling problem in cloud computing; these steps are listed as follows:

initialization, evaluation, adaptive mutation factor, and additional exploitation operator.

5.1. Initialization

Before starting the optimization process with any metaheuristic algorithm, a number

N of solutions with n dimensions (each dimension represents a task in the scheduling

problem) for each solution are defined and randomly initialized between 0 and m, to

assign each task to a virtual machine. For example, Figure 2 presents a simple example, to

illustrate how to represent a solution for the task scheduling problem. In this figure, we

create a solution with 10 tasks, where n is 10, and randomly assign a VM to each task in

this solution, where the number of available VMs is up to 7. From this figure, it is obvious

that the virtual machine with an index of 2 will execute tasks 2 and 9, and the VM with an

index of 0 will be assigned to execute tasks 1 and 5, while the other tasks, in order, will be

assigned to the VMs: 1, 4, 3, 5, 6, and 5, respectively. In brief, the mathematical formula of

the initialization step is defined as follows:

𝑋𝑖
⃗⃗⃗⃗ = 𝑟 ∗ 𝑚| 𝑖 = 0, 2, 3, 4, … , (𝑁 − 1) (7)

where 𝑟 stands for a vector involving decimal numbers generated randomly between 0

and 1, and ∗ indicates the multiplication operator. Following that step, the evaluation

stage commences, to evaluate the quality of each solution and determine the best so-far

solution that can reach the lowest value for the objective function described in Equation

(4).

Figure 2. A solution representation for task scheduling in cloud computing. This figure starts by

numbering the cells with 0 and ends with an index of 9 for the last cell, such that the cell 0

indicates the first task, and the second cell indicates the second task, and so on.

5.2. Adaptive Scaling Factor (F)

The mutation stage in the differential evolution has a scaling factor, namely F,

responsible for determining the step sizes. This factor in the classical DE algorithm

includes a constant positive value, and this value is unchanged during the whole

optimization process. Hence, if the population diversity is high and the value of this

scaling factor is also high, the step size will take the solution a long distance from the

current solution, this even occurs at the beginning of the optimization process, to

encourage the algorithm to extensively explore the search space, to find the promising

regions that might contain the best-so-far solution. Afterwards, the population diversity

might be decreased when increasing the current iteration, while the scaling factor remains

constant. However, what will happen if the population diversity remains high during the

entire optimization process? Let us imagine together, if the population diversity remains

high and the scaling factor is constant, then the generated step sizes are also high and,

hence, the algorithm will always search for a better solution in regions far from the current

solution, which might contain the near-optimal solution near to it. A similar problem

occurs when the scaling factor is small and the population diversity is high. Therefore, in

this study, we reformulated this factor to be dynamically updated according to the current

iteration, to maximize the exploration operator of the classical DE algorithm at the

beginning of the optimization process, and to search for the most promising region within

the search space; and then, by increasing the current iteration, this exploration operator

will be gradually converted into the exploitation operator, to focus more on this promising

Figure 2. A solution representation for task scheduling in cloud computing. This figure starts by
numbering the cells with 0 and ends with an index of 9 for the last cell, such that the cell 0 indicates
the first task, and the second cell indicates the second task, and so on.

5.2. Adaptive Scaling Factor (F)

The mutation stage in the differential evolution has a scaling factor, namely F, re-
sponsible for determining the step sizes. This factor in the classical DE algorithm includes
a constant positive value, and this value is unchanged during the whole optimization
process. Hence, if the population diversity is high and the value of this scaling factor is
also high, the step size will take the solution a long distance from the current solution,
this even occurs at the beginning of the optimization process, to encourage the algorithm
to extensively explore the search space, to find the promising regions that might contain
the best-so-far solution. Afterwards, the population diversity might be decreased when
increasing the current iteration, while the scaling factor remains constant. However, what
will happen if the population diversity remains high during the entire optimization process?
Let us imagine together, if the population diversity remains high and the scaling factor is
constant, then the generated step sizes are also high and, hence, the algorithm will always
search for a better solution in regions far from the current solution, which might contain the
near-optimal solution near to it. A similar problem occurs when the scaling factor is small
and the population diversity is high. Therefore, in this study, we reformulated this factor to
be dynamically updated according to the current iteration, to maximize the exploration
operator of the classical DE algorithm at the beginning of the optimization process, and to
search for the most promising region within the search space; and then, by increasing the
current iteration, this exploration operator will be gradually converted into the exploitation
operator, to focus more on this promising region, in order to achieve a better solution, in
addition to accelerating the convergence. Based on this, the shortcomings of the classical
DE with a constant scaling factor are largely avoided. Finally, the adaptive scaling factor is
generated based on the current iteration, using the following formula:

F′ = α ∗
(

T − t
T

)
(8)

where T indicates the maximum iteration, and t stands for the current iteration. α is
a predefined constant value.

5.3. Convergence Improvement Strategy

The mutation scheme described previously for generating the mutant vector in the
classical DE is based on three solutions selected randomly from the current population.
As a consequence of this, the exploration operator may be directed to explore the regions
surrounding one of these solutions, despite the fact that the near-optimal solution may be
in a region close to the best-so-far solution. Therefore, in this study, an additional strategy,
namely a convergence improvement strategy (CIS), is proposed to exploit the regions

Mathematics 2022, 10, 4049 8 of 26

around the best-so-far solution, to improve the convergence ability of the standard DE. This

strategy in initially generates a vector, namely
→
v

t
i , including numerical values generated

around the best-so-far solution, using the following formula:

→
v

t
i =

→
X∗(t) +

→
r ∗
(→

Xi(t)−
→
r1 ∗

→
X∗(t)

)
(9)

where
→
X∗(t) indicates the best-so-far solution at the current iteration t, and

→
r and

→
r1 are

two vectors including numerical values generated randomly between 0 and 1. Follow-

ing this, another vector, namely a trial vector
→
T

t

i , will be generated based on conducting

a crossover operation between
→
X∗(t) and

→
v

t
i under a crossover probability (P) predeter-

mined according to experiments. Briefly, the trial vector will be generated according to the
following formula:

Tt
i, j =

{
vt

i, j i f (r2 ≤ P)

X∗j (t) otherwise
(10)

where r2 is a numerical value generated randomly between 0 and 1. Finally, the fitness

value of the trial vector,
→
T

t

i , will be compared with that of the current solution
→
Xi(t), and if

the fitness of this trial vector is better, then it will be used in the next iteration; otherwise,
the current solution is retained in the next generation, even when reaching a better one.
However, applying this strategy to all individuals in the population might deteriorate the
exploration operator of the classical DE, because it might reduce the population diversity.
Therefore, this strategy has to be applied to a number of the solutions, to avoid this
shortcoming; this number is estimated using the following formula:

N′ = N ∗ κ (11)

where N is the number of individuals in the population, and κ is the percentage of the
individuals that will be extracted to be updated using the convergence improvement
strategy. Finally, the steps of the CIS strategy are listed in Algorithm 1.

Algorithm 1. Convergence improvement strategy (CIS)

1. for i = 0 to N′

2. Generate the mutant vector
→
v

t
i using Equation (9)

3. for j = 0 to n
4. r2 : a number generated randomly between 0 and 1
5. if (r2 < P)
6. Tt

i, j = vt
i, j

7. else
8. Tt

i, j = X∗j (t)
9. End if
10. end for

11. if
(

f
(→

T
t

i

)
< f

(→
X

t

i

))
12.

→
X

t

i =
→
T

t

i
13. end if

14. Replace the best-so-far solution
→
X∗(t) with

→
T

t

i if
→
T

t

i is better
15. end for

5.4. Hybrid Differential Evolution

The classical DE is hybridized with the convergence improvement strategy and adap-
tive scaling factor, to produce a new variant dubbed hybrid differential evolution (HDE),
having a better search ability, for a better solution when tackling the task scheduling in

Mathematics 2022, 10, 4049 9 of 26

cloud computing. Another advantage of HDE is that it has the ability to accelerate the
convergence speed in the direction of the near-optimal solution. The steps of HDE are
described in Algorithm 2. This algorithm starts by initializing N solutions within the search
space of the scheduling problem in cloud computing; the search space of this problem
ranges between 0 and the number of virtual machines (m − 1). Then, the initialized so-

lutions are evaluated, and the best-so-far solution
→
X∗(t) that has the lowest fitness value

is identified, to be employed for guiding some of the solutions within the optimization
process towards a better solution. Line 3 within Algorithm 2 initializes the current iteration
t with a value of 0. After this, the optimization process is triggered to update the initialized
solutions to reach better solutions, whereby this process starts by defining the termination
condition as shown in Line 4. Then, Lines 5–6 update the adaptive scaling factor, which
is responsible for improving the exploration and exploitation capability of the proposed
algorithm. Following this, updating of the solutions is implemented, to generate the trial
vector based on both the current solution and the mutant vector. In the next step, this trial
vector is compared with the current solution, to extract the one that will be preserved in the
population for the next generation. This process is repeated until satisfying the termination
condition. Finally, the flowchart of HDE is shown in Figure 3.

Algorithm 2. Hybrid differential evolution (HDE)

1. Initializes N solutions,
→
Xi, i = 1, 2, . . . , N, using Equation (7)

2. Evaluate the initialized solutions and identified
→
X∗(t)

3. t = 0
4. while (t < T)
5. Update F′ using Equation (8)
6. F = F′

7. for i = 0 to N
8. Generate the mutant vector

→
v

t
i using Equation (1)

9. jr = an integer generated randomly between 1 and n
10. for j = 0 to n
11. r2 : a number generated randomly between 0 and 1
12. if (r2 < CR ‖ j = jr)
13. ut

i, j = vt
i, j

14. else
15. ut

i, j = Xi,j(t)
16. End if
17. end for

18. if
(

f
(
→
u

t
i

)
< f

(→
X

t

i

))
19.

→
X

t

i =
→
u

t
i

20. end if

21. Replace the best-so-far solution
→
X∗(t) with

→
T

t

i if
→
T

t

i is better
22. end for
23. Updating N′ solutions using the CIS algorithm (Algorithm 1)
24. t = t + 1
25. end while
Return

→
X∗(t)

5.5. Time Complexity of HDE

In this part of the article, the time complexity is expressed using big-O notation, so that
the superior speed of the suggested approach can be demostrated. To begin, the following
are the primary factors that have the most significant impact on the acceleration of the
proposed algorithm: the population size, N, the number of tasks, n, the maximum iteration,

Mathematics 2022, 10, 4049 10 of 26

T, and the time complexity of Algorithm 1. Generally, the time complexity of HDE can be
expressed as follows:

T(HDE) = T(DE) + T(CIS) (12)

The time complexity of the standard DE mostly depends solely on the first three factors:
N, n, and T, as shown in Algorithm 2, which is formulated as follows:

T(DE) = O(T ∗ n ∗ N) (13)

The time complexity of the CIS also depends on the first three factors, with the
exception of N, which is replaced by N′. In general, the time complexity of CIS can be
expressed as follows:

T(CIS) = O
(
T ∗ n ∗ N′

)
(14)

By substitution, Equation (12) can be reformulated as follows:

T(HDE) = O(T ∗ n ∗ N) + O
(
T ∗ n ∗ N′

)
(15)

From this equation, the term that has the highest growth rate is O(T ∗ n ∗ N), be-
cause N is always greater than N′. Therefore, the time complexity of HDE in big-O
is O(T ∗ n ∗ N).

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 28

12. 𝐢𝐟 (𝑟2 < 𝐶𝑅 || 𝑗 = 𝑗𝑟)

13. 𝑢𝑖,𝑗
𝑡 = 𝑣𝑖,𝑗

𝑡

14. else

15. 𝑢𝑖,𝑗
𝑡 = 𝑋𝑖,𝑗(𝑡)

16. End if

17. end for

18. 𝐢𝐟 (𝑓(𝑢⃗⃗𝑖
𝑡) < 𝑓(𝑋⃗𝑖

𝑡))

19. 𝑋⃗𝑖
𝑡=𝑢⃗⃗𝑖

𝑡

20. end 𝐢𝐟

21. Replace the best-so-far solution 𝑋∗⃗⃗⃗⃗⃗(𝑡) with 𝑇⃗⃗𝑖
𝑡 if 𝑇⃗⃗𝑖

𝑡 is better

22. end for

23. Updating 𝑁′solutions using the CIS algorithm (Algorithm 1)

24. 𝒕 = 𝒕 + 𝟏

25. end while

Return 𝑋∗⃗⃗⃗⃗⃗(𝑡)

Figure 3. The flowchart of the proposed algorithm: HDE (* is used to identify the best solution).

5.5. Time Complexity of HDE

In this part of the article, the time complexity is expressed using big-O notation, so that

the superior speed of the suggested approach can be demostrated. To begin, the following

are the primary factors that have the most significant impact on the acceleration of the

proposed algorithm: the population size, N, the number of tasks, n, the maximum iteration,

Figure 3. The flowchart of the proposed algorithm: HDE (* is used to identify the best solution).

6. Results and Simulation

Several experiments were conducted in this study to show the efficiency of the pro-
posed algorithm: HDE was compared to several heuristic and metaheuristic approaches;
the metaheuristic algorithms were the sine cosine algorithm (SCA) [34], whale optimization
algorithm (WOA) [35], slime mold algorithm (SMA) [36], equilibrium optimizer (EO) [37],
grey wolf optimizer (GWO) [38], and classical DE [39]; the heuristic algorithms were first
come first served (FCFS) [40], round robin (RR) algorithm [41], and shortest job first (SJF)
scheduler [40]. These algorithms were executed in 30 independent runs on datasets gener-
ated randomly, with the number of tasks ranging between 100 and 3000; these tasks are

Mathematics 2022, 10, 4049 11 of 26

labeled as T100 for the task size 100, T200 for the task size 200, and so on. Five VMs were
selected for scheduling these task data sets, where the communication time and execution
time for each task were randomly generated to determine the ability of each VM to imple-
ment each task, while taking into consideration that the workload of this task is different
of the other tasks. The performance evaluation metrics used in this study to compare the
algorithms were the best, average, worst, and standard deviation of the obtained outcomes
within 30 independent repetitions, in addition to a Wilcoxon rank sum test, which was
employed to identify whether there were any differences between the outcomes obtained
by the proposed and those of the rival optimizers. All of the algorithms were built using the
programming language Java on a personal computer, which had the following capabilities:
Windows 10 operating system, Intel® CoreTM i7-4700MQ processor running at 2.40 GHz,
and 16 GB of memory installed.

The parameters of all the compared algorithms were set to the values found in the cited
papers, to ensure a fair comparison. However, there were two main parameters that had to
be the same for all the algorithms, and they were the population size (N), and the maximum
number of iterations (T), which were set to 25 and 1500, respectively. Regarding the
parameters of the classical DE and the proposed algorithm, HDE, several experiments were
conducted to estimate the optimal value for each of their parameters. Broadly speaking,
the classical DE has two main parameters: F and Cr, which were extracted according to
several conducted experiments. From these experiments, it was observed that the best
values for these parameters were 0.01 for Cr and 0.1 for the scaling factor (F). Regarding
the parameter values of HDE, the Cr and α parameters were set to the same values as
the Cr and F in the classical DE. However, HDE has two additional parameters: P and κ,
which were estimated by conducting experiments. These experiments showed that the best
values for these parameters, P and κ, were 0.01 and 0.2, respectively. Table 1 presents the
parameter values of both HDE and DE.

Table 1. Parameter settings of HDE and DE.

DE HDE

T 1500 1500
N 25 25
F 0.1 0.1
Cr 0.01 0.01
P 0.01
κ 0.2

6.1. Comparison with Metaheuristic Algorithms

Due to the fact that meta-heuristic algorithms are stochastic optimization techniques,
they require at least 10 separate runs to produce statistically significant results. In this
study, each algorithm was run roughly thirty times independently, and the average results
of each algorithm are reported. In Table A1 are shown the metrics of the best fitness values
for each algorithm in the last iteration over all independent runs. These metrics include
the mean, best, and worst values, as well as the standard deviation (SD). The top results
in this table are highlighted in bold. This table demonstrates that HDE is comparable to
DE and superior to all other algorithms for the 100-task size. With growing task sizes,
HDE’s superiority becomes more apparent, and it may be the best option for any tasks with
lengths more than 100. Additionally, to further show the efficiency of HDE, the average
of the best, worst, and mean fitness values obtained for all the tasks sizes were computed
and are presented in Figure 4, which affirms that HDE was the best for all shown metrics.
Figure 5 shows the average (Avg) standard deviation (SD) obtained by each algorithm
on all tasks sizes. Inspecting this figure shows that HDE was more stable than the other
algorithms. After discussing the effectiveness of HDE in terms of the fitness value, we will
move on to discuss its capacity to reduce the makespan in the next paragraph.

Mathematics 2022, 10, 4049 12 of 26

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 28

that the best values for these parameters, 𝑃 and 𝜅, were 0.01 and 0.2, respectively. Table

1 presents the parameter values of both HDE and DE.

Table 1. Parameter settings of HDE and DE.

 DE HDE

T 1500 1500

N 25 25

F 0.1 0.1

Cr 0.01 0.01

𝑃 0.01

𝜅 0.2

6.1. Comparison with Metaheuristic Algorithms

Due to the fact that meta-heuristic algorithms are stochastic optimization techniques,

they require at least 10 separate runs to produce statistically significant results. In this

study, each algorithm was run roughly thirty times independently, and the average

results of each algorithm are reported. In Table A1 are shown the metrics of the best fitness

values for each algorithm in the last iteration over all independent runs. These metrics

include the mean, best, and worst values, as well as the standard deviation (SD). The top

results in this table are highlighted in bold. This table demonstrates that HDE is

comparable to DE and superior to all other algorithms for the 100-task size. With growing

task sizes, HDE’s superiority becomes more apparent, and it may be the best option for

any tasks with lengths more than 100. Additionally, to further show the efficiency of HDE,

the average of the best, worst, and mean fitness values obtained for all the tasks sizes were

computed and are presented in Figure 4, which affirms that HDE was the best for all

shown metrics. Figure 5 shows the average (Avg) standard deviation (SD) obtained by

each algorithm on all tasks sizes. Inspecting this figure shows that HDE was more stable

than the other algorithms. After discussing the effectiveness of HDE in terms of the fitness

value, we will move on to discuss its capacity to reduce the makespan in the next

paragraph.

Figure 4. Comparison among algorithms by fitness value.

10.00

12.00

14.00

16.00

18.00

20.00

22.00

EO SCA GWO WOA SMA DE HDE

A
v

g
 F

it
n

es
s

v
a

lu
e

×
1

0
,0

0
0

Algorithms

Best

Avg

Worst

Figure 4. Comparison among algorithms by fitness value.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 28

Figure 5. Comparison in terms of average SD of the fitness values.

The metrics that represent the best makespan values for each method in the last

iteration across all independent runs are presented in Table A2. The best, worst, and

average values, as well as the standard deviation, are the metrics that were included in

this study. The best outcomes are displayed in bold within this table. This table illustrates

that HDE was superior to all other algorithms for the 100-task size and was on par with

DE in terms of its performance. The superiority of HDE became more evident with

increasing task sizes, and it is possible that it is the best choice for all tasks with lengths

greater than 100. In addition, in order to demonstrate the effectiveness of HDE in a more

comprehensive manner, the mean, best, and worst makespan values that were obtained

for each of the different task sizes were computed and are shown in Figure 6. This figure

demonstrates that HDE was the optimal method for each of the metrics that are presented.

Figure 7 displays the average of the standard deviation (SD) values that were obtained by

each algorithm for all task sizes. Taking a closer look at this figure reveals that HDE was

far more reliable than the other algorithms. Now we have finished talking about how

effective HDE was in terms of the fitness value and makespan, in the following paragraph,

we will move on to talking about how it had the ability to reduce the total execution time

required by all VMs, until finishing the tasks that had been given to them.

800

1000

1200

1400

1600

1800

2000

EO SCA GWO WOA SMA DE HDE

A
v

g
 S

D

Algorithms

Figure 5. Comparison in terms of average SD of the fitness values.

The metrics that represent the best makespan values for each method in the last
iteration across all independent runs are presented in Table A2. The best, worst, and
average values, as well as the standard deviation, are the metrics that were included in this
study. The best outcomes are displayed in bold within this table. This table illustrates that
HDE was superior to all other algorithms for the 100-task size and was on par with DE in
terms of its performance. The superiority of HDE became more evident with increasing
task sizes, and it is possible that it is the best choice for all tasks with lengths greater than
100. In addition, in order to demonstrate the effectiveness of HDE in a more comprehensive
manner, the mean, best, and worst makespan values that were obtained for each of the
different task sizes were computed and are shown in Figure 6. This figure demonstrates
that HDE was the optimal method for each of the metrics that are presented. Figure 7

Mathematics 2022, 10, 4049 13 of 26

displays the average of the standard deviation (SD) values that were obtained by each
algorithm for all task sizes. Taking a closer look at this figure reveals that HDE was far
more reliable than the other algorithms. Now we have finished talking about how effective
HDE was in terms of the fitness value and makespan, in the following paragraph, we will
move on to talking about how it had the ability to reduce the total execution time required
by all VMs, until finishing the tasks that had been given to them.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 28

Figure 6. Comparison among algorithms by makespan.

Figure 7. Comparison with metaheuristics in terms of the average SD of makespan.

The average, worst, best, and SD values obtained as a result of analyzing the total

execution time values obtained by the various investigated metaheuristic algorithms

within 30 independent runs are reported in Table A3. Based on the results in this table, it

is clear that HDE performed just as well as DE and was superior to all the other algorithms

when it comes to a size of 100 tasks. It is probable that HDE is the optimal option for all

tasks with lengths that are larger than 100. The superiority of HDE became more readily

apparent as the size of the tasks was increased. The average of the mean, best, and worst

total execution values that were obtained for each of the various task sizes was computed

and are given in Figure 8, in order to showcase the efficacy of HDE in a more thorough

manner. This was done in order to prove that HDE was effective. This figure illustrates

that HDE was the best strategy for each of the metrics that are presented. Figure 9 depicts

the average of the standard deviation (SD) values that were obtained using each method

for all of the various task sizes. When taking a closer look at this figure, it can be noticed

that HDE was significantly more trustworthy than any of the other algorithms. Finally,

from all the previous experiments and discussions, it is concluded that HDE is a strong

alternative scheduler to find the near-optimal scheduling of tasks in cloud computing,

with the aim of minimizing both the makespan and the total execution time.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

EO SCA GWO WOA SMA DE HDE

A
v

g
 F

it
n

es
s

v
a

lu
e
×

1
0

0
0

0

Algorithms

Best

Avg

Worst

300

800

1300

1800

2300

2800

EO SCA GWO WOA SMA DE HDE

A
v

g
 S

D

Algorithms

Figure 6. Comparison among algorithms by makespan.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 28

Figure 6. Comparison among algorithms by makespan.

Figure 7. Comparison with metaheuristics in terms of the average SD of makespan.

The average, worst, best, and SD values obtained as a result of analyzing the total

execution time values obtained by the various investigated metaheuristic algorithms

within 30 independent runs are reported in Table A3. Based on the results in this table, it

is clear that HDE performed just as well as DE and was superior to all the other algorithms

when it comes to a size of 100 tasks. It is probable that HDE is the optimal option for all

tasks with lengths that are larger than 100. The superiority of HDE became more readily

apparent as the size of the tasks was increased. The average of the mean, best, and worst

total execution values that were obtained for each of the various task sizes was computed

and are given in Figure 8, in order to showcase the efficacy of HDE in a more thorough

manner. This was done in order to prove that HDE was effective. This figure illustrates

that HDE was the best strategy for each of the metrics that are presented. Figure 9 depicts

the average of the standard deviation (SD) values that were obtained using each method

for all of the various task sizes. When taking a closer look at this figure, it can be noticed

that HDE was significantly more trustworthy than any of the other algorithms. Finally,

from all the previous experiments and discussions, it is concluded that HDE is a strong

alternative scheduler to find the near-optimal scheduling of tasks in cloud computing,

with the aim of minimizing both the makespan and the total execution time.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

EO SCA GWO WOA SMA DE HDE

A
v

g
 F

it
n

es
s

v
a

lu
e
×

1
0

0
0

0

Algorithms

Best

Avg

Worst

300

800

1300

1800

2300

2800

EO SCA GWO WOA SMA DE HDE

A
v

g
 S

D

Algorithms

Figure 7. Comparison with metaheuristics in terms of the average SD of makespan.

The average, worst, best, and SD values obtained as a result of analyzing the total
execution time values obtained by the various investigated metaheuristic algorithms within
30 independent runs are reported in Table A3. Based on the results in this table, it is clear
that HDE performed just as well as DE and was superior to all the other algorithms when it
comes to a size of 100 tasks. It is probable that HDE is the optimal option for all tasks with
lengths that are larger than 100. The superiority of HDE became more readily apparent as
the size of the tasks was increased. The average of the mean, best, and worst total execution
values that were obtained for each of the various task sizes was computed and are given
in Figure 8, in order to showcase the efficacy of HDE in a more thorough manner. This
was done in order to prove that HDE was effective. This figure illustrates that HDE was

Mathematics 2022, 10, 4049 14 of 26

the best strategy for each of the metrics that are presented. Figure 9 depicts the average
of the standard deviation (SD) values that were obtained using each method for all of the
various task sizes. When taking a closer look at this figure, it can be noticed that HDE
was significantly more trustworthy than any of the other algorithms. Finally, from all the
previous experiments and discussions, it is concluded that HDE is a strong alternative
scheduler to find the near-optimal scheduling of tasks in cloud computing, with the aim of
minimizing both the makespan and the total execution time.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 28

Figure 8. Comparison among algorithms for the total execution time.

Figure 9. Comparison in terms of the average SD of total execution time.

Table A4 compares the proposed HDE algorithm to the other types using a Wilcoxon

rank-sum test with 5% as the level of confidence [42]. The null hypothesis and the

alternative hypothesis were both tested in this experiment. The null hypothesis suggests

that there is no difference between the two methods being compared; this hypothesis is

true when the p-value shown in Table A4 is greater than the confidence level. In contrast,

the alternative hypothesis asserts that there is a difference between the results obtained

using a pair of algorithms; this hypothesis is supported when p-value is less than the

confidence level. Table A4 displays the results of comparing HDE to the other algorithms

evaluated in this test. According to this table, the alternative hypothesis holds true in all

instances, highlighting the difference between the outcomes of the proposed algorithm

and those of other algorithms.

The boxplot represented in Figure 10 is discussed in this paragraph. The boxplot

shows a five-number summary, including the lowest, maximum, median, and the first

and third quartiles for the fitness values achieved by each algorithm during 30

independent runs. Examining this figure demonstrates that HDE was superior in terms of

all five-number summaries for all of the investigated task lengths.

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

EO SCA GWO WOA SMA DE HDE

A
v

g
 F

it
n

es
s

v
a

lu
e
×

1
0

,0
0

0

Algorithms

Best

Avg

Worst

800

1800

2800

3800

4800

5800

6800

EO SCA GWO WOA SMA DE HDE

A
v

g
 S

D

Algorithms

Figure 8. Comparison among algorithms for the total execution time.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 28

Figure 8. Comparison among algorithms for the total execution time.

Figure 9. Comparison in terms of the average SD of total execution time.

Table A4 compares the proposed HDE algorithm to the other types using a Wilcoxon

rank-sum test with 5% as the level of confidence [42]. The null hypothesis and the

alternative hypothesis were both tested in this experiment. The null hypothesis suggests

that there is no difference between the two methods being compared; this hypothesis is

true when the p-value shown in Table A4 is greater than the confidence level. In contrast,

the alternative hypothesis asserts that there is a difference between the results obtained

using a pair of algorithms; this hypothesis is supported when p-value is less than the

confidence level. Table A4 displays the results of comparing HDE to the other algorithms

evaluated in this test. According to this table, the alternative hypothesis holds true in all

instances, highlighting the difference between the outcomes of the proposed algorithm

and those of other algorithms.

The boxplot represented in Figure 10 is discussed in this paragraph. The boxplot

shows a five-number summary, including the lowest, maximum, median, and the first

and third quartiles for the fitness values achieved by each algorithm during 30

independent runs. Examining this figure demonstrates that HDE was superior in terms of

all five-number summaries for all of the investigated task lengths.

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

EO SCA GWO WOA SMA DE HDE

A
v

g
 F

it
n

es
s

v
a

lu
e
×

1
0

,0
0

0

Algorithms

Best

Avg

Worst

800

1800

2800

3800

4800

5800

6800

EO SCA GWO WOA SMA DE HDE

A
v

g
 S

D

Algorithms

Figure 9. Comparison in terms of the average SD of total execution time.

Table A4 compares the proposed HDE algorithm to the other types using a Wilcoxon
rank-sum test with 5% as the level of confidence [42]. The null hypothesis and the alter-
native hypothesis were both tested in this experiment. The null hypothesis suggests that
there is no difference between the two methods being compared; this hypothesis is true
when the p-value shown in Table A4 is greater than the confidence level. In contrast, the
alternative hypothesis asserts that there is a difference between the results obtained using
a pair of algorithms; this hypothesis is supported when p-value is less than the confidence
level. Table A4 displays the results of comparing HDE to the other algorithms evaluated
in this test. According to this table, the alternative hypothesis holds true in all instances,

Mathematics 2022, 10, 4049 15 of 26

highlighting the difference between the outcomes of the proposed algorithm and those of
other algorithms.

The boxplot represented in Figure 10 is discussed in this paragraph. The boxplot shows
a five-number summary, including the lowest, maximum, median, and the first and third
quartiles for the fitness values achieved by each algorithm during 30 independent runs.
Examining this figure demonstrates that HDE was superior in terms of all five-number
summaries for all of the investigated task lengths.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 28

(a) (b) (c)

(d) (e) (f)

Figure 10. Comparison among algorithms in terms of the Boxplot: (a) Comparison for the task size

of 200; (b) Comparison for the task size of 300; (c) Comparison for the task size of 400; (d)

Comparison for the task size of 500; (e) Comparison for the task size of 600; (f) Comparison for the

task size of 700.

Finally, HDE and the other algorithms were compared based on their respective

convergence rates for the fitness function. On the basis of the convergence rates obtained

by each algorithm, and presented in Figure 11, for task lengths 100, 200, 300, 400, 500, 600,

700, 800, and 900, HDE achieved superior convergence to the optimal solution for all

depicted task lengths. Figure 12 shows a comparison among the algorithms in terms of

CPU time. The figure provides the total CPU time in seconds for running each algorithm

with different task sizes. HDE had a slightly higher computational cost than traditional

DE, but it can provide a better QoS to users, because it can achieve a smaller makepan

value for the majority of task sizes.

Figure 10. Comparison among algorithms in terms of the Boxplot: (a) Comparison for the task size of
200; (b) Comparison for the task size of 300; (c) Comparison for the task size of 400; (d) Comparison
for the task size of 500; (e) Comparison for the task size of 600; (f) Comparison for the task size of 700.

Finally, HDE and the other algorithms were compared based on their respective
convergence rates for the fitness function. On the basis of the convergence rates obtained
by each algorithm, and presented in Figure 11, for task lengths 100, 200, 300, 400, 500,
600, 700, 800, and 900, HDE achieved superior convergence to the optimal solution for all
depicted task lengths. Figure 12 shows a comparison among the algorithms in terms of
CPU time. The figure provides the total CPU time in seconds for running each algorithm
with different task sizes. HDE had a slightly higher computational cost than traditional DE,
but it can provide a better QoS to users, because it can achieve a smaller makepan value for
the majority of task sizes.

6.2. Simulation Results

The CloudSim platform was utilized in order to carry out simulations of the task
scheduling process. Researchers from all over the world make use of the CloudSim platform
because it is a full-fledged simulation toolset that enables modelling and simulation of
real-world cloud infrastructure and application provisioning [12]. In this paper, CloudSim

Mathematics 2022, 10, 4049 16 of 26

was provided with the parameters settings described in Table 2. In addition, the number of
tasks ranged between 100 and 1000, with a step 100, to check the scalability of the proposed
algorithm in comparison to the other metaheuristic algorithms. After conducting the
simulation process, the makespan values obtained under various metaheuristic algorithms
implemented within the Cloudsim platform are presented in Table 3 for each task size.
Inspecting this table shows the effectiveness of HDE in comparison to the other algorithms,
since it had the lowest makespan values for all the task sizes. This is confirmed by the last
row in the same table which contains the average of each column within the table; this row
reveals that HDE could achieve average makespan values up to 151,479.2179, which is the
smallest in comparison to the others in the same row.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 28

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Comparison of algorithms in terms of convergence speed: (a) Comparison for the task

size of 100; (b) Comparison for the task size of 200; (c) Comparison for the task size of 300; (d)

Comparison for the task size of 400; (e) Comparison for the task size of 500; (f) Comparison for the

task size of 600; (g) Comparison for the task size of 700; (h) Comparison for the task size of 800; (i)

Comparison for the task size of 900.

Figure 11. Comparison of algorithms in terms of convergence speed: (a) Comparison for the task size
of 100; (b) Comparison for the task size of 200; (c) Comparison for the task size of 300; (d) Comparison
for the task size of 400; (e) Comparison for the task size of 500; (f) Comparison for the task size of 600;
(g) Comparison for the task size of 700; (h) Comparison for the task size of 800; (i) Comparison for
the task size of 900.

Mathematics 2022, 10, 4049 17 of 26Mathematics 2022, 10, x FOR PEER REVIEW 18 of 28

Figure 12. Comparison of algorithms in terms of CPU time.

6.2. Comparison with Some Heuristic Algorithms

In this section, the proposed algorithm is compared with some well-known heuristic

schedulers, such as FCFS, SJF, and round robin, to further verify the superiority of HDE

in tackling the task scheduling problem in cloud computing. The results of each method

were independently tested around thirty times. In Table A5, the average, worst, and best

values are shown, as well as the standard deviations, that were achieved by the proposed

approach and by each heuristic algorithm for each task size. The results of this table show

that HDE performed significantly better than any of the heuristic algorithms. In addition,

in order to demonstrate the effectiveness of HDE in a more comprehensive manner, the

average of the best, worst, and mean makespan values obtained for all task sizes were

computed and are shown in Figure 13. This figure confirms that HDE was the most

effective method for all of the metrics presented. Figure 14 depicts the average (Avg) and

standard deviation (SD) of the makespan values obtained by each algorithm across all task

sizes. Taking a closer look at this figure reveals that HDE was significantly more reliable

than the other algorithms. It is worth mentioning that the heuristic algorithms have a

negligible computation cost compared to metaheuristic algorithms, but their solutions are

poor when compared to the metaheuristics algorithms. As a result, to provide a better

quality of service to the users, while excluding the computational cost, the proposed

algorithm is the most effective. On the other hand, if the computational cost is more

important than the quality of service, then the heuristic algorithms, specifically FCFS, are

the best.

57 59
56

30

49

13 14

0

10

20

30

40

50

60

70

EO SCA GWO WOA SMA DE HDE

C
P

U
 T

im
e

(S
ec

o
n

d
s)

Algorithms

Figure 12. Comparison of algorithms in terms of CPU time.

6.3. Comparison with Some Heuristic Algorithms

In this section, the proposed algorithm is compared with some well-known heuristic
schedulers, such as FCFS, SJF, and round robin, to further verify the superiority of HDE in
tackling the task scheduling problem in cloud computing. The results of each method were
independently tested around thirty times. In Table A5, the average, worst, and best values
are shown, as well as the standard deviations, that were achieved by the proposed approach
and by each heuristic algorithm for each task size. The results of this table show that HDE
performed significantly better than any of the heuristic algorithms. In addition, in order to
demonstrate the effectiveness of HDE in a more comprehensive manner, the average of the
best, worst, and mean makespan values obtained for all task sizes were computed and are
shown in Figure 13. This figure confirms that HDE was the most effective method for all of
the metrics presented. Figure 14 depicts the average (Avg) and standard deviation (SD) of
the makespan values obtained by each algorithm across all task sizes. Taking a closer look
at this figure reveals that HDE was significantly more reliable than the other algorithms.
It is worth mentioning that the heuristic algorithms have a negligible computation cost
compared to metaheuristic algorithms, but their solutions are poor when compared to
the metaheuristics algorithms. As a result, to provide a better quality of service to the
users, while excluding the computational cost, the proposed algorithm is the most effective.
On the other hand, if the computational cost is more important than the quality of service,
then the heuristic algorithms, specifically FCFS, are the best.

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 28

Figure 13. Comparison among algorithms for makespan.

Figure 14. Comparison with heuristic algorithms in terms of the average SD of makespan.

6.3. Simulation Results

The CloudSim platform was utilized in order to carry out simulations of the task

scheduling process. Researchers from all over the world make use of the CloudSim

platform because it is a full-fledged simulation toolset that enables modelling and

simulation of real-world cloud infrastructure and application provisioning [12]. In this

paper, CloudSim was provided with the parameters settings described in Table 2. In

addition, the number of tasks ranged between 100 and 1000, with a step 100, to check the

scalability of the proposed algorithm in comparison to the other metaheuristic algorithms.

5.20

6.20

7.20

8.20

9.20

10.20

11.20

12.20

FCFS SJF RR HDE

A
v

g
 F

it
n

es
s

v
a

lu
e

×
1

0
,0

0
0

Algorithms

Best

Avg

Worst

200

700

1200

1700

2200

2700

3200

3700

4200

FCFS SJF RR HDE

A
v

g
 S

D

Algorithms

Figure 13. Comparison among algorithms for makespan.

Mathematics 2022, 10, 4049 18 of 26

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 28

Figure 13. Comparison among algorithms for makespan.

Figure 14. Comparison with heuristic algorithms in terms of the average SD of makespan.

6.3. Simulation Results

The CloudSim platform was utilized in order to carry out simulations of the task

scheduling process. Researchers from all over the world make use of the CloudSim

platform because it is a full-fledged simulation toolset that enables modelling and

simulation of real-world cloud infrastructure and application provisioning [12]. In this

paper, CloudSim was provided with the parameters settings described in Table 2. In

addition, the number of tasks ranged between 100 and 1000, with a step 100, to check the

scalability of the proposed algorithm in comparison to the other metaheuristic algorithms.

5.20

6.20

7.20

8.20

9.20

10.20

11.20

12.20

FCFS SJF RR HDE

A
v

g
 F

it
n

es
s

v
a

lu
e

×
1

0
,0

0
0

Algorithms

Best

Avg

Worst

200

700

1200

1700

2200

2700

3200

3700

4200

FCFS SJF RR HDE

A
v

g
 S

D

Algorithms

Figure 14. Comparison with heuristic algorithms in terms of the average SD of makespan.

Table 2. Parameters of the CloudSim platform.

Parameters Value Parameters Value Parameters Value

Cloudlets Virtual Machines Hosts

Length of task 10,000–50,000 Number of VMs 5 No of Hosts 2

Number of tasks 100–1000 MIPs 250 RAM 2048

Filesize 300 RAM 512 Bandwidth 10,000

Outputsize 300 Bandwidth 1000 Policy type Time Shared

Data Center Policy type Time Shared Storage 1,000,000

No of DataCenter 5 VMM Xen

Operating system Linux

No of CPUs 1

Table 3. Comparison among algorithms in terms of the makespan values for the Cloudsim-based
simulation.

TS EO SCA GWO WOA SMA DE HDE

T100 41,505.943 49,620.716 55,322.872 49,135.560 51,289.568 28,106.492 28,190.252
T200 104,498.731 102,703.632 98,004.431 96,811.803 100,997.74 54,684.484 53,803.068
T300 152,025.60 150,194.280 145,015.012 142,787.62 150,218.468 89,242.483 80,850.832
T400 200,391.084 202,607.707 191,254.443 192,639.200 195,546.292 124,179.684 108,165.464
T500 257,677.947 247,760.576 240,555.543 234,875.059 245,394.340 156,930.84 133,873.052
T600 295,715.628 310,647.336 294,597.264 286,597.052 296,876.432 199,452.735 164,761.723
T700 352,201.252 334,329.304 342,978.004 317,822.051 328,948.300 236,092.719 190,732.984
T800 389,077.392 376,469.660 398,101.811 384,081.343 378,277.532 277,318.875 219,123.340
T900 467,415.788 417,388.984 421,371.248 434,179.028 428,612.683 322,661.800 252,311.644
T1000 487,985.68 473,096.840 477,129.911 491,821.971 474,688.392 358,680.556 282,979.820

Avg: 274,849.5045 266,481.9035 266,433.0539 263,075.0687 265,084.9747 184,735.0668 151,479.2179

The bold values indicate the best values.

Mathematics 2022, 10, 4049 19 of 26

7. Conclusions and Future Work

This paper presents a new scheduler, namely hybrid differential evolution (HDE),
for the task scheduling problem in the cloud computing environment. This scheduler is
based on two proposed improvements to the classical differential evolution. The first im-
provement is based on improving the scaling factor, to involve numerical values generated
dynamically based on the current iteration, to improve both the exploration and exploita-
tion operators; meanwhile the second improvement is designed to further improve the
exploitation operator of the classical DE, to achieve better outcomes in a smaller number of
iterations. Several experiments were performed using randomly generated datasets and the
CloudSim simulator, to verify the efficiency of HDE. In addition, HDE was compared with
several heuristic and metaheuristic algorithms, such as the slime mold algorithm (SMA),
equilibrium optimizer (EO), sine cosine algorithm (SCA), whale optimization algorithm
(WOA), grey wolf optimizer (GWO), classical DE, first come first served (FCFS), round
robin (RR) algorithm, and shortest job first (SJF) scheduler. Makespan and total execution
time values were obtained for various task sizes, ranging between 100 and 3000, during
the experiments. The findings of the experiments indicated that HDE produced effective
results when compared to the other metaheuristic and heuristic algorithms that were inves-
tigated. As a result, HDE was the most effective metaheuristic scheduling algorithm among
the many approaches that were investigated. In future work, HDE will be employed to
tackle several other optimization problems, such as the DNA fragment assembly problem,
image segmentation problem, 0-1 knapsack problem, and task scheduling problem in
fog computing.

Author Contributions: Conceptualization, M.A.-B., R.M. and W.A.E.; methodology, M.A.-B., R.M.,
W.A.E. and K.M.S.; software, M.A.-B., R.M. and W.A.E.; validation, M.A.-B., R.M., W.A.E., M.S. and
K.M.S.; formal analysis, M.A.-B., R.M., W.A.E. and K.M.S.; investigation, M.A.-B., R.M., W.A.E. and
K.M.S.; data curation, M.A.-B., R.M., W.A.E., M.S. and K.M.S.; writing—original draft preparation,
M.A.-B., R.M and W.A.E.; writing—review and editing M.A.-B., R.M., W.A.E., M.S. and K.M.S.;
visualization, M.A.-B., R.M., W.A.E. and K.M.S.; supervision, M.A.-B.; funding acquisition, M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Comparison with Some Heuristic and Metaheuristic Algorithms

Table A1. Comparison with some metaheuristic algorithms for the fitness values.

TS EO SCA GWO WOA SMA DE HDE

T100 Best 18,265.116 24,611.809 24,088.115 19,972.837 24,613.264 15,150.553 15,137.092
Avg 19,571.000 25,528.000 25,375.000 21,258.000 25,704.000 15,196.000 15,274.000

Worst 21,498.010 26,402.739 26,051.051 22,205.813 26,752.888 15,257.978 15,558.919
SD 713.524 463.258 424.731 558.666 521.104 30.572 91.663

T200 Best 42,426.362 48,950.808 49,292.426 42,546.316 49,025.035 29,373.841 28,909.445
Avg 44,394.000 50,538.000 50,422.000 44,527.000 50,967.000 29,627.000 29,231.000

Worst 45,476.446 51,690.914 51,790.672 46,474.198 52,320.876 30,126.857 29,605.929
SD 828.993 778.633 618.134 1021.092 811.779 184.835 184.273

T300 Best 69,067.191 74,866.300 74,062.850 66,476.677 75,546.109 46,803.516 43,810.658
Avg 71,383.000 76,534.000 77,081.000 69,943.000 76,864.000 47,615.000 44,284.000

Worst 73,579.777 78,080.754 78,483.051 73,289.182 78,743.006 48,568.449 44,801.076
SD 1134.455 867.221 1041.396 1443.511 874.786 430.618 255.008

T400 Best 95,440.911 98,432.590 99,668.262 92,093.906 99,673.090 64,938.822 58,147.125
Avg 98,176.000 102,045.000 102,211.000 94,585.000 102,252.000 66,478.000 58,708.000

Worst 101,000.236 104,376.315 104,112.797 98,252.609 105,053.622 67,814.981 59,395.477
SD 1348.619 1285.976 1075.139 1514.400 1256.732 701.588 323.410

Mathematics 2022, 10, 4049 20 of 26

Table A1. Cont.

TS EO SCA GWO WOA SMA DE HDE

T500 Best 120,119.573 123,408.542 123,758.958 115,201.767 125,660.988 84,738.675 72,282.977
Avg 123,307.000 127,282.000 127,133.000 119,111.000 127,791.000 86,195.000 73,084.000

Worst 125,568.639 129,252.182 129,228.583 122,399.771 129,623.395 87,526.696 74,219.055
SD 1440.633 1187.152 1291.705 1697.175 919.858 809.404 463.869

T600 Best 145,919.544 149,987.437 150,121.722 142,155.751 148,997.028 106,351.443 88,355.874
Avg 148,462.000 152,813.000 152,648.000 144,351.000 152,621.000 108,316.000 89,783.000

Worst 151,270.871 155,095.573 154,638.766 146,586.770 155,053.210 110,123.047 91,415.701
SD 1292.904 1264.745 1003.265 1346.239 1435.543 980.036 646.848

T700 Best 171,248.666 174,068.432 172,269.168 162,866.453 171,421.871 128,092.342 103,753.063
Avg 173,404.000 176,365.000 176,581.000 168,979.000 176,401.000 129,789.000 105,350.000

Worst 177,380.381 178,450.265 180,508.600 174,375.747 179,642.085 131,573.149 107,198.432
SD 1388.031 1166.368 1703.244 2689.929 1563.520 800.844 750.188

T800 Best 197,457.353 200,198.689 199,590.942 190,388.160 200,882.988 149,519.095 117,842.491
Avg 201,048.000 203,729.000 203,492.000 195,286.000 203,970.000 152,379.000 120,551.000

Worst 204,902.594 206,534.694 207,776.148 200,825.073 206,878.190 154,292.126 123,731.662
SD 1683.470 1656.565 1899.381 2196.411 1523.478 1199.194 1176.508

T900 Best 223,704.461 226,558.832 226,409.487 217,996.729 226,114.867 172,082.041 135,865.435
Avg 226,980.000 229,924.000 230,362.000 222,388.000 229,935.000 174,181.000 137,631.000

Worst 229,921.195 233,724.590 233,488.493 225,639.051 233,651.341 176,793.002 139,246.915
SD 1673.049 1834.109 1787.159 1794.545 1706.194 1229.686 863.086

T1000 Best 247,875.320 249,814.443 250,647.285 242,389.074 250,741.549 194,418.935 152,868.454
Avg 251,792.000 253,414.000 253,521.000 246,631.000 253,945.000 196,598.000 155,350.000

Worst 254,529.450 257,498.878 256,169.629 250,551.728 256,575.530 198,807.888 157,666.486
SD 1615.810 1823.711 1598.983 1604.413 1469.167 1146.393 1329.473

T1200 Best 272,161.798 275,012.674 273,177.920 266,930.950 275,918.637 215,439.409 168,684.208
Avg 276,665.000 278,762.000 278,623.000 272,150.000 279,459.000 218,984.000 172,241.000

Worst 279,816.799 282,024.626 282,025.504 277,318.739 281,727.579 220,993.332 175,396.503
SD 1654.505 1979.462 2136.547 2217.506 1530.659 1458.254 1543.670

T1500 Best 297,700.056 301,895.921 300,516.283 289,987.072 301,107.227 240,484.692 188,831.791
Avg 302,389.000 304,816.000 305,067.000 297,244.000 304,918.000 243,074.000 192,415.000

Worst 306,262.646 306,790.966 307,331.538 300,181.346 308,731.491 245,362.366 195,299.922
SD 2105.256 1457.285 1731.171 2124.410 1735.142 1424.956 1558.728

T2000 Best 324,305.532 328,468.897 328,886.931 318,205.762 325,580.330 265,211.125 209,699.639
Avg 329,160.000 331,652.000 331,396.000 323,903.000 330,530.000 268,229.000 212,927.000

Worst 332,916.550 335,830.685 334,367.352 329,829.207 334,457.438 270,526.428 216,136.640
SD 2167.010 1789.437 1634.825 2473.637 1970.316 1248.839 1521.468

T2500 Best 349,691.604 350,883.081 352,358.092 343,367.024 351,080.666 286,532.304 224,756.706
Avg 353,786.000 355,235.000 355,558.000 348,528.000 355,706.000 289,731.000 228,761.000

Worst 357,011.837 359,479.690 358,061.266 352,923.652 360,249.932 292,567.734 233,007.159
SD 1762.202 1972.154 1614.774 2190.929 2216.089 1639.396 1996.000

T3000 Best 374,687.613 374,116.100 378,044.013 368,165.769 374,348.289 308,332.567 247,888.247
Avg 380,344.000 382,277.000 382,538.000 375,197.000 381,730.000 314,351.000 250,242.000

Worst 384,988.196 386,465.343 386,075.515 380,355.337 386,174.587 317,335.349 253,382.767
SD 2444.072 2658.810 2068.051 2672.652 2505.108 2100.287 1509.886

The bold values indicate the best values.

Table A2. Comparison among algorithms for the makespan values.

TS EO SCA GWO WOA SMA DE HDE

T100 Best 9438.672 11,947.637 12,712.777 10,884.463 11,975.781 6944.882 6944.882
Avg 10,516.000 12,859.000 13,645.000 11,750.000 12,807.000 7010.000 7013.000

Worst 12,883.040 14,826.337 15,092.457 12,654.819 13,823.656 7137.436 7129.975
SD 653.494 683.114 571.680 447.619 553.510 40.354 43.224

T200 Best 22,547.028 23,002.456 23,210.790 21,671.230 23,050.308 13,431.827 13,185.932
Avg 24,472.000 24,684.000 25,148.000 23,759.000 24,660.000 13,594.000 13,348.000

Worst 26,066.689 26,378.086 27,355.248 25,403.570 26,345.011 14,041.473 13,538.203
SD 829.519 960.601 1163.940 882.523 888.877 129.345 91.631

Mathematics 2022, 10, 4049 21 of 26

Table A2. Cont.

TS EO SCA GWO WOA SMA DE HDE

T300 Best 36,947.699 34,559.880 34,731.946 34,232.690 35,303.618 21,389.497 19,972.977
Avg 38,439.000 36,801.000 37,327.000 36,425.000 36,938.000 21,878.000 20,194.000

Worst 40,431.356 38,900.228 41,404.623 39,453.807 39,017.019 22,363.346 20,472.578
SD 976.881 909.559 1666.857 1116.936 854.587 228.565 127.459

T400 Best 48,955.367 45,647.852 46,915.152 46,597.809 46,455.141 29,617.292 26,444.417
Avg 51,779.000 48,799.000 48,556.000 48,947.000 48,528.000 30,500.000 26,731.000

Worst 55,070.040 51,597.179 52,287.562 51,820.391 50,765.243 31,290.145 27,121.008
SD 1509.922 1383.763 1272.435 1346.970 1208.233 400.760 161.878

T500 Best 61,001.750 57,658.760 57,566.241 58,607.792 59,016.133 38,674.036 32,957.020
Avg 64,916.000 60,584.000 60,244.000 60,900.000 60,608.000 39,487.000 33,269.000

Worst 67,560.243 64,112.117 62,532.085 63,017.762 62,815.301 40,093.788 33,819.042
SD 1560.291 1421.079 1234.821 1193.972 940.158 417.670 224.071

T600 Best 73,229.925 69,331.153 69,586.533 69,647.496 68,512.668 48,727.438 40,158.207
Avg 76,445.000 72,328.000 72,067.000 72,844.000 72,158.000 49,612.000 40,845.000

Worst 80,532.895 77,530.876 75,054.437 77,227.793 749,26.269 50,879.790 41,495.153
SD 1701.605 1594.430 1333.427 1659.749 1515.736 541.237 292.474

T700 Best 84,822.010 81,046.928 80,384.642 79,314.560 79,554.619 58,557.297 47,217.700
Avg 88,690.000 83,167.000 83,246.000 84,249.000 82,848.000 59,386.000 47,921.000

Worst 93,188.460 85,347.315 86,615.127 87,747.237 86,999.870 60,544.019 48,675.067
SD 2128.515 1231.305 1612.775 1790.731 1662.438 460.926 330.657

T800 Best 96,380.442 92,521.921 92,321.704 91,262.035 93,067.232 68,677.526 53,779.212
Avg 100,603.000 95,559.000 95,873.000 96,413.000 96,213.000 69,688.000 54,867.000

Worst 106,564.905 98,404.951 99,524.222 100,831.242 101,401.679 70,661.792 56,282.630
SD 2414.587 1423.826 2017.753 2166.084 2066.140 513.065 545.623

T900 Best 108,229.730 103,645.560 104,628.113 105,548.365 104,277.133 78,792.104 61,758.499
Avg 113,582.000 107,669.000 107,999.000 109,495.000 107,688.000 79,775.000 62,626.000

Worst 120,148.440 112,419.694 114,072.174 111,749.833 111,998.498 81,359.462 63,399.167
SD 2850.589 2007.737 2051.189 1641.801 1715.424 624.858 408.529

T1000 Best 118,736.975 115,138.440 115,625.172 116,100.770 116,206.118 88,832.449 69,515.446
Avg 123,279.000 118,956.000 119,125.000 120,234.000 118,929.000 90,012.000 70,684.000

Worst 129,183.176 122,706.004 122,156.907 124,499.643 124,431.728 93,798.984 71,658.817
SD 2489.881 1666.849 1659.843 2417.331 1778.316 874.974 620.257

T1200 Best 129,795.983 126,954.152 126,249.252 127,570.871 127,972.633 98,118.160 76,652.611
Avg 134,908.000 130,688.000 130,519.000 132,035.000 130,779.000 100,158.000 78,409.000

Worst 141,397.459 135,719.950 134,650.907 139,766.474 136,984.431 101,266.796 79,725.686
SD 2309.279 1870.231 2018.753 2729.933 2251.355 774.466 705.732

T1500 Best 138,804.579 138,898.602 139,292.203 139,693.196 138,606.731 109,581.936 85,953.213
Avg 145,796.000 142,250.000 142,775.000 143,012.000 142,380.000 111,340.000 87,520.000

Worst 153,587.370 145,607.443 150,992.953 147,576.341 146,704.239 114,272.274 89,009.316
SD 3283.758 1526.583 2390.077 1991.793 1614.124 1072.070 721.108

T2000 Best 151,784.006 151,264.096 150,594.060 149,722.432 151,191.472 121,190.063 95,349.975
Avg 157,611.000 155,420.000 154,648.000 155,396.000 154,322.000 122,618.000 96,813.000

Worst 166,344.617 160,214.293 159,508.888 161,005.512 159,349.068 123,936.506 98,162.927
SD 3677.971 2504.031 2137.704 2628.660 1852.858 637.741 698.603

T2500 Best 160,529.235 160,637.179 162,072.574 161,144.576 161,100.021 130,477.400 102,136.632
Avg 169,506.000 165,738.000 166,038.000 166,450.000 165,581.000 132,810.000 104,022.000

Worst 179,163.135 171,771.518 169,385.501 173,371.558 169,513.351 134,690.256 106,190.281
SD 4406.047 2343.341 1588.846 2503.864 2282.155 925.081 933.183

T3000 Best 172,070.805 172,887.505 173,311.921 174,193.094 173,026.585 142,122.392 112,625.384
Avg 181,066.000 177,940.000 178,119.000 178,707.000 177,882.000 144,111.000 113,811.000

Worst 187,904.224 184,878.509 182,574.837 183,514.827 181,860.483 147,212.405 115,274.338
SD 3690.548 2693.045 2364.794 2069.685 2493.556 1188.774 701.579

The bold values indicate the best values.

Mathematics 2022, 10, 4049 22 of 26

Table A3. Comparison among algorithms for total execution time.

TS EO SCA GWO WOA SMA DE HDE

T100 Best 38,115.003 50,570.643 49,339.028 40,070.182 52,314.209 34,167.699 34,184.939
Avg 40,701.000 55,087.000 52,746.000 43,443.000 55,795.000 34,298.000 34,550.000

Worst 43,980.020 57,190.514 56,010.407 46,197.991 57,836.610 34,461.035 35,226.454
SD 1093.390 1509.796 1560.900 1514.701 1342.057 74.832 228.008

T200 Best 86,987.143 105,072.258 103,976.815 87,848.691 108,440.506 66,302.970 65,521.241
Avg 90,879.000 110,862.000 109,394.000 92,988.000 112,350.000 67,038.000 66,290.000

Worst 95,059.361 114,933.861 113,761.796 98,376.422 115,141.894 67,843.837 67,119.554
SD 2114.152 2408.720 2660.714 2577.679 1907.367 414.783 429.283

T300 Best 140,739.328 164,556.186 161,414.947 141,130.001 165,788.713 105,870.995 99,269.263
Avg 148,252.000 169,244.000 169,843.000 148,151.000 170,026.000 107,669.000 100,496.000

Worst 151,986.556 172,666.021 175,454.835 155,885.560 174,514.307 109,713.690 101,829.995
SD 2883.541 1929.747 3292.297 3351.197 2029.973 1011.817 610.498

T400 Best 197,268.901 220,893.125 220,314.876 194,313.759 223,848.304 146,681.999 132,120.112
Avg 206,434.000 226,286.000 227,406.000 201,072.000 227,607.000 150,428.000 133,321.000

Worst 212,775.565 233,178.780 233,772.309 213,052.367 234,076.000 153,333.362 134,949.635
SD 3429.782 2590.382 2766.779 4734.105 2765.688 1528.621 718.928

T500 Best 250,376.325 276,708.351 275,486.339 245,134.200 28,0346.649 191,901.169 164,043.543
Avg 259,553.000 282,911.000 283,207.000 254,935.000 284,552.000 195,182.000 165,984.000

Worst 268,501.754 288,230.427 288,712.693 264,972.627 289,984.941 198,374.617 168,523.978
SD 4225.905 2899.368 3376.512 4857.550 2312.076 1837.159 1043.599

T600 Best 305,869.915 333,578.543 335,046.072 298,840.145 331,419.196 240,743.608 200,817.097
Avg 316,503.000 340,612.000 340,669.000 311,202.000 340,368.000 245,292.000 203,972.000

Worst 322,769.104 345,645.788 346,242.900 320,955.422 346,933.177 249,268.571 207,896.980
SD 4545.269 2832.242 2863.235 4729.092 3649.364 2146.239 1492.645

T700 Best 357,976.309 386,497.338 386,666.396 348,756.713 384,774.422 290,119.422 235,668.911
Avg 371,070.000 393,829.000 394,363.000 366,683.000 394,693.000 294,062.000 239,351.000

Worst 378,442.442 401,305.913 400,091.078 380,151.696 402,525.765 297,527.211 243,753.678
SD 4873.732 3716.885 3533.207 8468.329 3321.936 1805.772 1741.489

T800 Best 426,788.885 443,078.326 445,461.575 413,981.425 446,848.296 337,406.050 267,323.474
Avg 435,421.000 456,128.000 454,603.000 425,991.000 455,402.000 345,326.000 273,815.000

Worst 447,835.415 462,814.404 465,671.838 440,590.901 462,478.406 350,468.826 281,112.735
SD 5155.694 4975.650 4760.611 6537.117 3175.612 3129.091 2672.983

T900 Best 477,747.825 508,820.405 507,406.435 474,814.038 505,128.246 388,859.617 308,781.618
Avg 491,572.000 515,186.000 515,877.000 485,805.000 515,177.000 394,463.000 312,644.000

Worst 500,984.743 522,422.130 524,740.549 497,009.192 523,713.793 401,004.355 316,484.309
SD 5365.567 3128.123 4096.034 5414.481 4544.028 3238.249 1943.345

T1000 Best 537,828.097 557,237.156 556,031.484 524,852.018 558,305.219 439,473.809 347,358.806
Avg 551,656.000 567,151.000 567,112.000 541,558.000 568,982.000 445,298.000 352,903.000

Worst 563,670.866 575,833.134 574,415.860 553,355.183 575,042.293 451,669.178 358,351.049
SD 6829.226 4411.820 4635.891 6413.167 3339.505 2816.904 3011.747

T1200 Best 588,406.658 616,501.616 609,146.791 585,013.689 612,946.921 489,188.988 383,424.603
Avg 607,433.000 624,268.000 624,202.000 599,085.000 626,378.000 496,245.000 391,183.000

Worst 621,660.221 633,980.837 632,138.961 612,439.335 634,727.265 501,846.993 398,628.411
SD 6446.235 4055.883 5021.459 7582.436 5868.540 3414.373 3541.414

T1500 Best 645,910.065 678,355.899 671,733.428 640,448.075 677,639.783 545,069.758 428,881.806
Avg 667,774.000 684,136.000 683,749.000 657,119.000 684,171.000 550,454.000 437,170.000

Worst 690,938.157 694,111.491 693,117.184 666,430.377 695,449.033 556,975.679 443,311.339
SD 8351.155 3736.241 5531.450 6816.146 4114.685 3010.062 3530.292

T2000 Best 712,207.300 733,380.764 737,130.722 702,518.639 731,200.908 599,158.246 476,515.523
Avg 729,441.000 742,861.000 743,809.000 717,086.000 741,682.000 607,988.000 483,857.000

Worst 741,210.983 752,039.100 753,733.583 730,721.668 749,436.738 613,091.297 491,408.639
SD 6883.118 4637.338 4247.121 6992.119 4927.330 3101.014 3462.359

T2500 Best 765,728.675 787,262.395 785,012.916 755,291.076 791,036.794 646,478.360 510,870.211
Avg 783,772.000 797,394.000 797,769.000 773,376.000 799,331.000 655,880.000 519,819.000

Worst 796,845.810 805,270.438 809,131.565 789,947.532 808,619.056 661,680.775 528,913.206
SD 7897.303 4431.070 5327.938 8487.814 4819.742 3862.820 4496.779

Mathematics 2022, 10, 4049 23 of 26

Table A3. Cont.

TS EO SCA GWO WOA SMA DE HDE

T3000 Best 830,030.908 843,649.488 851,616.785 810,725.718 843,766.365 696,078.733 563,250.918
Avg 845,325.000 859,065.000 859,517.000 833,672.000 857,376.000 711,579.000 568,580.000

Worst 860,345.325 868,701.031 866,711.674 846,150.448 867,698.102 718,347.423 575,635.766
SD 7084.137 5029.439 3972.881 8360.492 5830.941 5256.236 3441.967

The bold values indicate the best value.

Table A4. Comparison using a Wilcoxon rank sum test between HDE and each compared algorithm,
in terms of fitness values.

TS EO SCA GWO WOA SMA DE

T100 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 6.35455 × 10−5

p- 1 1 1 1 1 1

T200 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 7.77255 × 10−9

p- 1 1 1 1 1 1

T300 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

T400 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

T500 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

T600 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

T700 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

T800 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

T900 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

T1000 h- 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11 3.01986 × 10−11

p- 1 1 1 1 1 1

The Bold font indicates that there is a difference between the outcomes of HDE and those of the competitors.

Table A5. Comparison with heuristic algorithms for the total execution time and makespan.

FCFS SJF RR HDE

TS MS Total
Execution MS Total

Execution MS Total
Execution MS Total

Execution

T100 Best 12,344.292 53,662.706 12,398.820 55,392.648 13,303.341 55,738.997 6944.882 34,184.939
Avg 14,910.000 58,624.000 14,562.000 59,537.000 15,390.000 59,010.000 7013.000 34,550.000

Worst 17,044.315 62,160.312 18,442.821 64,955.074 20,028.542 62,707.336 7129.975 35,226.454
SD 1285.666 2349.561 1369.898 2201.344 1582.706 1824.601 43.224 228.008

T200 Best 22,844.658 110,292.306 24,328.549 112,870.669 24,911.324 111,094.478 13,185.932 65,521.241
Avg 27,145.000 115,596.000 28,231.000 117,153.000 27,956.000 117,593.000 13,348.000 66,290.000

Worst 31,734.097 121,304.186 33,372.631 124,674.725 30,746.313 122,266.950 13,538.203 67,119.554
SD 1896.645 2616.447 2440.761 2513.921 1461.083 2916.001 91.631 429.283

T300 Best 36,401.175 167,860.710 35,551.337 169,794.780 37,405.544 170,045.361 19,972.977 99,269.263
Avg 40,855.000 174,596.000 40,437.000 175,831.000 40,835.000 174,987.000 20,194.000 100,496.000

Worst 48,259.582 181,227.236 46,488.415 184,826.161 45,607.496 182,173.616 20,472.578 101,829.995
SD 3164.196 3007.580 2540.009 3417.183 2145.982 2568.089 127.459 610.498

T400 Best 48,561.026 222,538.649 47,999.873 226,957.706 47,704.192 223,741.723 26,444.417 132,120.112
Avg 53,428.000 233,554.000 53,169.000 233,803.000 52,562.000 232,425.000 26,731.000 133,321.000

Worst 61,278.109 246,043.696 61,410.113 241,419.656 56,838.183 240,902.340 27,121.008 134949.635
SD 3014.512 4164.430 2703.758 3817.347 2201.783 4461.438 161.878 718.928

T500 Best 60,671.925 284,463.880 60,666.928 282,672.617 61,382.773 283,534.055 32,957.020 164,043.543
Avg 65,297.000 291,399.000 66,204.000 291,909.000 65,410.000 291,712.000 33,269.000 165,984.000

Worst 73,599.101 301,398.628 76,683.101 300,649.387 74,272.381 297,917.527 33,819.042 168,523.978
SD 3065.808 3745.909 4217.987 4207.052 3169.840 2995.869 224.071 1043.599

Mathematics 2022, 10, 4049 24 of 26

Table A5. Cont.

FCFS SJF RR HDE

TS MS Total
Execution MS Total

Execution MS Total
Execution MS Total

Execution

T600 Best 71,384.337 338,853.354 71,876.123 339,199.141 72,118.680 338,253.551 40,158.207 200,817.097
Avg 77,058.000 348,454.000 78,169.000 347,967.000 77,937.000 347189.000 40,845.000 203,972.000

Worst 83,617.806 361,268.968 91,370.647 360,625.466 86,283.611 353,966.290 41,495.153 207,896.980
SD 3655.534 5785.572 4347.694 5222.763 3596.340 3873.134 292.474 1492.645

T700 Best 82,871.222 389,875.874 83,096.043 393,296.088 81,664.036 394,618.246 47,217.700 235,668.911
Avg 88,977.000 403,648.000 88,430.000 402,422.000 89,694.000 404,010.000 47,921.000 239,351.000

Worst 101,824.324 415,541.874 97,387.359 412,616.229 100,040.623 421,919.793 48,675.067 243,753.678
SD 3883.562 6357.864 3321.412 4165.120 4360.224 5737.322 330.657 1741.489

T800 Best 95,526.392 451,999.107 95,363.041 449,490.324 92,544.224 449,997.947 53,779.212 267,323.474
Avg 102,116.000 464,544.000 101,688.000 464,338.000 102,840.000 463,833.000 54,867.000 273,815.000

Worst 110,433.706 473,190.025 113,090.328 473,467.814 114,386.119 475,437.101 56,282.630 281,112.735
SD 3423.486 4557.432 4046.083 5894.821 4732.558 6066.622 545.623 2672.983

T900 Best 108,219.570 507,238.701 106,632.715 512,446.913 107,182.309 512,662.893 61,758.499 308,781.618
Avg 113,943.000 524,054.000 114,563.000 523,459.000 114,571.000 524,364.000 62626.000 312,644.000

Worst 122,612.509 542,323.705 126,840.703 539,681.496 123,633.119 538,450.021 63,399.167 316,484.309
SD 4002.028 6410.736 4548.561 6594.319 4337.906 5915.235 408.529 1943.345

T1000 Best 115,252.394 562,357.362 115,970.112 563,944.718 117,570.996 564,348.540 69,515.446 347,358.806
Avg 123,900.000 575,167.000 124,553.000 577018.000 124,977.000 576,748.000 70,684.000 352,903.000

Worst 132,163.539 584,019.817 139,114.933 594,497.693 134,407.616 590,320.838 71,658.817 358,351.049
SD 3776.393 5114.537 4821.304 6486.320 4500.341 5778.815 620.257 3011.747

T1200 Best 126,473.499 622,184.636 128,882.364 619,891.703 129,100.117 620,290.715 76,652.611 383,424.603
Avg 137,267.000 637,357.000 137,832.000 636,864.000 136,112.000 634,428.000 78,409.000 391,183.000

Worst 148,752.105 656,539.187 150,051.311 650,397.990 143,371.287 647,445.075 79,725.686 398,628.411
SD 4887.727 8273.490 4775.503 6534.292 3190.396 6837.603 705.732 3541.414

T1500 Best 138,646.670 679,212.397 142,046.487 679,305.037 145,002.492 684,350.824 85,953.213 428,881.806
Avg 149,618.000 693,741.000 150,234.000 695,673.000 151,079.000 696,135.000 87,520.000 437,170.000

Worst 165,002.833 707,135.205 164,234.551 708,533.638 160,514.410 708,776.628 89,009.316 443,311.339
SD 6078.265 7948.496 5151.143 7429.044 4560.286 5537.040 721.108 3530.292

T2000 Best 153,066.964 737,643.035 153,299.956 734,958.438 152,479.492 740,924.563 95,349.975 476,515.523
Avg 161,641.000 754,762.000 162,568.000 754,581.000 159,989.000 752,314.000 96,813.000 483,857.000

Worst 175,933.006 763,273.414 184,308.530 766,039.466 170,141.689 770,347.951 98,162.927 491,408.639
SD 5660.829 6387.341 5766.332 7228.589 4479.952 7333.449 698.603 3462.359

T2500 Best 161,397.176 794,939.206 165,571.473 792,458.130 166,885.056 799,726.645 102,136.632 510,870.211
Avg 173,614.000 809,173.000 172,776.000 810,402.000 174375.000 812,225.000 104,022.000 519,819.000

Worst 184,331.464 824,648.829 183,006.363 827,132.424 189,002.607 824,028.335 106,190.281 528,913.206
SD 5457.343 7346.403 4412.046 7584.300 5523.036 6417.060 933.183 4496.779

T3000 Best 176,200.277 852,165.434 177,661.627 853,232.663 178,819.097 859,423.967 112,625.384 563,250.918
Avg 184,378.000 866,586.000 186,939.000 871,015.000 186,791.000 872,513.000 113,811.000 568,580.000

Worst 196,778.207 885,253.124 201,877.303 892,941.694 201,607.603 888,088.876 115,274.338 575,635.766
SD 5833.666 7420.404 5587.624 9231.738 6381.138 7657.639 701.579 3441.967

Bold value indicates the best result.

References
1. El-Shafeiy, E.; Abohany, A. A new swarm intelligence framework for the Internet of Medical Things system in healthcare.

In Swarm Intelligence for Resource Management in Internet of Things; Academic Press: Cambridge, MA, USA, 2020; pp. 87–107.
[CrossRef]

2. Hassan, K.M.; Abdo, A.; Yakoub, A. Enhancement of Health Care Services based on cloud computing in IOT Environment Using
Hybrid Swarm Intelligence. IEEE Access 2022, 10, 105877–105886. [CrossRef]

3. Nayar, N.; Ahuja, S.; Jain, S. Swarm intelligence and data mining: A review of literature and applications in healthcare. In Proceed-
ings of the Third International Conference on Advanced Informatics for Computing Research, Shimla, India, 15–16 June 2019.

4. Ben Alla, H.; Ben Alla, S.; Touhafi, A.; Ezzati, A. A novel task scheduling approach based on dynamic queues and hybrid
meta-heuristic algorithms for cloud computing environment. Clust. Comput. 2018, 21, 1797–1820. [CrossRef]

5. Singh, H.; Tyagi, S.; Kumar, P.; Gill, S.S.; Buyya, R. Metaheuristics for scheduling of heterogeneous tasks in cloud computing
environments: Analysis, performance evaluation, and future directions. Simul. Model. Pr. Theory 2021, 111, 102353. [CrossRef]

http://doi.org/10.1016/b978-0-12-818287-1.00010-3
http://doi.org/10.1109/ACCESS.2022.3211512
http://doi.org/10.1007/s10586-018-2811-x
http://doi.org/10.1016/j.simpat.2021.102353

Mathematics 2022, 10, 4049 25 of 26

6. Huang, X.; Li, C.; Chen, H.; An, D. Task scheduling in cloud computing using particle swarm optimization with time varying
inertia weight strategies. Clust. Comput. 2020, 23, 1137–1147. [CrossRef]

7. Bezdan, T.; Zivkovic, M.; Antonijevic, M.; Zivkovic, T.; Bacanin, N. Enhanced Flower Pollination Algorithm for Task Schedul-
ing in Cloud Computing Environment. In Machine Learning for Predictive Analysis; Springer: Berlin/Heidelberg, Germany,
2021; pp. 163–171. [CrossRef]

8. Choudhary, A.; Gupta, I.; Singh, V.; Jana, P.K. A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud
computing. Futur. Gener. Comput. Syst. 2018, 83, 14–26. [CrossRef]

9. Raghavan, S.; Sarwesh, P.; Marimuthu, C.; Chandrasekaran, K. Bat algorithm for scheduling workflow applications in cloud.
In Proceedings of the 2015 International Conference on Electronic Design, Computer Networks & Automated Verification
(EDCAV), Shillon, India, 29–30 January 2015; pp. 139–144.

10. Tawfeek, M.A.; El-Sisi, A.; Keshk, A.E.; Torkey, F.A. Cloud task scheduling based on ant colony optimization. In Proceedings
of the 8th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 26–28 November 2013; IEEE:
Piscataway, NJ, USA, 2013.

11. Hamad, S.A.; Omara, F.A. Genetic-Based Task Scheduling Algorithm in Cloud Computing Environment. Int. J. Adv. Comput. Sci.
Appl. 2016, 7, 550–556. [CrossRef]

12. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M.; Zivkovic, M. Task Scheduling in Cloud Computing Environment by
Grey Wolf Optimizer. In Proceedings of the 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019;
pp. 1–4. [CrossRef]

13. Chen, X.; Cheng, L.; Liu, C.; Liu, Q.; Liu, J.; Mao, Y.; Murphy, J. A WOA-Based Optimization Approach for Task Scheduling in
Cloud Computing Systems. IEEE Syst. J. 2020, 14, 3117–3128. [CrossRef]

14. Alsaidy, S.A.; Abbood, A.D.; Sahib, M.A. Heuristic initialization of PSO task scheduling algorithm in cloud computing. J. King
Saud Univ. Comput. Inf. Sci. 2020, 34, 2370–2382. [CrossRef]

15. Alboaneen, D.A.; Tianfield, H.; Zhang, Y. Glowworm swarm optimisation based task scheduling for cloud computing. In Proceed-
ings of the Second International Conference on Internet of Things, Data and Cloud Computing, Porto, Portugal, 24–26 April 2017.

16. Durgadevi, P.; Srinivasan, D.S. Task scheduling using amalgamation of metaheuristics swarm optimization algorithm and cuckoo
search in cloud computing environment. J. Res. 2015, 1, 10–17.

17. Belgacem, A.; Beghdad-Bey, K.; Nacer, H. Task scheduling optimization in cloud based on electromagnetism metaheuristic
algorithm. In Proceedings of the 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa,
Algeria, 24–25 October 2018; pp. 1–7. [CrossRef]

18. Masadeh, R.; Alsharman, N.; Sharieh, A.; Mahafzah, B.; Abdulrahman, A. Task scheduling on cloud computing based on sea lion
optimization algorithm. Int. J. Web Inf. Syst. 2021, 17, 99–116. [CrossRef]

19. Abdullahi, M.; Ngadi, A.; Dishing, S.I.; Abdulhamid, S.M. An adaptive symbiotic organisms search for constrained task
scheduling in cloud computing. J. Ambient Intell. Humaniz. Comput. 2022, 1–12. [CrossRef]

20. Strumberger, I.; Bacanin, N.; Tuba, M.; Tuba, E. Resource Scheduling in Cloud Computing Based on a Hybridized Whale
Optimization Algorithm. Appl. Sci. 2019, 9, 4893. [CrossRef]

21. Bacanin, N.; Tuba, E.; Bezdan, T.; Strumberger, I.; Tuba, M. Artificial Flora Optimization Algorithm for Task Scheduling in
Cloud Computing Environment. In Proceedings of the International Conference on Intelligent Data Engineering and Automated
Learning, Manchester, UK, 14–16 November 2019; pp. 437–445. [CrossRef]

22. Mansouri, N.; Zade, B.M.H.; Javidi, M.M. Hybrid task scheduling strategy for cloud computing by modified particle swarm
optimization and fuzzy theory. Comput. Ind. Eng. 2019, 130, 597–633. [CrossRef]

23. Ge, J.; He, Q.; Fang, Y. Cloud computing task scheduling strategy based on improved differential evolution algorithm. In AIP
Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2017. [CrossRef]

24. Li, Y.; Wang, S.; Hong, X.; Li, Y. Multi-objective task scheduling optimization in cloud computing based on genetic algorithm and
differential evolution algorithm. In Proceedings of the 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018;
IEEE: New York, NY, USA, 2018.

25. Zhou, Z.; Li, F.; Yang, S. A Novel Resource Optimization Algorithm Based on Clustering and Improved Differential Evolution
Strategy Under a Cloud Environment. ACM Trans. Asian Low-Resource Lang. Inf. Process. 2021, 20, 1–15. [CrossRef]

26. Tsai, J.-T.; Fang, J.-C.; Chou, J.-H. Optimized task scheduling and resource allocation on cloud computing environment using
improved differential evolution algorithm. Comput. Oper. Res. 2013, 40, 3045–3055. [CrossRef]

27. Chen, J.; Han, P.; Liu, Y.; Du, X. Scheduling independent tasks in cloud environment based on modified differential evolution.
Concurr. Comput. Pr. Exp. 2021, e6256. [CrossRef]

28. Elaziz, M.A.; Xiong, S.; Jayasena, K.; Li, L. Task scheduling in cloud computing based on hybrid moth search algorithm and
differential evolution. Knowl.-Based Syst. 2019, 169, 39–52. [CrossRef]

29. Shi, X.; Zhang, X.; Xu, M. A self-adaptive preferred learning differential evolution algorithm for task scheduling in cloud
computing. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer
Applications (AEECA), Dalian, China, 25–27 August 2020; IEEE: Piscataway, NJ, USA, 2020.

30. Rana, N.; Abd Latiff, M.S.; Abdulhamid, S.I.M.; Misra, S. A hybrid whale optimization algorithm with differential evolution
optimization for multi-objective virtual machine scheduling in cloud computing. Eng. Optim. 2021, 54, 1–18. [CrossRef]

http://doi.org/10.1007/s10586-019-02983-5
http://doi.org/10.1007/978-981-15-7106-0_16
http://doi.org/10.1016/j.future.2018.01.005
http://doi.org/10.14569/ijacsa.2016.070471
http://doi.org/10.1109/telfor48224.2019.8971223
http://doi.org/10.1109/JSYST.2019.2960088
http://doi.org/10.1016/j.jksuci.2020.11.002
http://doi.org/10.1109/pais.2018.8598518
http://doi.org/10.1108/IJWIS-11-2020-0071
http://doi.org/10.1007/s12652-021-03632-9
http://doi.org/10.3390/app9224893
http://doi.org/10.1007/978-3-030-33607-3_47
http://doi.org/10.1016/j.cie.2019.03.006
http://doi.org/10.1063/1.4981634
http://doi.org/10.1145/3462761
http://doi.org/10.1016/j.cor.2013.06.012
http://doi.org/10.1002/cpe.6256
http://doi.org/10.1016/j.knosys.2019.01.023
http://doi.org/10.1080/0305215X.2021.1969560

Mathematics 2022, 10, 4049 26 of 26

31. Storn, R. International Computer Science Institute, Differrential evolution-a simple and efficient adaptive scheme for global
optimization over continuous spaces. Tech. Rep. Int. Comput. Sci. Inst. 1995, 11, 353–358.

32. Branke, J.; Deb, K.; Dierolf, H.; Osswald, M. Finding knees in multi-objective optimization. In Proceedings of the International
Conference on Parallel Problem Solving from Nature, Birmingham, UK, 18–22 September 2004.

33. Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26,
369–395. [CrossRef]

34. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
35. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
36. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
37. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based

Syst. 2020, 191, 105190. [CrossRef]
38. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
39. Price, K.V. Differential evolution. In Handbook of Optimization; Springer: Berlin/Heidelberg, Germany, 2013; pp. 187–214.
40. Bibu, G.D.; Nwankwo, G.C. Comparative analysis between first-come-first-serve (FCFS) and shortest-job-first (SJF) scheduling

algorithms. Int. J. Comput. Sci. Mob. Comput. 2019, 8, 176–181.
41. Jang, S.H.; Kim, T.Y.; Kim, J.K.; Lee, J.S. The study of genetic algorithm-based task scheduling for cloud computing. Int. J. Control

Autom. 2012, 5, 157–162.
42. Haynes, W. Wilcoxon rank sum test. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013; pp. 2354–2355.

http://doi.org/10.1007/s00158-003-0368-6
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.future.2020.03.055
http://doi.org/10.1016/j.knosys.2019.105190
http://doi.org/10.1016/j.advengsoft.2013.12.007

	Introduction
	Task Scheduling in the Cloud Computing Environment
	Differential Evolution
	Mutation Operator
	Crossover Operator
	Selection Operator

	Objective Function Formulation
	The Proposed Algorithm
	Initialization
	Adaptive Scaling Factor (F)
	Convergence Improvement Strategy
	Hybrid Differential Evolution
	Time Complexity of HDE

	Results and Simulation
	Comparison with Metaheuristic Algorithms
	Simulation Results
	Comparison with Some Heuristic Algorithms

	Conclusions and Future Work
	Appendix A
	References

